Active Metabolites from Dunalia spinosa Resinous Exudates Silvia Erazo^{a,*}, Giovanna Rocco^a, Mercedes Zaldivar^a, Carla Delporte^a, Nadine Backhouse^a, Consuelo Castro^a, Eliana Belmonte^b, Franco Delle Monache^c, and Rubén García^a - ^a Department of Pharmacological and Toxicological Chemistry, School of Chemical and Pharmaceutical Sciences, University of Chile, P. O. Box 233, Santiago 1, Chile. Fax: 56-2-2227900. E-mail: serazo@uchile.cl - b Department of Anthropology, Faculty of Social Sciences, University of Tarapacá, Arica, Chile - Department of Chemistry and Technology of the Biologically Active Substances, University of Rome, Rome, Italy - * Author for correspondence and reprint requests Dunalia spinosa, a plant used in folk medicine for toothaches, breathing problems and cleansing wounds, was found active as antimicrobial and antioxidant. A new (E)-aurone rutinoside (dunaurone) has been isolated from the aerial parts of the plant, and its structure was determined by spectroscopic means. Lupeol, β -sitosterol, scopoletin, quercetin and withaferin A were also found. All the extracts exhibited strong antimicrobial activity while dunaurone showed only weak antimicrobial inhibition against Klebsiella pneumoniae; in addition it presented a significant free radical scavenging activity. Key words: Dunalia spinosa, (E)-Aurone Rutinoside, Antimicrobial Activity #### Introduction Dunalia spinosa (Meyen) Dammer is a shrub attaining a height of 2 m with colourful tubular flowers which grows in the Andes mountains between 2900 and 3700 meters above sea level (Brako and Zarucchi, 1993). In Chile it is found in the 1st Region and known with the vernacular names "chumi-chumi", " yara" or "chilca hembra" (Marticorena and Quezada, 1985). In the folk medicine the burnt leaves are used to clean wounds and to treat whooping cough. In addition, the fruits mashed with oil are used against toothache (Castro et al., 1982). Children suck the flowers due to their sweet taste. No chemical or biological studies on this species are previously reported. In this paper we report the chemical composition of the resinous exudates and the antimicrobial effect detected by bioautographic techniques besides the antioxidant activity of the aerial parts of this plant. ## Experimental ### General experimental procedures ¹H (300 MHz) and ¹³C (75 MHz) NMR analyses were carried out on a Bruker AMX spectrometer. UV spectra were recorded on a Unicam UV3 spectrophotometer, IR spectra on a Perkin El- mer 1310 spectrophotometer. Mass spectra were obtained by electrospray ionization (ESI) on a Thermo Finnigan LCQ DECA KP Plus ion-trap mass spectrometer. #### Plant material Dunalia spinosa (Meyen) Dammer was collected at 3400 m above sea level in the Audes mountains near the town of Socoroma (1st Region, Arica, Chile) and identified by Eliana Belmonte of Tarapacá University, Chile. A voucher specimen is kept at the Herbarium of the School of Chemistry and Pharmacy, University of Chile, Santiago, Chile (SQF 22256). ## Extraction and isolation of active components Ground dried aerial parts (790 g) were immersed in CH₂Cl₂ (DMC) at room temperature for the extraction of the resinous exudate (27.9 g). The resin-free plant was dried and successively extracted with hexane, CH₂Cl₂ and MeOH, yielding 1.53 g, 12.34 g and 131.25 g of extract, respectively. A part (17 g) of the resinous exudate was subjected to CC on silica gel 60 eluted successively with n-hexane (100%), n-hexane/DCM (1:1 v/v), DCM (100%), DCM/EtOAc (1:1), EtAOc (100%) and MeOH (100%). Fraction DCM (100%) (2 g) was applied to CC over silica gel eluted with DCM followed by DCM with increasing percentages of EtOAc yielding lupeol [20 mg, 0.0025%, eluted with DCM/EtOAc (9:1) and DCM/EtOAc (8:2) in fractions 40-55 of 100 mL each] and β -sitosterol [30 mg, 0.004%, eluted with DCM/EtOAc (7:3) in fractions 65-77 of 100 mL each]. Fraction DCM/EtOAc (1:1 v/v) (6 g) was subjected to CC over silica gel eluted with DCM followed by DCM with increasing percentages of EtOAc yielding scopoletin [10 mg, 0.0013%, eluted with DCM/EtOAc (8:2) in fractions 20-28 of 100 mL each] and quercetin [25 mg, 0.0032%, eluted with DCM/EtOAc (6:4 v/v) in fractions 45-60 of 100 mL each]. Fraction EtOAc (100%) (5 g) was applied to CC over silica gel eluted with DCM followed by DCM with increasing percentages of EtOAc yielding crude 1, eluted with DCM/EtOAc (9:1 v/v) and DCM/EtOAc (8:2) in fractions 82–122 of 100 mL each, and crude 2, eluted with EtOAc/MeOH Table I. NMR data (DMSO-d₆) of withaferin A (1). | Position | δ_{H} | δ_{C} | Long-range connectivities | |-------------|-----------------------------------|-----------------------|---------------------------| | 1 | | 203.3 | H-2, H-3, Me-19 | | 2 | 6.01d (9.8) | 132.8 | H-4 | | 3 | 6.94dd (9.8; 6.3) | 146.7 | | | 4 | 3.42dd (6.3; 4.1) | 70.1 | H-2, H-6 | | 4-OH | 5.53d (4.1) | | , | | 5 | , , | 64.7 | H-3, Me-19, OH-4 | | 6 | 3.05br s | 60.2 | H-4 | | 7 | 2.30/1.20m | 30.5 | H-6 | | 8 | 1.90m | 30.9 | H-6 | | 9 | 0.65m | 44.9 | Me-19 | | 10 | | 48.6 | Me-19, H-2, H-6 | | 11 | 1.40/1.20m | 22.2 | , , | | 12 | 1.87/1.15m | 32.9 | | | 13 | | 43.9 | Me-18 | | 14 | 1.00m | 52.6 | Me-18 | | 15 | 1.45/0.95m | 25.5 | | | 16 | 1.65/1.15m | 28.0 | | | 17 | 0.80 m | 56.7 | Me-18 | | 18 | 0.53s | 12.8 | | | 19 | 1.14s | 17.7 | | | 20 | 1.70m | 39.9 | Me-21 | | 21 | 0.79d (6.6) | 16.4 | | | 22 | 4.17dt (13.1; 2.0) | 79.0 | Me-21 | | 23 | 2.30m | 40.1 | | | 24 | | 156.3 | Me-28, I-I-17 | | 25 | | 126.9 | H-27, Me-28, H-27 | | 26 | | 166.9 | H-27 | | 27
27-OH | 4.02dq (16.6; 5.3)
4.52t (5.3) | 56.0 | OH-27 | | 28 | 1.88s | 21.4 | | | | | | | (9:1) and EtOAc/MeOH (8:2) in fractions 140-145 of 100 mL each. Additional purification of fractions 82-122 by Sephadex LH-20 CC eluted with *n*-hexane/DCM/MeOH (2:1.5:0.25 v/v) yielded pure 1 (100 mg, 0.013%), and purification of fractions 140-145 by Sephadex CC eluted with *n*-hexane/DCM/MeOH (1:2:1) yielded compound 2 (40 mg, 0.005%). Both compounds were crystallized from DCM with drops of MeOH. Withaferin A (I): M. p. 243-245 °C [249-259 °C (Kupchan et al., 1965)]. – IR: $v_{\text{max}} = 3400$, 2940, 1675, 1230, 1030, 1010, 930, 810 cm⁻¹. – ¹H and ¹³C NMR: see Table I. ESI-MS: m/z = 964 [2M+Na]⁺, 1433 [3M+Na]⁺. Dunaurone (2): M.p. 249–250 °C. – UV (MeOH): λ_{max} (log ε) = 216 (3.76), 256 (3.51), 296sh, 358 (3.55) nm; (+NaOMe) 232, 272, 398 nm, unaltered in the time; (+NaOAc) 262, 372 nm; (+NaOAc + H₃BO₃) 264, 372 nm; (+AlCl₃) 270, 394 nm; (+AlCl₃ + HCl) 270, 360 nm. – ¹H and ¹³C NMR: see Table II. Table II. NMR data (DMSO-d₆) of dunaurone (2). | Position | $\delta_{\mathbf{H}}$ | $oldsymbol{\delta_{\mathrm{C}}}$ | Long-range connectivities | |--|------------------------|----------------------------------|---------------------------| | 2 | | 156.6 | H-β | | $egin{array}{c} 2 \ eta \ 3 \end{array}$ | 7.53s | 116.2 | • | | | | 177.3 | H-7 | | 3a | | 103.9 | OH-4, H-7, H- | | 4 | | 161.2 | OH-4, H-5 | | 4-OH | 12.60s | | | | 5 | 6.19d (1.6) | 98.7 | OH-4, H- 7 | | 6 | | 164.1 | H-7, H-5 | | 7 | 6.39d (1.6) | 93.6 | H-5 | | 7a | , , , | 156.4 | H-7 | | 1' | | 121.1 | H-5' | | 2' | | 144.7 | H-5', H-6' | | 3′ | | 133.2 | H-1" | | 4' | | 148.4 | H-5', H-6' | | 5' | 6.84d (8.6) | 115.2 | , | | 6′ | 7.56d (8.6) | 121.6 | | | 1" | 5.34d (7.0) | 101.1 | | | 2" | 3.23-3.23 ^á | 74.0 | | | 3" | $3.23 - 3.23^a$ | 76.4 | | | 4" | $3.23 - 3.23^{a}$ | 70.5 | | | 5" | 3.23-3.23a | 75.8 | | | 6" | 3.71d (9.9); | 67.0 | | | | $3.23 - 3.23^{a}$ | | | | 1‴ | 4.38s | 100.7 | | | 2‴ | 3.42-3.42 ^b | 70.3 | | | 3′′′ | $3.23 - 3.23^{n}$ | 68.2 | | | 4‴· | $3.07 - 3.07^{b}$ | 71.8 | | | 5‴ | $3.07 - 3.07^{b}$ | 69.9 | | | 5′′′ | 0.99d (6.6) | 17.7 | | a, b Overlapped. Klebsiella pneumoniae (clinical isolated), Salmonella aviatum (ATCC 2228), Pseudomonas aeruginosa (ATCC 14207), Staphylococcus aureus (ATCC 6538P), Micrococcus flavus (ATCC 10290), Bacillus subtilis (ATCC 6633), Candida albicans and Saccharomyces cerevisiae (clinical isolated). The extracts were dissolved in DMSO. Dilutions of 100 and 200 µg/mL were added to a fixed volume of Plate Count Agar (PCA, Merck). They were then superficially inoculated with an overnight culture of the different microorganisms and incubated at 37 °C for 24 h for bacteria and 28 °C for 48 h for fungi and yeasts. Results were recorded as growth or growth inhibition at each extract concentration (Erazo et al., 2006). A bioautographic agar overlay assay by TLC of the resinous exudates and compounds $\bf 1$ and $\bf 2$ was carried out on silica gel 60 G F₂₅₄ plates developed with DCM/EtOAc (9:1 v/v) for $\bf 5$ and EtOAc/MeOH (8:2) for $\bf 2$ (Rahalison *et al.*, 1991). The turbidimetric method (Balow et al., 1991) was used with serial dilutions of the extract in 4 mL of Plate Count Broth or Tryptic Soy Broth (Merck). Both media were used to assay the MIC values of compound 1 against S. aureus and E. coli. ## Xanthine oxidase activity Both xanthine and xanthine oxidase (XO) were purchased from Sigma Co., and the standard inhibitor allopurinol was obtained from Laboratorios Saval (Santiago, Chile). The global methanol extract was evaluated at $50\,\mu\text{g/mL}$ and further tested for IC₅₀ determination with an inhibition value > 50% (Noro et al., 1983). The inhibition of XO activity using xanthine as the substrate was spectrophotometrically measured in relation to the amount of uric acid, which was determined at 290 nm. The IC₅₀ value of allopurinol was $0.035 \,\mu g/mL$ (0.267 μ M). For XO activity, the drug-induced changes were statistically estimated using the Wilcoxon test for independent data (Hollander and Wolfe, 1973). Effects were significant for $p \leq 0.05$. ### Superoxide anion generation The enzyme xanthine oxidase is able to generate O_2 in vivo by oxidation of reduced products from the intracellular ATP metabolism. The superoxide (SO) generated in this reaction sequence reduce the nitro blue tetrazolium dye, leading to a chromophore with a maximum at 560 nm. Superoxide anion scavengers reduce the generation of the chromophore. The activity was measured spectrophotometrically as reported previously (Payá *et al.*, 1992; Masaki *et al.*, 1995). Compounds isolated were evaluated at 50 µg/mL. #### DPPH decolouration assay The quenching of free radicals by isolated compounds was evaluated spectrophotometrically at 517 nm through the residual absorbance of the DPPH radical (Sigma). The scavenging activity of substances was assessed by the decolouration of a methanol solution of DPPH (Feresin et al., 2002). A freshly prepared DPPH solution (20 mg/L) was used for the assays. Samples were dissolved in methanol and the DPPH solution served as a control. The degree of decolouration indicates the free radical scavenging efficiency of the samples. Quercetin, a free radical scavenger, was used as reference. The percentage of DPPH decolouration was calculated as follows: decolouration (%) = [1 - (absorbance of compound with DPPH - absorbance of blank sample)/(absorbance of DPPH control)] \times 100. Compounds were assayed starting at a maximum concentration ten times higher $(33 \,\mu\text{M})$ than the IC₅₀ value of quercetin $(3.3 \,\mu\text{M})$. The IC₅₀ value was calculated according to the scavenging efficiency. #### Results and Discussion Six compounds were isolated and characterized from *Dunalia spinosa*: lupeol, β -sitosterol, scopoletin, quercetin, withaferin A (1) and dunaurone (2). The antimicrobial activity tests showed that all Dunalia extracts were active, the resinous exudate being the most active extract against S. aureus, B. subtilis, M. flavus, E. coli and K. pneumoniae. Bioguided fractionation led to the isolation of withaferin A (1), active against all this microorganisms: the new dunaurone (2) and its aglycone 3 were weakly active against K. pneumoniae and inactive against all other microorganisms tested. The extracts and isolated metabolites were inactive against the fungi. The minimal inhibitory concentration (MIC) of 1 determinated against the most sensibile microorganisms was 80 µg/mL for S. aureus (MIC for ampicillin as reference antibiotic was 5 μ g/mL) and 30 μ g/mL for E. coli (> 5 μ g/mL for chloramphenicol). Klebsiella pneumoniae (clinical isolated), Salmonella aviatum (ATCC 2228), Pseudomonas aeruginosa (ATCC 14207), Staphylococcus aureus (ATCC 6538P), Micrococcus flavus (ATCC 10290), Bacillus subtilis (ATCC 6633), Candida albicans and Saccharomyces cerevisiae (clinical isolated). The extracts were dissolved in DMSO. Dilutions of 100 and 200 µg/mL were added to a fixed volume of Plate Count Agar (PCA, Merck). They were then superficially inoculated with an overnight culture of the different microorganisms and incubated at 37 °C for 24 h for bacteria and 28 °C for 48 h for fungi and yeasts. Results were recorded as growth or growth inhibition at each extract concentration (Erazo et al., 2006). A bioautographic agar overlay assay by TLC of the resinous exudates and compounds 1 and 2 was carried out on silica gel 60 G F_{254} plates developed with DCM/EtOAc (9:1 v/v) for 5 and EtOAc/MeOH (8:2) for 2 (Rahalison *et al.*, 1991). The turbidimetric method (Balow et al., 1991) was used with serial dilutions of the extract in 4 mL of Plate Count Broth or Tryptic Soy Broth (Merck). Both media were used to assay the MIC values of compound 1 against S. aureus and E. coli. ### Xanthine oxidase activity Both xanthine and xanthine oxidase (XO) were purchased from Sigma Co., and the standard inhibitor allopurinol was obtained from Laboratorios Saval (Santiago, Chile). The global methanol extract was evaluated at $50 \,\mu\text{g/mL}$ and further tested for IC₅₀ determination with an inhibition value > 50% (Noro et al., 1983). The inhibition of XO activity using xanthine as the substrate was spectrophotometrically measured in relation to the amount of uric acid, which was determined at 290 nm. The IC₅₀ value of allopurinol was $0.035 \,\mu \text{g/mL}$ (0.267 μ m). For XO activity, the drug-induced changes were statistically estimated using the Wilcoxon test for independent data (Hollander and Wolfe, 1973). Effects were significant for $p \leq 0.05$. #### Superoxide anion generation The enzyme xanthine oxidase is able to generate O_2 in vivo by oxidation of reduced products from the intracellular ATP metabolism. The superoxide (SO) generated in this reaction sequence reduce the nitro blue tetrazolium dye, leading to a chromophore with a maximum at 560 nm. Superoxide anion scavengers reduce the generation of the chromophore. The activity was measured spectrophotometrically as reported previously (Payá *et al.*, 1992; Masaki *et al.*, 1995). Compounds isolated were evaluated at 50 µg/mL. #### DPPH decolouration assay The quenching of free radicals by isolated compounds was evaluated spectrophotometrically at 517 nm through the residual absorbance of the DPPH radical (Sigma). The scavenging activity of substances was assessed by the decolouration of a methanol solution of DPPH (Feresin et al., 2002). A freshly prepared DPPH solution (20 mg/L) was used for the assays. Samples were dissolved in methanol and the DPPH solution served as a control. The degree of decolouration indicates the free radical scavenging efficiency of the samples. Quercetin, a free radical scavenger, was used as reference. The percentage of DPPH decolouration was calculated as follows: decolouration (%) = 11 - (absorbance of compound with DPPH - absorbance of blank sample)/(absorbance of DPPH control)] \times 100. Compounds were assayed starting at a maximum concentration ten times higher (33 μ M) than the IC₅₀ value of quercetin (3.3 μ M). The IC₅₀ value was calculated according to the scavenging efficiency. ### **Results and Discussion** Six compounds were isolated and characterized from *Dunalia spinosa*: lupeol, β -sitosterol, scopoletin, quercetin, withaferin A (1) and dunaurone (2). The antimicrobial activity tests showed that all Dunalia extracts were active, the resinous exudate being the most active extract against S. aureus, B. subtilis, M. flavus, E. coli and K. pneumoniae. Bioguided fractionation led to the isolation of withaferin A (1), active against all this microorganisms; the new dunaurone (2) and its aglycone 3 were weakly active against K. pneumoniae and inactive against all other microorganisms tested. The extracts and isolated metabolites were inactive against the fungi. The minimal inhibitory concentration (MIC) of 1 determinated against the most sensibile microorganisms was 80 µg/mL for S. aureus (MIC for ampicillin as reference antibiotic was $5 \mu g/mL$) and $30 \mu g/mL$ for E. coli (> $5 \mu g/mL$ for chloramphenicol). No significant results were obtained in the XO assay at $50 \mu g/mL$ of crude extract. Only the dichloromethane extract showed a weak inhibitory activity of 14.7%. Dunaurone at $22 \mu m$ showed an important activity of 45.7% in the SO assay compared with withaferine A at the same concentration, which showed an activity of 9.1%. None of them showed XO inhibition activity. In the DPPH assay the free radical scavenging efficiency of dunaurone was significant ($CE_{50} = 27.9 \,\mu\text{M}$) compared with the standard quercetin ($CE_{50} = 3.3 \,\mu\text{M}$). In conclusion, no previous studies have been reported for this species, and the results obtained in this work agree with the cleansing wounds properties attributed by the folk medicine for this plant. The results of this study are a contribution to the scientific knowledge of our flora. ### Acknowledgements This research has been performed under the auspices of Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile. - Agrawal P. K. and Bansal M. C. (1989), Carbon-13 NMR of Flavonoids (Agrawal P. K., ed.). Elsevier, Amsterdam, Chapter 6. - Balow A., Hausler Jr. W., Hermann K. L., Isenberg H. D., and Shadomy H. J. (1991), Manual of Clinical Microbiology, 5th ed. American Society for Microbiology, Washington DC, pp. 1105-1112. - Brady B. A., Kennedy J. A., and O'Sullivan W. I. (1979), The configuration of aurones. Tetrahedron 29, 359–363. - Brako L. and Zarucchi J. (1993), Catálogo de Angiospermas y Gimnospermas del Perú. Mo. Bot. Gard. 45, 1–1286. - Castro M., Villagrán C., and Kalin M. T. A. (1982), Estudio etnobotánico en la precordillera y altiplano de los Andes de Arica (18°-19°S). In: El ambiente natural y las poblaciones humanas de los Andes de Arica del norte grande de Chile (Arica, latitud 18°-28°S) (Veloso A. and Bustos E., eds.). Vol. de síntesis-Proyecto MAB-6-UNEP-UNESCO No. 1105-77-01). Santiago, Chile, Vol. 2, pp. 133-205. Erazo S., Delporte C., Negrete R., García R., Zaldivar - Erazo S., Delporte C., Negrete R., García R., Zaldivar M., Iturra I., Caballero E., López J. L., and Backhouse N. (2006), Constituents and biological activities of Schinus polygamus. J. Ethnopharmacol. 107, 395-400. - Feresin G. E., Tapia A., Gutiérrez R. A., Delporte C., Backhouse N., and Schmeda-Hirschmann G. (2002), Free radical scavengers, anti-inflammatory and analgesic activity of Acaena magellanica. J. Pharm. Pharmacol. 54, 835-844. - Hollander M. and Wolfe D. A. (1973), Nonparametric Statistical Methods. J. Wiley and Sons, New York, pp. 68-70. - Kupchan S. M., Doskotch R. W., Bollinger P., Mc Phail A. T., Sim G. A., and Saenz Renauld J. A. (1965), The - isolation and structural elucidation of a novel steroidal tumor inhibitor from *Acnistus arborescens*. J. Am. Chem. Soc. **87**, 5805-5806. - Mabry T. J., Markham K. R., and Thomas M. B. (1970), The Systematic Identification of Flavonoids. Springer-Verlag, New York, Heidelberg, Berlin, p. 24. - Markham K. R. and Mabry T. J. (1975), Ultraviolet and proton magnetic resonance spectroscopy of flavonoids. In: The Flavonoids (Harborne J. B., Mabry T. J., and Mabry H., eds.). Academic Press, New York, p. 45. - Marticorena C. and Quezada M. (1985), Flora vascular de Chile. Gayana Bot. 42, 71. - Masaki H., Sakaki S., Atsumi T., and Sakurai H. (1995), Active-oxygen scavenging activity of plant extract. Biol. Pharm. Bull. 18, 162-166. - Biol. Pharm. Bull. 18, 162-166. Noro T., Oda Y., Miyase T., Ueno A., and Fukushima S. (1983), Antinociceptive properties of steroids isolated from *Phyllanthus corcovadensis* in mice. Chem. Pharm. Bull. 31, 3984-3987. - Payá M., Halliwell B., and Hoult R. S. (1992), Interactions of a series of coumarins with reactive oxygen species. Scavenging of superoxide, hypochlorous acid and hydroxyl radicals. Biochem. Pharmacol. 44, 205–214. - Pelter A., Ward R., and Keller H. G. (1979), ¹³C NMR spectra of (Z)- and (E)-aurones. J. Chem. Soc. Perkin Trans. I, 328-331. - Rahalison L., Hamburger M., Hostettman K., Monod M., and Fronk E. (1991), A bioautographic agar overlay method for the detection of antifungal compounds from higher plants. Phytochem. Anal. 2, 199-203. - Sharma A. and Chibber S. S. (1979), Carbon-13 NMR spectroscopy of methoxy and acetoxyaurones. J. Heterocycl. Chem. 18, 275-278.