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Abstract

We studied the effect of thyrotropin-releasing hormone
(TRH) applied centrally on the sympathetic activity of the
ovary in female rats. Intracerebroventricular (i.c.v.) ad-
ministration of a dose of 26 ng/kg weight produced an
increase in noradrenaline {NA) content at the ovary after

5 days of hormone administration. However, higher-

doses in a range up to 500 ng/kg weight decreased NA
content at the ovary. At the celiac ganglia (where the cell
bodies of sympathetic neurons projecting to the ovary
originate) there was an accumulation of NA in spite of a
decrease in tyrosine hydroxylase activity (T-OH). After
cold exposure, opposite effects on T-OH activity and no
effects on NA in ganglia and in ovary were obtained.

Supported by Fondecyt 102-0581, ECOS and DID Sal 002/2,

Besides, i.v. injection of TRH only induced a decrease in
ovarian NA, In contrast to the increase in Ty plasma lev-
els obtained after the cold-stress procedure, none of the
i.c.v. doses of TRH used produced changes in T; plasma
levels, strongly suggesting that the effect on sympathetic
activity is mediated by a central effect of TRH acting as a
putative activator of ovarian sympathetic nerves.

Introduction

Increasing cvidence leads to the assumption that, in
addition to its classical hormonal influences, the brain
cxhibits a neural control over ovarian activity [1]. Since
the first report of Kawakami et al. [2], data has accumu-
lated in the rat, suggesting a direct neural connection
between the avary and the brain [3, 4]. Recently, using a
viral transnecuronal tracing technique, Gerendai et al. [5]
showed that local administration of a viral tracer into the
ovary produced intense cell-body labeling in the hypotha-
lamic paraventricular nucleus (PVN), This nucleus
(mainly its dorsal cap) represents a conspicuous forebrain
region from which cells project to preganglionic sympa-
thetic neurons either directly [6] or through the dorsome-
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dial nucleus (DMN) [7]. Whatever the intermediate steps,
sympathetic neuronal inputs impinge on the celiac post-
ganglionic cells whose efferents innervate the ovary [8].

Thyrotropin-releasing hormone (TRH), a tripeptide
mainly synthesized in the PVN [9] has been associated
with the sympathetic pathway linking the hypothalamus
to the autonomic nervous system [7, 10] and is presum-
ably involved in the control of body temperature {11, 12].
As a hypothalamic neurohormone, it also participates in
the thermogenic response via an activation of the thyro-
tropic axis [13, 14]. TRH plays a key role as a ubiquitous
molecule that integrates both neuronal and hormonal ele-
ments of the thermogenic response [15], both of which are
activated by cold-stress exposure [16, 17]. In recent years,
we [18] and others [19] have documented a sympathetic
mediation in stress-induced ovarian hyperactivity. Since
cold stress activation of autonomous pathways involves
TRH [20, 21], the purpose of this work was to investigate
whether the neuropeptide may be involved in ovarian
sympathetic control. Three parameters were studied: ty-
rosine hydroxylase activity, noradrenaline content in ce-
liac ganglia (origin of the neurons controlling steroidogen-
ic cells of the ovary) and noradrenaline content of the ova-
ry. To discriminate between a central and peripheral, thy-
rotropin-mediated stimulation of sympathetic nerves, the
animals were subjected to either intracerebroventricular
or intravenous injection of TRH. Finally, a mixed para-
digm of central and peripheral effects, chronic exposure to
cold was also used. It appears from our results that TRH
could act as a mediator in pathways connecting the brain
to the ovary.

Materials and Nethods

Animals

Cycling virgin rats (220-250 g) were obtained from a stock of
Sprague-Dawley animals maintained at the University of Chile. The
animals were kept on a [2-hour light, 12-hour dark photoperiod
(lights on from 07.00 to 19.00 h) and allowed free access to pelleted
rat chow and tap water. Thirty-six rats were divided into four groups:
saline controls (n = 4); central administration of TRH (n = 16);
peripheral administration of TRH (n = 8; 4 saline-treated and 4
TRH-treated); cold-stressed rats (n = 8; 4 controls and 4 treated).
There were no changes in estrous cyclicity of any experimental group.
One hour after the final stress session, control and experimental rats
were sacrificed by decapitation, as this procedure has the least effect
on corticosterone (CORT) plasma levels [18]. Rats were transported,
one-by-one, from an adjoining room to the sacrifice location.

Animals showing regular 4-day estrous cycles were used for the
experiments. All animal procedures were performed using protocols
previously approved by the Institutional Ethics Committee, Faculty
of Chemical and Pharmaceutical Sciences, University of Chile.
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Central TRH Treatment

Rats were anesthetized with chloral hydrate (400 mg/kg) and
placed in a stereotaxic apparatus. A cannula was inserted into the
third ventricle (3V) (coordinates: —0.28 mm anteroposterior, 0 mm
mediolateral, -0.81 mm ventrodorsal) [22] and fixed on the skull
with screws and dental cement. After surgery, the rats were caged
individually, Rats with signs of infection, continued weight loss or
incorrect placement of the cannula were excluded from the experi-
ment. One week later, TRH was injected once daily into 3V (1 pl/
min, 5 ul total) for 3 or 5 days with 25, 200, 300 or 500 ng TRH/kg
(n = 4, for each treatment). Controls were similarly injected with
saline vehicle (n = 4). The highest dose used in our work is many
times lower than doses used by other authors under i.c.v. administra-
tion protocols [23 ,24].

Peripheral TRH Treatment

Rats were anesthetized with chloral hydrate (400 mg/kg) and a
10-cm length of PE-10 tubing was inserted into the jugular vein; the
tubing was exteriorized over the back of the head through a small
incision, sutured to the skin, and sealed with a 30 G stainless steel
wire. The animals were treated 2 days after surgery; TRH (25 ng/kg)
was administered for 3 days.

Cold Exposure

For each experimental period, the rats were divided into two
matched weight groups. One group was maintained in a 4°C cold
room for 64 h. This condition has been previously shown to increase
tyrosine hydroxylase activity in the adrenal and, in some cases, in the
superior cervical ganglia [25]. This procedure has also been used to
discriminate the changes in feeding behavior during prolonged cold
exposure [26]. A second group was kept at 22°C, and served as con-
trols.

At the end of each experiment, rats were killed by decapitation,
their celiac ganglia, adrenal glands and ovaries were rapidly re-
moved, frozen and maintained at —80°C until analysis of catechol-
amines, enzymatic activity and total RNA preparation; whole trunk
blood was collected, and the plasma was recovered by centrifugation
and stored at —20° C for subsequent triiodothyronine (T3) assays.

RNA Preparation and Semiquantitative Reverse Transcription

Polymerase Chain Reaction (RT-PCR)

Celiac ganglia total RNA was extracted using Trizol Reagent®
(Gibco BRL, Gaithersburg, Md., USA). T-OH mRNA was deter-
mined as previously described [27] with minor modifications. After
we tested the best concentration of total RNA to be in the linear range
of the reaction, we choose 200 ng to perform reverse transcription.
Previously, RNA was heated to 75°C during 5 min and chilled on
ice. Transcription was performed at 37°C during 1 h, using 0.5 mA/
NTPs, 10 mAM DTT, 176 nM random hexamers (Invitrogen, Carls-
bad, Calif., USA), 25 U RNAsin (Promega, Madison Wisc., USA),
300 U reverse transcriptase (Invitrogen) and first strand buffer, in a
final volume of 30 ul. We used a multiplex PCR assay for T-OH and
hypoxantine-phosphoribosyl-transferase (HPRT, a constitutive gene
of neurogical tissue as described by Pernas-Alonso et al. [27]). To
verify that the mRNA samples were not contaminated with genomic
DNA, HPRT primers were designed from a codogenic sequence of
the HPRT gene which spans an intronic sequence, and generates
either a 370 bp fragment for cDNA or a longer fragment to show
possible products amplified from contaminating genomic DNA as
described [27]. 10 ul of the RT reaction were incubated with 2 U of
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Fig. 1. The effect of TRH administration to
the third ventricle on sympathetic nerve ac-
tivity. A cannula was chronically implanted
in the third ventricle and rats were injected
once a day for 5 days with saline or different
concentrations of TRH (1 pl/min, 5 pl total)
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DNA Taq polymerase (Promega), 0.2 mAM dNTPs, 15 pmol of each
primer in a final volume of 30 pl. The PCR was programmed for 26
cycles, and consisted of denaturation at 95°C for 1 min, anncaling at
57°C for 45 s and extension at 72°C for | min, using a DNA thermal
cycler (MJ Research Inc.). The PCR oligonucleotide primers were
previously published [27] and generate either a 370- or a 274-bp frag-
ment for HPRT and T-OH, respectively. All RT-PCR and PCR reac-
tions included the use of water instead of template as negative con-
trols. RT-PCR products were electrophoresed in 2.0% agarose gels,
stained with ethidium bromide and photographed. Band intensities
were measured with the UN-SCAN-IT program (Silk Scientific,
Orem, Utah, USA), and normalized to that of the corresponding
HPRT bands. Because we did not find differences between the exper-
imental groups, we only show the corresponding gel and not the bars
of the relative densitometric analysis.

Tyrosine Hydroxylase Activity

The activity of tyrosine hydroxylase (T-OH) was determined by
the method of Waymire et al. [28] as previously described [29]. We
measured the “CO, released from 1-14C-tyrosine (spec. act. 52 mCi/
mmol, New England Nuclear, Boston, Mass., USA) after hydroxyla-
tion by T-OH and subsequent decarboxylation induced by the addi-
tion of an extract of dopa decarboxylase (DDC) to the assay. The
experimental procedure was performed with a saturating concentra-
tion of 1.0 mAZ 6-methyl-tetrahydrobiopterine (Sigma Chem. Co., St.
Louis, Mo., USA) as a cofactor for T-OH; enzymatic activity is
cxpresscd as pmol CO; formed/30 min.

Determination of Norepinephrine and Total Adrenal

Catecholamines

The ovaries and celiac ganglia werc homogenized in 0.2 A HCIO,
and the suspensions were centrifuged (15,000 g, 10 min); catechol-
amines present in the supernatant were determined by a specific
radioenzymatic method [30] as previously described [29, 31]. As
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there is a high catecholamine content in the adrenal we used a colori-
metric method for total catecholaminc determination in this tissue
[18]. This method measures both norepinephrine and epincphrince by
the formation of noradrenochrome and adrenochromc when the
samplcs arc oxidized with iodine at a pH higher than 6.

Determination of T}

Triiodothyronine (T3) was determined by a Microparticle En-
zyme Immunoassay (MEIA) for the quantitative determination of
total circulating T3 in plasma as described [32].

Statistical Analyses

Differences between two groups were analyzed with Student’s t
test. Comparisons between several groups were performed by use of a
one-way analysis of variance, followed by the Student-Newman-
Keuls multiple comparison test for unequal replications.

Results

Effect of i.c.v.-Administered TRH on Sympathetic

Activity

After 5 days of TRH treatment, all parameters studied
were affected, except for total catecholamine content in
adrenals (fig. 1a). T-OH activity in celiac ganglia (fig. 1b)
was inhibited at all doses tested (25, 200, 300, and 500 ng
of TRH). Mean inhibition was 55% compared to control
values in saline-injected animals (controls vs. 25 ng/kg
treated animals, p < 0.01, and p < 0.005 vs. 200, 300 and
500 ng/kg, n = 4). Although there was an increase in the
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Fig. 2. Changes in the mRNAs for tyrosine
hydroxylase (T-OH) and hypoxantine-phos-
phoribosyl-transferase (HPRT) after 5 days
of a daily i.c.v. administration of TRH in
doses of 25, 200, 300, and 500 ng. Figure
shows a 2% agarose gel with both the T-OH
HPRT signals for 200 ng of total RNA sub-
mitted to the PCR procedure according to
methods. No changes in the intensity of the
signal were found. Each lane is a representa-
tive sample for each of the different doses
used in quintuplicate for each experimental
condition.
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NA content of celiac ganglia at doses higher than 200 ng,
it only reached significance for the latter dose (37.95 =+
4.3 vs. 56.17 £ 5.2 ng NA/ganglion, mean value £ SEM,
p < 0.05, n = 4) (fig. 1¢). Finally, the NA content of the
ovary was significantly increased after a single dose
of 25 ng/kg (controls: 0.14 £ 0.02 ng of NA/ovary, TRH
25 ng/kg: 0.28 £ 0.02 ng of NA/ovary), but at higher
doses (200, 300 ng/kg) the response decreased and turned
even into an inhibitory effect for the 500-ng dose (0.06 +
0.02 ng of NA/ovary; mean value = SEM, p<0.01,n=4).
In order to analyze whether or not decreased T-OH activi-
ty resulted from inhibition of gene expression induced by
the TRH administration at the central level, we studied
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changes in T-OH mRNA by semiquantitative PCR. As
shown in figure 2, no change in T-OH mRNA levels were
found at any i.c.v. TRH dose used.

Sympathetic Activity following i.v. Administration of

TRH

Administration of 25 ng TRH (a dose able to affect the
brain) [33, 34] intravenously once a day for 3 days
resulted in a significant increase in adrenal catechol-
amines (6.45 = 0.38 pg/mg tissue/kg in controls vs. §.19
+ 0.36 ug/mg tissue/kg in i.v. TRH-treated rats,n=5,p <
0.05; fig. 3a). In contrast, neither T-OH activity at the
ganglia (fig. 3b) nor NA content in the celiac ganglia were
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affected (fig. 3¢), but there was a significant decrease in
ovarian NA (1.5 £ 0.03 ng NA/ovary vs. 3.3 = 1.2 ng of
NA/ovary in controls, mean value = SEM, p<0.05,n =4;
fig. 3d), suggesting a local action of TRH or of another
thyrotropic component at the ovarian nerve terminals.

Effect of Cold Exposure on Sympathetic Activity

After 64 h cold exposure, a significant decrease in total
adrenal catecholamines was observed (8.38 = 0.89 ug/mg
tissue/kg in controls vs. 3.02 £ 0.59 pg/mg tissue/kg in
cold-stressed rats, n = 4, p < 0.01; fig. 4a). T-OH activity
in celiac ganglia (fig. 4b) increased (0.09 = 0.007 in con-
trols vs. 0.15 £ 0.016 nmol CO,/h/ganglion, mean value
+ SEM, p < 0.05, n = 4) in animals subjected to cold
exposure. In contrast, NA content was affected neither in
the ganglia (fig. 4¢) nor in the ovaries (fig. 4d).

Effect of TRH Administration and Cold Exposure on

Body Weight

As shown in table 1, all experimental conditions ap-
plied induced a significant loss of body weight. Cold-
stressed rats lost 7.15 = 1.5% of their initial body weight
(p < 0.05, mean value = SEM with respect to controls),
animals treated intravenously with TRH lost 0.8 + 0.5%
and rats treated centrally with TRH between 1.7 and
3.14% of their initial body weight (p < 0.01 with respect to
controls).

Central Control of Ovarian Functijon

Table 1. Effect of TRH administration or cold exposure on body

weight
% change in body weight

Control 2.44+0.5
Cold 64 h SN SEIS TS
TRH i.v. 25 ng/kg -0.87£0.5*
TRH i.c.v. 25 ng/kg -3.14+0.9*

200 ng/kg -2.05+1.6*

300 ng/kg -3.10+1.8*

500 ng/kg -1.67£1.7*

Changes in body weight were calculated as the difference between
initial and final weights after each treatment and expressed as the
percentage of change. Results are presented as mean + SEM of four
independent observations, except for the controls, which represents
the mean of all controls rats (n = 12).

**p <0.01 vs. control; * p < 0.05 vs. control.

Plasma Levels of Ts after i.c.v. TRH Administration

or Cold Exposure

To determine pituitary reactivity under the different
experimental conditions involving TRH, plasma levels of
T3 were assessed. As shown in table 2, T3 plasma levels
increased in the group subjected to cold exposure (45.83
+ 1.56 vs. 55.07 £ 2.33 ng/dl, mean value + SEM, p <
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Table 2. Effect of TRH administration and cold exposure on plasma
Ts levels

T3, ng/dl
Control 42.38+3.0
Cold 64 h 55.07£2.33*
TRH i.c.v. 25 ng/kg 49.66+1.5
200 ng/kg 44.35+£6.6
300 ng/kg 46.70+12.3
500 ng/kg 43.96+2.9

Rats were killed by decapitation, whole trunk blood was taken,
and the plasma was removed by centrifugation. T3 levels in plasma
are expressed as ng of T3 per 100 ml of plasma. Each value represents
the mean = SEM of four independent observations, except the con-
trol value which represent the mean of all controls £ SEM.

*p <0.05 vs. control.

0.05, n = 4), a paradigm known to activate endogenous
TRH secretion. However, in animals receiving central
1.c.v. TRH treatment, no change in T; plasma levels was
observed, indicating that central administration of TRH
was ineffective at the pituitary level.

Discussion

We have presented evidence implicating TRH as a
putative neurotransmitter acting at an upstream level of
sympathetic pathways which originate in the brain and
affect ovarian function. Although our work did not pre-
cisely locate the central site of TRH actions involved here,
a strong body of evidence points out the PVN as a major
source of TRH neurons [20, 35]. These neurons project
both directly and indirectly to preganglionic sympathetic
neurons located in the spinal cord before reaching the gan-
glia [6, 36]. In order to analyze the effect of TRH on sym-
pathetic neurons, we used intracerebroventricular admin-
istration of TRH through a cannula implanted in the third
ventricle. Besides, to discriminate between central and
peripheral effects of TRH, we also used intravenous
administration of TRH and a cold stress protocol that
mnvolves both peripheral and central components.

Central Stimulation of Sympathetic Nerves by TRH

Intracerebroventricular administration of TRH
(25 ng/kg body weight) induced a significant decrease in
T-OH activity in celiac ganglia without affecting NA con-
tent. Celiac ganglia are the origin of the main sympathetic

278 Neuroendocrinology 2003;77:273-281

pathway to ovarian endocrine cells. Therefore, changes in
the activity of the enzymes involved in the biosynthesis of
NA in the ganglia are commonly used as indices of sympa-
thetic activity affecting the ovaries [18, 29]. The decrease
in T-OH activity in the ganglia could affect either de-
creased enzymatic capacity (linked or not to decreased
biosynthesis of the enzyme), or increased outflow of
enzyme molecules from the ganglion to ovarian nerve ter-
minals. Since T-OH mRNA was not affected by any dose
of TRH used, and given that the enzyme activity was
measured under saturating concentrations of the sub-
strate, the decrease in T-OH activity is more likely
explained by an accelerated flow of the enzyme to nerve
terminals. This conclusion is not completely speculative,
since it is in agreement with physiological data previously
reported by us during activation of ovarian sympathetic
nerves in rats [37].

Increased expression of NA biosynthetic enzymes in
the ganglia is likely to correspond to an increased need of
the neurotransmitter at the ovary [37], responding to a
trophic signal originating in the ovary and still effective
many days later [38]. A similar mechanism could account
for the change in NA found in the ovary and the ganglia of
rats treated centrally with TRH. After 5 days of TRH
treatment changes should affect availability of the pre-
synthetized neurotransmitter and its enzymes rather than
gene expression.

In summary, since TRH stimulates the firing rate of
sympathetic neurons [39], we can hypothesize that an
increased outflow of NA from the ganglion to ovarian
nerve terminals is a consequence of increased sympathet-
ic activity. It could be responsible for the decrease in ovar-
ian NA content when the dose of TRH is increased from
235 to 500 ng/kg body weight. As discussed above, our pro-
tocol did not last long enough to allow development of a
compensatory increase in T-OH expression and recovery
of NA content in the ovary.

On the other hand, the adrenal gland, another periph-
eral sympathetic target, did not present changes in cate-
cholamine content after i.c.v. administration of TRH,
suggesting that TRH actions at the celiac ganglia are
selective.

Peripheral Stimulation of Sympathetic Nerves by TRH

Since TRH administered centrally could theoretically
diffuse not only in other brain areas, but also in the pitu-
itary, we also tested the effects of peripheral administra-
tion of TRH. Using i.v. doses of TRH previously de-
scribed as affecting the thyrotropic axis [33, 34], we did
not observe any change in NA content or T-OH activity
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at the celiac ganglia. The reduction in ovarian NA con-
tent after i.v. TRH suggests that, in that case, the peptide
acts by the thyrotropic axis, which can itself affect the
ovary. It has been demonstrated that T3 acting on spe-
cific receptors stimulates the release of noradrenaline
from mesenteric sympathetic ganglia [40]. Similarly, the
fact that the ovary possesses T3 receptors [41] is compat-
ible with a local action of T3 on the ovary, thus explain-
ing an indirect effect of TRH administered i.v. on ovari-
an NA content.

In addition, peripheral actions of TRH also resulted in
a clear increase in adrenal catecholamines, an effect pre-
viously shown to be mediated by glucocorticoid release
from the gland [42]. Since TRH is also a potent prolactin-
releasing factor, changes in adrenal catecholamines could
be due to activation of PRL receptors which have been
reported at this level [43].

In conclusion, although TRH applied peripherally was
also able to modify ovarian sympathetic parameters, it
did not affect the same parameters as i.c.v. TRH adminis-
tration.

Cold Stress Stimulation of Sympathetic Nerves

Cold stress is an experimental paradigm that mimics,
at least in part, effects of intravenous TRH. It has been
demonstrated that plasma levels of TSH and of free thy-
roid hormones remain elevated 5 days after cold exposure
[44]. Cold stress is known to activate TRH-dependent
neurohormonal [16] as well as central pathways [12, 45].
The former leads to a thyrotropic activation and high
plasma levels of TSH and thyroid hormones [13, 14]. In
the present experiments, animals subjected to cold stress,
had increased plasma levels of T3 in contrast to those
receiving central TRH treatment. Interestingly, decreased
ovarian NA content was proportional to the magnitude of
the increase in T3 plasma levels, suggesting a direct effect
of this hormone on sympathetic nerve activity, as demon-
strated in the case of mesenteric ganglia [40].

Cold exposure may also activate the corticotropic axis
[46], increasing adrenal glucocorticoid release [47] and
limiting the response of catecholamine biosynthesis to
cold stress [48] as well as release, uptake and metabolism
of sympathetic nerves [49], including those supplying the
ovary [50].

Interestingly, experimental conditions used here and
involving TRH activation resulted in body weight loss.
Depending on the route of TRH administration, activa-
tion of central [51] or peripheral [52] thermogenic mecha-
nisms have been correlated with weight loss. Besides its
peripheral actions, cold exposure could activate central

Central Control of Ovarian Function

non-neurohormonal thermogenic mechanisms, as does
r.c.v. TRH.

Autonomous actions attributed to hypothalamic TRH
[53] include stimulation of gastric acid secretion [20] and
thermogenic effects {54]. The present results suggest that
ovarian function should be added to the list of autono-
mous functions in which TRH controls NA levels. Stress-
ful situations [55] such as cold exposure [16] or neural sig-
nals [56, 57] leading to TRH activation could affect syn-
thesis and/or content of ovarian NA and behave as ctio-
logic factors of ovarian pathologies involving participa-
tion of sympathetic nerves, as described in the polycystic
ovary syndrome [18, 29].

In conclusion, our data suggest that TRH exerts a stim-
ulatory effect of central origin on the autonomous nervous
system that controls ovarian activity. Inhibition of T-OH
activity accompanied by accumulation of NA at the gan-
glion site, as well as decreased ovarian NA, support the
hypothesis that TRH can affect the firing rate of ovarian
sympathetic neurons, probably at their site of origin in the
central nervous system. TRH can thus be viewed as an
additional neural signal involved in ovarian regulation.
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