Synthesis of calix[4]arenes bearing benzothiazolyl, benzoxazolyl and benzoimidazolyl heterocycles Claudio Saitz*, Julio De La Fuente, Carolina Jullian, Hernán Pessoa and Carolina Olea Depto. Química Orgánica y Físico-Química, Facultad de Ciencias Químicas y Farmaceuticas, Universidad de Chile, Casilla 233, Santiago 1, Chile A novel series of calix[4]arenes bearing benzothiazole, benzoxazole, and benzoimidazole groups were obtained by the reaction of the corresponding 2-mercaptoheterocycle with 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(chloroacetamido) ethoxy]-26,28-di-hydroxycalix[4]arene and structurally characterised by IR, ¹H NMR, ¹³C NMR, Mass spectra and elemental analyses. From their analytical data, it was found these compounds had cone conformations. Keywords: calix[4]arenes, chloroacetarnide, benzothiazole, benzoxazole, benzoimidazole Calixarenes are a class of cyclooligomers composed of phenolic units connected by methylene bridges, formed via a phenolformaldehyde condensation.1 They exist in a cup-like shape with a defined upper and lower rim and a central annulus. By functionally modification it is possible to prepare various derivatives. They have been widely used in the last two decades as building blocks for the synthesis of receptors for cations, anions and neutral molecules2-5 and they are connected to multiple systems (cyclodextrines, porphyrines, aminoacids, sugars, etc). Currently, selective recognition and sensing of cations and anions by artificial receptors have attracted a considerable research interest in terms of their potential applications in various areas. 6.7 Indeed, a large number of calixarene derivatives containing pendant ether, amide, ketone, ester and crown ethers have been employed in studies of ISEs (ion-selective electrodes) sensitive to alkaline and alkaline earth metal cations. 8.9 But only a few reports are concerned with calixarenes as carriers sensitive to transition metal ions in the ionophore-based ISEs. One approach is to construct tweezer-like receptor molecules which are sensisitive to transition metal ions by incorporating nitrogen or sulfur atoms into the lower rim of calix[4]arenes. Reinhoudt10 and Zeng11.12 found that this type of calix[4]arene derivative as an ionophore in ISEs exhibits a good Ag+-selectivity against most interfering ions such as alkali metal, alkaline earth metal, lead and transition metal ions. Recently, some of the heterocyclic groups, such as a piridyl, bipiridyl, bithiazolyl, benzothiazolyl, and dihydrothiazoly,13 have been introduced into the calixarenes both at their lower and upper rims. Continuing the development of our research on asymmetric and symmetric calix[4]arenas, 14,15 we recently have described the effective synthesis of a variety of bis-thiourea bridged chiral calix[4]arenes bearing optically pure α,β -amino alcohol groups. 16 ## Results and discussion As the starting material, 25,27-bis(2-aminoethoxy)calix[4] arene (3) was chosen. This is readily obtained in two steps from *p-tert*-butylcalix[4]arene (1), by reaction with bromoacetonitrile and reduction of the cyano function with LiAIH₄. (Scheme 1). We have previously described the effective transformation of the amino functions of compound 3 into corresponding chloroacetamido groups 4 as a potential gateway to the preparation of different calix [4] arenes derivatives. 18 Treatment of 3 with chloroacetic anhydride, using ethyl acetate as solvent, led to dichloroacetamide derivative 4 in high yield (84%). The two arms of compound 4 were efficiently linked by treatment with the corresponding 2-mercaptoheterocycle and sodium bicarbonate in refluxing acetonitrile, yielding the calixarene derivatives 5-7 in good yields (Scheme 2). The structures of compounds 5-7 were established by IR radiation, 1H NMR. 13C NMR, and elemental analyses. The spectroscopic data for compounds 5-7 evidenced a cone conformation. Considering 5 as a reference compound the signals (1H NMR, CDCl2) for the methylene bridge protons of the calix[4]arene skeleton appeared as two doublets at 4.05 and 3.17 ppm (J = 13.0 Hz), the difference in the chemical shift of about 1.10 ppm, indicates that this compound exists in the cone conformation in solution. Moreover, in the 13C NMR data, the signal peak of the methylene carbons of ArCH2Ar appeared at about 32.0 ppm according to Mendoza's rule, 19 which is also consistent with the cone conformation. Studies of selective ionophore behaviour for these calixarenes derivatives are in progress. ### Conclusions We have efficiently synthesised three new calix[4]arenes bearing benzothiazolyl, benzoxazolyl and benzoimidazolyl 3 2 Scheme 1 (a) BrCH₂CN, K₂CO₃, CH₃CN, reflux, 8 h; (b) LiAlH₄, THF anh., 0°C. 1 Scheme 2 (c) (CIAc)2, AcOEt, rt, 1h; (d) NaHCO3, reflux, 6h. heterocycles, introducing an infrequent —SCH₂-(C=O)-NH feature as bridge between the calixarene and the heterocycle. We expected to enhance sensitivity towards transition metals incorporating both nitrogen and sulfur atoms. ### Experimental Melting points were determined on a hot-stage apparatus and are uncorrected. Spectra were recorded using the following instruments: IR, FT-IR Bruker IFS 55; ¹H and ¹³C NMR, Bruker DRX-400 (400 and 100 MHz), using tetramethylsilane as internal reference. Microanalyses were determinated using Fisons EA 1108 analyser and were performed in CEPEDEQ (Centro Para el Desarrollo de la Química), Facultad de Ciencias Químicas y Farmaceuticas, Universidad de Chile. Mass spectra (MALDI-TOF) were obtained on a Bruker mod. AUTOFLEX spectrometer, using HCCA/DSO as matrix in Centro de Instrumentación Científica de La Universidad de Granada, España. Column chromatography was performed on Merck silica gel 60, 230-400 mesh, and TLC- on Merck silica gel G. 5,11,17,23-Tetra-t-butyl-25,27-bis[2-(chloroacetamido)ethoxy] 26,28-di-hydroxycalix[4]arene (4): To a solution of 2 (0.2 g, 0.27 mmol) in AcOEt (15 ml) chloroacetic anhydride (0.10 g, 0.60 mmol) was added. The reaction was kept at room temperature, and monitorated by TLC (AcOBt) until complete disappearance of 2 (1 h). The reaction mixture was washed with aqueous saturated NaHCO3 solution (2 × 15 ml). The organic phase was dried (MgSO₄) and the solvent evaporated under reduced pressure, giving a crude product that was purified by a short column chromatography (CH2Cl2/hexane 2:1), giving 4 (0.22 g, 84%) as a solid: m.p. 246-247°C. IR (KBr): v = 3422, 1665, 1541, 1485, 1362, 1202 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.37$ (br s, 2 H: 2 NH), 8.11 (s, 2 H, 2 OH), 7.05, 6.95 (2 s, 8 H: Ar), 4.20 (d, J = 13.0 Hz, 4 H: ArCH₂Ar), 4.12 (t, J = 4.7 Hz, 4 H: 2 OCH2), 4.11 (s, 4 H: 2 CH2CI), 3.97 (m, 4 H: 2 CH2NH), 3.39 (d, J = 13.0 Hz, 4 H: ArCH₂Ar), 1.26, 1.07 (s, 36 H: 4 Me₃C). ¹³C NMR (75 MHz, CDCl₃): $\delta = 166.9$ (CO), 149.8, 148.6, 148.1, 142.6, 132.9, 127.6, 126.1, 125.6 (Ar), 75.1 (OCH₂), 42.7 (NHCH₂), 40.0 (CH₂Cl), 34.2, 33.9 (Me₃C), 32.1 (ArCH₂Ar), 31.7, 31.1 (Me₅C) C₅₇H₆₈Cl₂N₁O₆ (888.0): calcd. C 70.3, H 7.7, N 3.2: found C 70.2, H 8.0, N 2.9. General procedure for the synthesis of calix[4] arenes 5-7 To a solution of 4 (0.10 g, 0.122 mmol) in acctonitrile (5 ml) 2-mercaptobenzothiazole (0.268 mmol) and NaHCO₃ (50 mg) were added. The reaction mixture was refluxed by 6 h. Filtration and evaporation under reduced pressure gave a crude product that was triturated with ethyl acctate/hexane (1:1). 5, 11,17,23-Tetra-tert-butyl-25,27-bis-{2-[2-benzothiazol-2-ylsulfanyl)acetamido]ethoxy}-26,28-dihydroxycalix[4]arene (5): Yield: 85%; m.p. 227-229°C. IR (KBr): v=3480,1657,1561,1484,1361,1207 cmr¹. ¹H NMR (400 MHz, CDCl₃): $\delta=8.60$ (t, 2 H: 2 NH), 8.15 (s, 2 H, 2 OH),7.78, 7.66 (2 d, 2 H, J=7.80 Hz), 7.37, 7.27 (2 t, 2H, J=7.80 Hz) 6.91, 6.43 (2-s, 8 H: Ar), 4.21 (s, CH₂S, 4H), 4.05 (d, J=13.0 Hz, 4 H: ArCH₂Ar), 4.01-3.98 (m, 4 H: 2 OCH₂), 3.93-3.89 (m, 4 H: 2 CH₂NH), 3.17 (d, J=13.0 Hz, 4 H: ArCH₂Ar), 1.23, 1.05 (s, 36 H: 4 Me₃C). ¹³C NMR (100 MHz, CDCl₃): $\delta=167.9$ (CONH), 152.8, 149.6, 148.6, 147.9, 142.5, 135.7, 133.0, 127.7 126.0, 125.9, 125.4, 121.6, 121.1 (Ar), 75.3 (OCH₂), 40.0 (NHCH₂), 34.1, 33.9 (Me₅C), 32.0 (ArCH₂Ar), 31.6, 31.1(Me₅C), MS (MALDI-TOF) $C_6cH_{76}N_4O_6S_4$; calcd for [M + Na]* 1171.453; found 1171.430; calcd for [M + K]* 1187.423; found 1187.414; $C_{66}H_{76}N_4O_6S_4$ (1149.7): calcd C 68.9, H 6.7, N 4.9, S 11,2: found C 69.1, H 7.0, N 4.9, S 10,8. 5,11,17,23-Tetra-tert-butyl-25,27-bis-{2-[2-benzoimidazol-2-ylsulfanyl)acetamido]ethoxyl-26,28-dihydroxycalix[4]arene (7): Yield: 78%; mp.216-218°C. IR (KBr) v = 3460, 1654, 1512, 1485, 1361, 1206 cm⁻¹ H NMR (400 MHz, DMSO-d₀): \$ = 12.54 (s, 2 H, NH), 8.67 (t, 2 H: 2 NH), 8.48 (s, 2 H, 2 OH), 7.40 (2 d, 4H), 7.37, 7.27 (2 t, 4 H) 7.12 (s, 8 H: Ar), 4.17 (s, CH₂S, 4H), 4.0 (d, J = 13.0 Hz, 4 H: ArCH₂Ar), 3.98-3.88 (m, 8 H: 2 OCH₂CH₂NH), 3.10 (d, J = 13.0 Hz, 4 H: ArCH₂Ar), 1.16, 1.11 (s, 36 H: 4 Me₃C). ¹⁵C NMR (100 MHz, CDCl₃): \$ = 167.9 (CONH), 152.8, 149.6, 148.6, 147.9, 142.5, 135.7, 133.0, 127.7 126.0, 125.9, 125.4, 121.6, 121.1 (Ar), 75.3 (OCH₂), 40.0 (NHCH₂), 34.1 33.9 (Me₃C), 32.0 (ArCH₂Ar), 31.6, 31.1(Me₃C); MS (MALDI-TOF) C₆₆H₇₈N₆O₆S₂: calcd for [M + Na]* 1137.606; found 1137.609; calcd for [M + K]* 1153.579; found 1153.572; C₆₆H₇₈N₆O₆S₂ (1115.6): calcd. C 71.05, H 7.06, N 7.53, S 5.75; found C 71.25, H 7.15, N 7.8, S 5.8. Authors thank FONDECYT (Grant 1050795). Received 14 March 2008; accepted 12 May 2008 Paper 08/5157 doi: 10.3184/030823408X324869 #### References - 1 C.D. Gutsche and M. Iqbal, Org. Synth., Coll., 1993, Vol VIII, 75. - J.F. Stoddart, Calixarenes Revisited (ed.), Royal Society of Chemistry, Cambridge, 1998. - 3 L. Mandolini and R. Ungaro (eds.) Calixarenes in Action, Imperial College Press, London, 2000. - 4 Z. Asfari, V. Böhmer, M. Harrowfield McB and J. Vicens (eds.), Calizarines 2001; Kluwer Academic, Dordrecht, 2001. - J. Vicens and J. Harrowfield (eds.), Calixarenes in the nanoworld, Springer, The Netherlands, 2007. - D. Diamond and K. Nolan, Analyt. Chem., 2001, 73, 22A. - 7 P.D. Beer and P.A. Gale, Angew. Chem. Int. Ed. Engl., 2001, 40, 486. - R. Ludwig and N.T.K. Dzung, Sensors, 2002, 2, 397. M.R. Ganjali, P. Norouzi, M. Rezapour, F. Faridbod and M.R. Pourjavid. - M.R. Ganjali, P. Norouzi, M. Rezapour, F. Faridbod and M.R. Pourjavic Sensors, 2006, 6, 1018. - E. Malinowska, Z. Brzozka, K. Kastura, R.J. Egberink and D.N. Reinhoudt, Analys. Chim. Acta, 1994, 298, 245. X. Zheng, L. Weng, L. Chen, X. Leng, Z.-Z. Zhang and X. He, Tetrahedron - Lett, 2000, 41, 4917. 12 X. Zheng, L. Weng, L. Chen, F. Xu, Q. Li, X. Leng, X. He and Z.-Z. Zhang, Tetrahedron, 2002, 58, 2647. - 13 B. Zhao, Y.-Q. Feng and S.-S. Zhang, Synthetic Communications, 2007, - 14 P. Leyton, S. Sanchez-Cortes, J.V. Garcia-Ramos, C. Domingo, M. Campos- - Vallette, C. Saitz and R.E. Clavijo, J. Phys. Chem. B, 2004, 108, 17484. 15 P. Leyton, S. Sánchez-Cortes, M. Campos-Vallete, C. Domingo, J.V. García-Ramos and C. Saitz, Applied Spectroscopy, 2005, 59, 1009. - 16 C. Saitz, C. Jullian. R. Acevedo, J. De La Fuente and H. Pessoa, Abs. 11th C. Saitz, C. Julian, R. Accycuo, J. De La Puente and G. Pesson, Ass. Plin BMOS, Canela, Brazil, Angust-Sept, 2005. W.C. Zhang and Z.T. Huang, Synthesis, 1997, 1073. F. Santoyo, A. Torres and C. Saitz., Eur. J. Org. Chem., 2000, 3587. C. Jaime, J.D. Mendoza, P. Prados, P.M. Nieto and C. Sanchez, J. Org. Chem., 2001, 52, 3222. - Chem., 1991, 56, 3372.