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Abstract

With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban
interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on
forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across
forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high
and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also
surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing
richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat
for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance
and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We
did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to
the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus
australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts
beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have
negative effects on both community and species level responses, except for one urban adapter. We developed a new
predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our
framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent
habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will allow scientists, managers
and planners better understand and predict both species responses across edges and impacts of development in mosaic
landscapes.
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Introduction

Urbanization is a strong driver of environmental modification

worldwide [1,2]. Currently, there are more than seven billion

people on earth, with more than half living in urban areas [3]. By

2050, more than 70% of the human population will live in urban

areas [4]. Therefore, the pressure for urban development will lead

to continued urban expansion. These changing environmental

conditions will cause loss, degradation, fragmentation and isolation

of remnant habitats [5]; and affect biodiversity at local, landscape

and regional scales [6,7].

As a result of urbanization, animals are increasingly exposed to

urban boundaries with different edge contrasts [8,9]. Edge

contrast, defined as the difference in composition or structure

between adjoining ecosystems at both sides of the boundary [10],

is a key element influencing the movement of animals across

landscapes [11]. Indeed, metapopulation persistence relies on

emigration, colonization and isolation [12], all of them influenced

by how animals move and distribute in relation to proximity of

habitat boundaries (i.e. ‘‘edge effects’’) [13]. It is expected that a

boundary with high contrast between juxtaposed patches (i.e. a

‘‘hard edge’’) will generate a more pronounced reduction in the

movement of animals than a ‘‘softer edge’’ [8,14–16], leading to a

differential length, depth or penetration of edge effects [10].

Although edge effects have received extensive attention in the

literature, most knowledge on edge effects comes from forested

patches adjacent to pastures or crops [8,10,11,16,17]. Little is

known about the edge effects caused by different kinds of urban

development. Given the rapid and accelerating expansion of

urban areas, the lack of attention to biodiversity in the wildland-

urban interface is a major knowledge gap [18]. Further, the study

of ecological processes along habitat edges has been restricted to a

focal patch (i.e. ‘‘one side’’ of the edge) (e.g. [10,19]) and on a

small spatial scale (but see [20,21]), limiting our understanding of

how species respond to contrasting edges to effectively guide

management and urban planning.

In this study, we explore the response of animals on both sides of

urban boundaries at a large spatial scale. We focused on arboreal

marsupials because they are sensitive to changes in land cover and

landscape fragmentation as a result of their dependence on forest
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resources (e.g. foliage, tree hollows) [22,23]. We measured the

response of arboreal marsupials in urban-forest edges, and

compared different edge contrasts based on the style of urban

development (i.e. housing density) adjacent to relatively intact

forest. We also surveyed forest controls located away from any

type of development to detect whether edge responses extended

beyond the edge length defined in our study. Low (i.e. ‘‘soft’’) and

high (i.e. ‘‘hard’’) contrast edges corresponded to intact forest

adjacent to low and high-density housing developments, respec-

tively (Figure 1).

When a patch of habitat (e.g. forest) is juxtaposed with a patch

of lower-quality habitat (e.g. an urban area) and the type of

resources are qualitatively the same in both patch types (e.g. trees

that provide foliage and den sites), a gradual change in species

abundance from the highest densities in the interior of the higher

quality habitat to the lower densities in the interior of the lower

quality habitat is expected across the edge [17,24] (Figure 1).

Because soft edges typically produce a weaker response among

biota than hard edges [10] (Figure 1), at the outset of this

investigation, we predicted a transitional response characterized

by: (a) a reduction of arboreal marsupial abundance in urban areas

with a reduced magnitude of the effect in soft edges; (b) a longer

spillover of arboreal marsupials from forest into urban areas with

soft edges; and (c) a longer penetration of the negative effect on

arboreal marsupials of urban areas into forests with hard edges.

Our results have relevance for guiding both planning and

management strategies to improving the conservation of forest-

dwelling animals in urban landscapes, particularly those at the

wildland-urban interface.

Materials and Methods

Ethics Statement
Our study was observational and no plants or animals were

harmed. The project was conducted in accordance with the

requirements of permit A2012/52 issued by the Animal Exper-

imentation Ethics Committee of The Australian National Univer-

sity. We also obtained a Permit for an Activity in a Common-

wealth Reserve (BDR12/00010), a scientific research license

issued by the New South Wales National Parks and Wildlife

Service (SL101012) and a Special Purposes Permit for Research in

Forests NSW (SPPR0010) granted to NRV. No specific permits

were required for surveying public tracks or private lands, where

residents and land owners approved access.

Study Area
Our study area was located on the south coast of New South

Wales, south-eastern Australia. It encompasses an area between

the towns of Callala Bay (34u599S 150u439E) and Berrara (35u129S
150u339E), and covers approximately 500 km2 (Figure 2A). The

region has a temperate climate, with warm summers and cold

winters. Annual mean minimum and maximum air temperatures

are 13.8uC and 20uC, respectively. Annual rainfall is ca.

1,000 mm and spread evenly throughout the year [25].

The area we studied is heavily dominated by native eucalypt

forests. Natural lands cover 81.4% of the landscape, followed by

urban areas (13.4%) and a small percentage of other land uses (e.g.

grazing, cropping, mining; 5.3%) [26]. We selected this area

dominated by eucalypt forests to reduce landscape-scale variation

across sites. Currently, high human population growth and an

increasing demand for holiday houses along the coast are

triggering further clearing of vegetation for urban development.

This land use change is creating urban areas of different housing

densities interspersed with natural areas such as national parks and

reserves.

Site Selection
To study the effect on arboreal marsupials of edge contrast (i.e.

housing density), land cover (i.e. forest and urban) and distance to

the urban boundary across urban-forest edges, we compiled

detailed surveys at 12 treatment sites (i.e. forest-urban edges) and

six control sites. To select treatment sites, we first identified urban

cover with high and low housing densities in a land use shapefile

[26] in ArcMap 10 (ESRI). High-density housing developments

were represented by residential zones dominated by single storey

houses (average block size: 0.06 ha). Low-density housing devel-

opments corresponded to rural residential zones with allotments

from 0.2 to 16 ha in size. We identified potential sites in urban

boundaries adjacent to large areas of forest (i.e. forest extending

beyond 600 m from the urban boundary and away from other

land uses); and selected a subset of six sites randomly in each

category of housing density (i.e. high and low). We restricted our

sampling to places where: (1) the cover type and housing density

were readily assigned to the key design structure in our study, and

(2) the forest supported key elements of stand structural complexity

for arboreal marsupials (i.e. large trees and cavities) [27]. Finally,

six control sites were selected randomly in large forested areas at

least 0.5 km away from any other land use, but within 8 km of a

treatment site (mean nearest distance from an urban boundary 6

se = 1447 m6400 m). Control sites were located within state

forests, national parks and reserves and were constrained to sites

that contained key elements of stand structural complexity for

arboreal marsupials.

At each treatment site, we established a 300 m transect along

streets or public tracks from the urban boundary into the urban

cover and another 300 m transect was established along an

unpaved track from the urban boundary into the forest (Figure 2B).

At each control site, a 300 m transect was established on an

unpaved track (Figure 2B).

Figure 1. Expected responses of arboreal marsupials according
to edge contrast and land cover in south-eastern Australia.
Graphs show the predicted trajectory of the animal abundance (dashed
line) in adjacent habitats. The vertical line in each graph represents the
boundary between two habitat patches. Arrows represent direction and
magnitude of the predicted response with increasing distance from the
urban boundary by each combination of edge contrast and land cover.
doi:10.1371/journal.pone.0097036.g001
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Figure 2. Study area, sites and diagram of transect placement for spotlighting surveys in south-eastern Australia. (A) Study area and
sites of spotlight surveys in south-eastern Australia. (B) Diagram of the transect placement for spotlighting surveys in each edge contrast. At each of
the high and low contrast edges a 300 m transect was established from the urban boundary into the forest and another 300 m transect was
established from the urban boundary into the urban area. Control sites included a 300 m transect within a forest and were .500 m away from other
land use. Arrows indicate the urban boundary.
doi:10.1371/journal.pone.0097036.g002
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Surveys of Arboreal Marsupials
To estimate species richness and the abundance of arboreal

marsupials, we used line-transect sampling [28]. We spotlighted

along each transect in our study sites. This method is widely used

in Australia [29,30] and produces the best results for this group of

animals in forests when compared with other survey techniques

[31].

Our 18 sites (comprising 30 transects: two transects per

treatment site and one transect per control site) were surveyed

up to four times (111 passes, mean 6 se = 3.460.6) between

December 2012 and February 2013. We accounted for uneven

survey effort in our analysis (see Data Analysis). All transects were

surveyed on foot at a speed of ca. 10 m/minute by using a 30-W

spotlight (LightFORCE) to detect animals by their eyeshine, body

size, and other physical characteristics with help of binoculars. For

each detection, we recorded species, the position of the observer

along the transect line, the distance between observer and animal,

and the perpendicular distance of the animal to the transect line.

All spotlighting surveys started 1 hour after dusk and ended

before 03h00. We standardized weather and temporal factors to

limit their effects on the abundance index by restricting the surveys

to good weather conditions (i.e. we did not perform surveys during

medium or strong wind or rain). We also avoided surveying within

four days of a full moon due to possible changes in animal activity

[32]. To limit observer effects on our data, 75% of transects were

surveyed by two observers (MAHE and NRV), each recording at a

different time and from a different direction but on the same night.

Vegetation Surveys
Habitat characteristics in each spotlighting transect were

quantified in terms of vegetation structure and composition, by

using the point-intercept survey method [33] along a 50 m

transect (50 points) at 100 and 300 m from the urban boundary in

both directions (i.e. urban area and forest). All vegetation transects

were placed on the vegetation parallel to the spotlighting transects

(including street vegetation and front gardens in urban areas). At

each point, we recorded the presence/absence of grass, litter, bare

ground, impervious surfaces, woody debris, understory vegetation

(excluding grass) and canopy. The proportion cover of each

habitat variable was calculated by dividing the amount present by

the total number of points (50) on each transect. We averaged the

proportions recorded along the two vegetation transects to

characterize each spotlighting transect.

Data Analysis
Species richness, total abundance and individual species

abundance. We aggregated our data on all animals recorded in

different passes of each transect. For each record, we calculated

the distance of the animal to the urban boundary in ArcGIS 10.

Each animal was assigned to one of three distance intervals from

the urban boundary: 0–100 m, 100–200 m and 200–300 m.

Although distance to the urban boundary was not considered in

control sites, all records were grouped by 100 m transect to ensure

the same sampling unit was used across all analysis (see below).

The midpoint of each distance interval was used as a continuous

variable (i.e. 50 m, 150 m and 250 m) in later analysis.

Prior to conducting detailed statistical analysis, we ensured that

the species’ detection did not differ between urban and forest

cover. We compared the distribution function of the proportion of

animals seen according to the distance to the observer in forest

versus urban cover by using a bootstrapping version of the

Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test exam-

ines the null hypothesis that samples are drawn under the same

distribution [34]. None of the species exhibited a different

probability distribution of records between urban and forest

transects (P.0.2), suggesting a similar rate of detection between

land cover types.

We used Generalized Lineal Mixed Models (GLMMs) with

Laplace approximation [35] and Poisson link function for

analysing the effect of housing density, land cover and distance

to the urban boundary on the richness, total abundance and

individual species abundance per 100 m spotlight transect in

forest-urban edges (12 treatment sites). We selected only those

species with $15 records to perform species-level analysis. Fixed

effects included housing density, land cover, their interaction, and

the distance to the urban boundary nested within the interaction of

housing density and land cover. The term distance to the urban

boundary nested within the interaction of housing density and

land cover allowed distance to the urban boundary to have a

different effect (e.g. positive, negative or neutral) in each

combination of housing density and land cover. The site (i.e.

transect location, including the adjacent urban and forest

transects) was fitted as a random effect. Then, each response

variable was modelled in a GLMM as:

Response , HD+LC+(HD6LC)+(HD6LC/D)+(1| S) (1)

Where:

HD=housing density, factor with two levels: high and low.

LC= land cover, factor with two levels: urban and forest.

D= distance to the urban boundary, continuous scale.

S = site, factor with 12 levels.

As the survey effort was not the same in all transects, we

modelled the natural logarithm of the number of passes as an offset

variable in all models. We tested for overdispersion in our models

by comparing the residual deviance with the residual degrees of

freedom. When a model was overdispersed, an observation-level

random effect was added to the model (i.e. each statistical unit,

100-m transect, was modelled as a random effect) [36].

Because we allowed distance to the urban boundary to have a

different effect in each combination of housing density and land

cover (HDxLC/D in equation 1), each GLMM was first tested for

the effect of the distance to the urban boundary between each

combination of housing density and land cover with Wald X2

contrast tests. When there was no significant effect of distance to

the urban boundary, a backward elimination procedure was used

to remove non-significant variables and select the best models.

Wald X2 tests were performed to evaluate the significance of a

factor in each model [35]. When the interaction between housing

density and land cover was significant, multiple comparison tests

were performed using Fisher’s LSD. We regarded results as

significant when P,0.1 to identify all relevant trends.

When the model selection discarded both distance to the urban

boundary and land cover as relevant predictors (i.e. HDxLC/D,

HDxLC and LC in equation 1), the response was not different

across the edge. If there were any edge effects, they extended

further than 300 m from the urban boundary. In those

circumstances, we tested for such deeper edge effects by

incorporating control sites in a new analysis (i.e. including all 18

sites regarding a 100-m transect as the statistical sampling unit).

Then, edge contrast was a variable with tree levels: high contrast

edge, low contrast edge and forest control. This approach allowed

us to test whether edge effects of urban areas with different

housing densities extend further than 300 m into the adjacent

forest.

Once the backward selection was completed, we estimated the

predicted response values from the relevant parameters of the final

GLMMs, and estimated standard errors [37]. We evaluated

potential spatial autocorrelation in the residuals of our final

models, to test whether the assumptions of independence and
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distribution of residuals were violated [38]. We used residual

variograms to visualize whether the residual semivariance (i.e. a

measure of the variance of model residuals between sites) was

independent of distance between sites. We also calculated Moran’s

I index for residuals from our final models. Moran’s I index tests

the null hypothesis of no correlation between model residuals

given a matrix of distances between sites (1/distance) that is used

as a ‘‘neighbourhood’’ weight [39].

Vegetation. We described differences in vegetation structure

among transect classes (i.e. each combination of edge contrast and

land cover, and control sites) to help identify habitat characteristics

and interpret observed responses in arboreal marsupials by using

Principal Components Analysis (PCA). We used PCA on a

correlation matrix of the vegetation variables from the point-

intercept method (i.e. proportion of grass, litter, bare ground,

impervious surface, woody debris, understory vegetation and

canopy cover). We log transformed variables where appropriate

and tested for significant differences in the component scores

among transect classes with analysis of variance (ANOVA) for the

first three components. When significant differences were found,

we performed Tukey’s HSD to identify what classes were different.

All statistical analyses were performed in R-2.15.2 [40]. We

used the package ‘‘Matching’’ for bootstrapping of Kolmogorov-

Smirnov tests [34], ‘‘lme4’’ to fit GLMMs [41], ‘‘AICcmodavg’’ to

obtain predicted values and standard errors [37], ‘‘gstat’’ to

calculate residual variograms [42] and ‘‘ape’’ for Moran’s I

autocorrelation index [39].

Results

We recorded 164 individuals of six species of arboreal

marsupials (Table S1) which represent most species of arboreal

marsupials described for the study area. The number of records

allowed us to perform species-level analysis for four species: the

common brushtail possum (Trichosurus vulpecula, Kerr 1792), the

common ringtail possum (Pseudocheirus peregrinus, Boddaert 1785),

the sugar glider (Petaurus breviceps, Waterhouse 1839), and the

yellow-bellied glider (Petaurus australis, Shaw 1791). The greater

glider (Petauroides volans, Kerr 1792) and the feathertail glider

(Acrobates pygmaeus, Shaw 1794) were recorded three times and

once, respectively. Data for these two species were insufficient to

enable species-level analysis, but records for them were used in

analyses of total abundance and species richness.

Total Abundance
The total abundance of arboreal marsupials differed with

distance to the urban boundary when we compared urban cover

with different housing densities (Figure 3A). In urban cover with

high housing density, the abundance of arboreal marsupials

declined with distance to the urban boundary; whereas in urban

cover with low housing density, the abundance of arboreal

marsupials increased with distance to the urban boundary (Wald

contrast test, P=0.03) (Figure 3A). Observed trends in forest cover

were not significantly different (P.0.1).

Species Richness
From data on the six species recorded, we did not find any effect

of distance to the urban boundary on species richness (Wald

contrast tests and Wald test, P.0.1). Richness was lowest in urban

cover with high housing density (P,0.08) (Figure 4A, Figure S1A).

Responses by Individual Species
We found that common ringtail possum abundance increased

with urban cover (P=0.08), but it exhibited a steep reduction in

abundance toward the interior of the urban cover with high

housing density (P=0.08) (Figure 3B).

There was no significant effect of distance to the urban

boundary on the abundance of the sugar glider, common brushtail

possum or yellow-bellied glider. Sugar glider abundance was

lowest in urban cover with high housing density (P,0.07)

(Figure 4B, Figure S1B). In contrast, common brushtail possum

abundance was lower in forest adjacent to low-housing density

developments when compared to both the adjacent urban cover

(P=0.04), and the forest adjacent to high-housing density

developments (P,0.1) (Figure 4C, Figure S1C). Yellow-bellied

glider abundance was best described by edge contrast, decreasing

in abundance at hard edges (i.e. urban cover with high housing

density and adjacent forest) when compared with forest controls

(P=0.08) (Figure 4D). This was the only species where the

backward selection procedure discarded both distance to the

urban boundary and land cover as relevant predictors; incorpo-

rating forest controls.

Spatial Autocorrelation
We did not find evidence of spatial autocorrelation in models’

residuals between sites. The residual semivariance did not increase

with distance between sites. Further, Moran’s I autocorrelation

indices were not significant (P.0.05; Table S2).

Differences in Vegetation Structure Among Transects
The first three components of the PCA explained 56%, 20%

and 10% of variation in vegetation structure on spotlight transects,

respectively (Table S3A). Component 1 was positively correlated

with the proportion of bare ground and impervious surfaces, and

negatively correlated with litter, woody debris, understory and

canopy cover. Therefore, Component 1 represented a gradient of

increasing clearing of the vegetation and its replacement with

impervious surfaces (Figure 5). Component 2 had a high negative

correlation with the proportion of grass, and a positive, but low

correlation (#0.3) with all remaining variables (e.g. canopy, woody

debris, impervious surfaces), and thus represented a gradient of

reduction in grass cover and an increase of the other structures

(Figure 5). Component 3 was positively correlated with understory

and negatively correlated with woody debris, representing

increasing shrub density and the reduction of woody debris.

We found significant differences among transect classes for the

first two components (Table S3B). The first component showed

that control sites had significantly higher canopy cover, litter,

understory and woody debris, and less bare ground and

impervious surfaces than both low-density housing sites

(P=0.07) and high-density housing sites (P=0.0001); and high-

density housing sites had significantly more bare ground and

impervious surfaces than low-density housing sites (P=0.01)

(Figure 5). Forest cover was characterized by a high proportion

of canopy cover, understory, litter and woody debris, whereas the

urban cover was characterized by the high proportion of bare

ground and impervious surfaces. The difference between forest

and urban cover was always significant within the same housing

density (P,0.0002) and among all housing densities (P,0.04). The

second component showed that both high and low-density housing

sites had significantly a higher proportion of grass than forested

controls (P=0.006). As a result of the high variance in vegetation

related to the transect classes (i.e. both housing density and land

cover), we did not use the main components for fitting additional

GLMMs to avoid overparameterizing models with redundant

variables.
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Discussion

Urbanization is a key process threatening biodiversity world-

wide. In our empirical work on arboreal marsupials, we did not

find the expected gradual change in species abundance across

forest-urban edges based on simple habitat characteristics of the

adjacent patches. Rather, we identified a broad range of responses

suggesting that considering habitat characteristics in isolation lacks

predictive power. Therefore, we present a model predicting the

trajectory of animal responses across edges based on three

fundamental steps:

(1) the habitat quality/habitat preference between juxtaposed

patches,

(2) the species response with the proximity to the adjacent

habitat, and

(3) the extent of the spillover/sensitivity to adjacent habitat

boundaries.

In the following section we discuss the responses of each

arboreal marsupial, followed by a predictive framework of edge

effects.

Arboreal Marsupials Across Urban-forest Edges
Species loss and biotic homogenization have been proposed as

one of the main impacts of urbanization on biodiversity [43,44].

This decline in vertebrate richness in urban landscapes has been

associated with an increased human and building density [45–47],

and the reduction of native vegetation such as canopy cover

[46,48]. In our study, species richness was lowest in high-density

housing developments, but there was no significant impact on the

adjacent forest. Therefore, the significant reduction of the

vegetation in high-density housing developments (and canopy

cover in particular) appears likely to be the main cause of decline

of arboreal marsupials in urban environments.

The total abundance of arboreal marsupials increased towards

the interior of low-density housing developments, whereas the

opposite trend was found in high-density housing developments. It

has been widely proposed that different edge contrasts produce a

change in magnitude or extent of the response but not a change in

its direction [10,11]. In contrast to other studies reporting that

urbanization increases the total abundance of a few dominant

species [46,49], our results for arboreal marsupials revealed that

both species richness and total abundance declined with higher

levels of urbanization (i.e. high housing density), and the effect was

reversed in low-density housing developments in this environment.

Low-density housing developments provided suitable habitat for

most of the species, probably as a result of the moderate level of

clearing of the vegetation that increased the diversity of niches

[50]. Also, the bias towards the development of private lands on

higher productivity sites in the study area [51] might have

contributed to the increased abundance of arboreal marsupials in

low-density housing developments.

At the species level, the sugar glider did not respond to distance

to the urban boundary. Instead, our result implied habitat loss in

high-density housing developments, but no negative effect on

adjacent forests, and that low-density housing developments

provided a suitable habitat. This species is often found in forest

strips and forest fragments [52], consistent with our observations

that they had high abundances in low-density housing develop-

ments which are more open than forests, but with retained tree

cover. The lack of a negative effect on sugar glider abundance in

the adjacent forests might be a result of its non-response to the

proximity of urban areas. However, their high degree of

Figure 3. Predicted mean abundances per 100 m spotlight transect according to the distance to the urban boundary from
Generalized Linear Mixed Models. (A) Total abundance of arboreal marsupials and (B) common ringtail possum abundance. Codes of edge
contrasts: High=high housing density; Low= low housing density. Codes of land cover: F = forest; U = urban. Estimated values were predicted for a
single spotlighting pass. Significant P-values of the relevant variables in the GLMMs and significant contrast tests are shown on the top of each graph.
doi:10.1371/journal.pone.0097036.g003
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arboreality, along with the lack of canopy cover in high-density

housing developments might have limited their ability to cross the

urban boundary, leading to the restricted spillover of individuals

from forests to urban areas.

The yellow-bellied glider was less abundant in high-density

housing developments and the adjacent forests compared to

forested controls, suggesting its sensity to urban development at a

large spatial scale. This forest-interior species needs large areas of

Figure 4. Predicted mean values of arboreal marsupials per 100 m spotlight transect from Generalized Linear Mixed Models (best
models). (A) Species richness, (B) sugar glider abundance, (C) common brushtail possum abundance, and (D) yellow-bellied glider abundance. Codes
of edge contrasts: High= high housing density; Low= low housing density; Control. Codes of land cover: F = forest; U = urban. Bars indicate standard
error. Estimated values were predicted for a single spotlighting pass. Significant P-values of the relevant variables in the GLMMs and significant
contrast tests are shown on the top of each graph. Different letters on the top of each bar indicates significant differences of contrast tests at a 90%
confidence level.
doi:10.1371/journal.pone.0097036.g004
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forest to meet their dietary requirements [52,53] and is sensitive to

the effects of habitat loss and fragmentation [52,53]. This may

explain its avoidance of forest boundaries and its sensitivity to

urban disturbance beyond 300 m from the urban boundary.

Although edge effects on animals have been studied mainly over

short distances (e.g. #300 m [11,19,30,54]), an extended edge

effect from urban developments has been reported in carnivorous

mammals in North America, with both specialist and behaviour-

ally-plastic species responding at several kilometres to the urban

boundary [55].

Previous studies have found that the common ringtail possum,

as well as other ringtail possums, have higher abundances at edges

in forested environments [30,56], as a result of either an increased

foliage density [30] or access to complementary resources [57]. In

contrast, we found a neutral response with the proximity to the

urban boundary, probably as a result of a lack of immigrants from

the high-density housing development [58]; and a reduction in its

abundance towards the interior of high-density housing develop-

ments. This response trajectory may be the result of a spillover of

animals from forest to urban areas; with the strong reduction of

the abundance with increasing distance to the forest representing

dispersing animals across hard edges.

The degree of specialization, such as arboreality, denning

requirements and feeding habitats, as well as dispersal, home

range sizes and dependence on primary forests [55,59] might

interact to explain the different response patterns observed. Non-

volant species (e.g. possums) might be favoured by urban areas,

because they are not strictly arboreal like gliders, and are able to

move along the ground [52]. Despite the potential ability of the

common ringtail possum to colonize new environments because it

is not an obligate cavity-dependent species [60], the common

brushtail possum was the most successful species in colonizing

high-density housing developments.

Among arboreal marsupials, the common brushtail possum is

able to use new resources provided by urban areas (e.g. rubbish,

gardens and vegetable patches as food supply; along with roofs and

other building structures for denning) [61,62], indicating it is an

‘‘urban adapter’’. ‘‘Urban adapter’’ species are native species that

increase their abundance in residential areas (i.e. suburbia) [1]. For

example, among carnivorous mammals, raccoons (Procyon lotor,

Linnaeus 1758) in North America are positively associated to

residential areas probably as a result of the use of refuse as a food

supply [63]. Feeding habits has been proposed as the main

mechanism underpinning the abundance of animals in urban

areas, with omnivorous species positively related to urbanization

whereas specialized species are diminished [43,54,63]. In addition,

those species with high reproductive potential [64] as well as those

which can use buildings as resting or nesting sites [65] will benefit

from urban environments.

A Predictive Model of Edge Effects
Based on habitat characteristics, we expected a gradual change

in the abundance of all species across edges, as a result of the

spillover of animals from forests to urban areas (Figure 1).

However, we found only partial support for this response in the

common ringtail possum (Figure 3).

Habitat quality is a basic element explaining the distribution of

animals (e.g. ideal free distribution) [66]; but to understand the

distribution of animals in adjacent habitats, we need to consider

more detailed knowledge of both a given species and the

environments involved [11]. According to Lidicker [67], there

are two fundamental kinds of edge effects present in vertebrates: a

matrix effect and an ecotonal effect. A matrix effect is observed

when the response of animals across edges is a result of their

response in each habitat type in isolation (Figure 6A); whereas an

ecotonal effect is observed when animals respond to the proximity

of habitat boundaries [67] due to the influence of an adjacent

patch [15] (Figure 6B). An ecotonal effect can produce different

response trajectories [13]. However, ecotonal effects are common-

ly classified as positive, negative or neutral if the response

increases, decreases or does not change with decreasing distance

from the edge, respectively [15,24,67] (Figure 6B).

The final trajectory of the animal response across edges is

defined by different mechanisms (Figure 6C). For example, the

extent of the spillover of individuals on the adjacent habitat and

the species sensitivity with the proximity to the adjacent patch will

be influenced by the biology and behaviour of the species [19,67],

as well as population dynamics [66] and attributes of the

juxtaposed patches, such as boundary permeability to emigration

[15,68,69]. Therefore, we integrated these variables with our

results, to develop a new model of edge effects to help better

predict animal responses across edges.

In our model, the initial response is influenced by both habitat

quality and habitat preference [15,19,24]. When habitat quality or

resources are similar between patches or species show no

preference for a particular habitat patch, a neutral response is

expected at both sides of the boundary (e.g. sugar glider and

common ringtail possum in low-density housing developments and

adjacent forests) (Figure 6).

When one patch has significantly higher habitat quality or is

preferred, animals will reach a higher abundance in that patch

when compared to the adjacent patch. As habitat quality or

preference differs between patches, animals might respond to the

proximity of the adjacent patch. Then, the trajectory of the

response may be neutral, negative or positive with decreasing

distances to the boundary.

A neutral response with the proximity to the adjacent habitat

(i.e. no change in abundance with distance from the preferred-

habitat side of the edge) might generate three main kinds of final

Figure 5. Component loading of principal component analysis
(PCA) of vegetation variables on transects surveyed in south-
eastern Australia. Under: understory; Wood: woody debris.
doi:10.1371/journal.pone.0097036.g005
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Figure 6. New predictive model of edge effects in animals. Columns indicate three consecutive steps to predict the final animal response.
Graphs show the predicted abundance of a species (dashed line) in adjacent habitats. The vertical line in each graph represents the boundary
between two habitat patches. (A) The first step in the model proposes both habitat quality and habitat preference defining the initial response
between two adjacent habitat patches. (B) The second step identifies three kinds of animal responses according to the proximity of the adjacent
habitat. (C) The last step outlines the final response trajectory and related mechanisms modifying the response. Mechanisms modifying the response
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response trajectories across habitat edges which are influenced by

the extent of the spillover (i.e. proportion of animals crossing the

habitat boundary): restricted spillover, moderated spillover, and

extended spillover. First, a restricted spillover might be a result of

either physical or behavioural mechanisms. Physical mechanisms

might include limited access to the adjacent patch (e.g. sugar glider

spillover is limited from forest to high-density housing develop-

ments as a result of its specialized movement that depends on

vertical structures that allow gliding), or low boundary permeabil-

ity [15,68]. Behavioural mechanisms restricting spillover may

involve a reluctance to cross habitat boundaries as a result of

increased predation risk [70], or the concentration of individuals

in preferred habitats without density-dependent processes driving

emigration to the non-preferred patch (e.g. common brushtail

possum in low-density housing developments had a limited

spillover from the preferred urban habitat into the adjacent

forest). Second, a moderated spillover will consist in animals

crossing the boundary but only a few colonizing the adjacent

habitat (e.g. common ringtail possum spillover from forest to high-

density housing developments). Third, an extended spillover will

be found if emigration from higher quality or preferred habitat is

high [15,68]. This increased spillover may occur with density-

dependent emigration, such as when territorial species saturate

optimal habitats and boundary permeability to emigration is high

(e.g. in populations with high density, young common brushtail

possums searching for territories are frequently subject to

conspecific conflicts [71], which might increase their emigration

from the overcrowded high-density housing developments to

adjacent forest).

A negative response with the proximity to the adjacent habitat

can generate three main final response trajectories across habitat

edges. A ‘‘transitional’’ [24] response across the edge (or ‘‘mutual

influence’’ [15]), allows a moderated spillover of animals into the

adjacent habitat. A negative response across the edge (or ‘‘negative

influence’’ [15]) results when a species reaches the same

abundance at the boundary as in the adjacent habitat patch. An

extended negative response is found when the animal abundance

declines a long way away from a boundary. An extended negative

response will be expected in species sensitive to habitat change,

such as core-area species (e.g. yellow-bellied glider in forest

adjacent to high-density housing developments) and species of

conservation concern [19].

Finally, animals might respond positively to the proximity of

habitat boundaries. For example, if resources are concentrated at

the edge or different resources can be found at each side of a

boundary, animal abundance will increase with the proximity to

the habitat boundary [11,15].

Although our model was primarily based on the trajectory of the

animal responses found in our empirical work, a framework

considering three basic elements (i.e. habitat quality/habitat

preference, species response with proximity to the adjacent

habitat, and factors determining spillover extent/sensitivity to

habitat boundaries) will provide useful insights when predicting

animal response across edges. We believe our framework

continues the integration of knowledge on edge effects, encour-

aging both scientists and managers to develop and test predictions

in the field.

Implications for Conservation and Urban Planning
Our results have important implications for both conservation

and urban planning. First, our predictive model of edge effects

provides useful insights to guide urban planning. For example, it

suggests that forest-dependent species exhibit multiple responses to

a modified environment. Consequently, different strategies must

be considered to avoid or mitigate impacts on a particular faunal

group. Moreover, the effects of one environment on a species

living in the adjacent habitat will depend on several factors that

include not only attributes of the adjacent patches, but also the

ecology, biology and behaviour of the species. Therefore, to

appropriately predict and mitigate the impact of urbanization on

biodiversity, a detailed understanding is needed of the species and

the environment involved.

Second, managers and urban planners must be aware of the

negative impacts of high-density housing developments on

arboreal marsupials. In contrast, low-density housing develop-

ments have allowed the persistence of most arboreal marsupials.

These results agree with studies that have found a positive effect of

low urban density on native mammals in North America [55].

Further, low contrast edges have been shown high value in

conserving forest marsupials in urban environments elsewhere in

Australia [22]. The main structural difference between high and

low-density housing developments was the reduction of native

vegetation and key habitat structures (e.g. trees) in high-density

housing developments, and their replacement by bare ground and

impervious surfaces.

Third, although high-density housing developments had no

significant impact on most response variables measured in the

adjacent forests, there may have been undetected effects. For

example, the neutral response to the boundary found on most

species inhabiting forests next to urban developments might be a

result of young individuals being displaced close to the forest

boundary by adults [22]. Further, high-housing density develop-

ments had a negative impact on the abundance of yellow-bellied

glider in the adjacent forest, the only threatened species recorded

in the study area. As the impact on the yellow-bellied glider

extended beyond 300 m from the urban boundary, high-density

housing developments must be several hundred meters away from

conservation areas (e.g. national parks and reserves) to avoid

reducing forest core area for this species. However, at the planning

stage of future urban developments, including buffer zones larger

than 300 m into projected urban areas might be counter-

productive for conservation purposes, as larger forested areas will

be released and be subject to land use change. If the negative

effects of high-housing density developments are not reversed, they

will pose an increased threat to most species of the arboreal

marsupials not only through habitat loss, but also by having an

extended impact on sensitive species living in adjacent forests.

Finally, the overall impact of low versus high-density housing

developments remains unclear [72]. While Sushinsky et al. [73]

state that the impacts of urban development on bird distributions

may be reduced with an increased housing density, our results on

arboreal marsupials demonstrated the opposite trend. We suggest

that future research must be focused on: (1) improving land

planning by comparing the overall impacts of different styles and

configurations of urban development; and (2) developing man-

agement strategies to mitigate the current impacts of high-housing

density developments. For example, Fontana et al. [47] found that

trajectory were related to species attributes and behavior (e.g. access to adjacent patch, avoidance to emigrate from preferred habitat, sensitivity to
habitat change), population dynamics (e.g. density-dependence driving emigration), and patch attributes (e.g. permeability to emigration). Text
boxes show the observed responses by each species in different edge contrasts in our study.
doi:10.1371/journal.pone.0097036.g006
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variables subject to management, such as canopy cover, have a

greater effect on bird assemblages than human population density;

and Palomino & Carrascal [46] conclude that the negative effects

of urbanization on forest birds may be reversed if large mature tree

cover is provided. When strategies are compared, the retention of

original native vegetation may be more cost-effective than

vegetation restoration in conserving biodiversity [1]. New research

should quantify the effect of both increasing vegetation and

retaining the structural complexity of the natural vegetation, in

mitigating the impact of high-density housing developments on

forest-dependent species.

Conclusions

Our study provides new understanding of animal responses

across urban-forest edges on a large spatial scale and offers useful

insights to guide urban planning. We argue that habitat

characteristics are among the multiple factors influencing the

animal response across habitat edges. To accurately predict animal

responses across edges, and inform urban planning, factors that

need to be considered are: (1) the habitat quality/habitat

preference, (2) the species response with the proximity to the

adjacent habitat, and (3) the extent of the spillover/sensitivity to

habitat boundaries. We found that high-density housing develop-

ments had negative effects on arboreal marsupials, whereas low-

density housing developments provided suitable habitat for most of

the arboreal marsupials. As a result of the broad range of species

responses, we propose two fundamental strategies to minimize the

impacts of urban developments: (1) reduce the loss of forest core

area at the planning stage, to limit impacts on sensitive species;

and (2) mitigate the environmental impact of high-density housing

developments on forest-dwelling species by providing key habitat

structures that may facilitate the movement of animals and

promote colonization of urban environments.
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