Reaction of 4,5,6-Triaminopyrimidine and 2,4,5,6-Tetraaminopyrimidine with 3-Dimethylaminopropiophenones. Synthesis of New 4-Aryl-2,3-dihydropyrimido[4,5-b][1,4]diazepines Braulio Insuasty O.,* Henry Insuasty I. and Jairo Quiroga P.

Department of Chemistry, Universidad del Valle, A.A. 25360, Cali, Colombia

Claudio Saitz [a] and Carolina Jullian [b]

[a] Departamento de Química Orgánica y Fisico-Química, [b] CEPEDEQ, Facultad de Ciencias Químicas y Farmaceúticas, Universidad de Chile, Casilla 233 Santiago 1 - Chile

Several new 6-amino- and 6,8-diamino-4-aryl-2,3-dihydropyrimido[4,5-b][1,4]diazepines were obtained from the reaction of 4,5,6-triaminopyrimidine 1a and 2,4,5,6-tetraaminopyrimidine 1b with one equivalent of 3-dimethylaminopropiophenones 2 in absolute ethanol. Structure analysis of 6-amino- and 6,8-diamino-4-aryl-2,3-dihydropyrimido[4,5-b][1,4]diazepines 3a-i, determined by detailed nmr measurements, reveals a high regionelectivity of this reaction.

Benzodiazepines are an important class of psychotherapeutic compounds. Although a benzene ring is usually needed for pharmacological activity, in recent years, however, some examples of heterocyclic rings fused to the seven-member diazepine ring system have appeared in literature [1,2]. In particular, good CNS activity was reported for various pyrazolodiazepines [3].

In previous papers [4-6], we reported the synthesis of pyrimidodiazepines from the reaction of 4,5-diamino-pyrimidines with chalcones (α , β -unsaturated aromatic ketones). Because of the biological importance of these heterocycles, in this work we report on the reactivity of 4,5-diaminopyrimidines with 3-dimethylaminopropio-phenones, as precursors of α , β -unsaturated ketones.

Reaction of 4,5,6-triaminopyrimidines (1a, b) with 3-dimethylaminopropiophenone hydrochlorides (2) in

absolute ethanol under reflux afforded 6-amino-2,3-dihydro-4-arylpyrimido[4,5-b][1,4]diazepines (3a-d) and 6,8-diamino-2,3-dihydro-4-arylpyrimido[4,5-b][1,4]-diazepines (3e-i) in 35-65% yield (Scheme 1).

The uv/visible spectra of 3a-i in ethanol contain three to four bands; most characteristic is an absorption maximum in the range of 268-296 nm and a second one shifted towards longer wavelengths ($359 \le \lambda_{max} \le 438$ nm). The ir spectra show typical bands between 3109 and 3535 cm⁻¹ (NH and NH₂ groups) and 1529-1665 cm⁻¹ (C=N and C=C groups).

The structure of compounds 3a-i was confirmed by nmr measurements. ¹H-nmr data for all the products 3a-i are summarized in Table 1. The 1-NH group of the diazepinic ring appears as a triplet at $\delta = 8.80$ -9.04 ppm for 3a-d and 6.62-6.90 ppm for 3e-i (one deuterium exchangeable

proton), indicating the vicinal position of the geminal protons on C-2. The geminal protons on C-2 and C-3 appear as triplets at $\delta=4.34\text{-}4.38$ and 3.22-3.37 ppm for 3a-d and 3.32-3.34 and 3.01-3.08 ppm for 3e-i respectively. The coupling constant between them is $^3J=7.0\pm0.1$ Hz. In addition, two doublets are observed in the spectra of 3b-d, f-i related to aromatic protons ($\delta=6.93\text{-}8.57$ ppm) with ortho-constant J=7.1-8.9 Hz. The aromatic meta/para-protons for 3a and 3e appear as one multiplet. The assignment of the signals is supported by a 1H , 1H COSY and 1H , ^{13}C shift correlation experiments.

Table 1

1H-NMR data of 3a-i (δ values, TMS as the Internal Standard, in DMSO-d₆, 300 MHz)

Compound	1-NH	2-CH ₂	3-CH ₂	6-NH ₂	8-CH	[a]	4-Ar	
	t	t	t	S	S	ortho (d)	metha (d)	para
3a	8.80	4.35	3.22	6.23	8.26	8.34	7.57-7.64	(m)
3ь	8.90	4.35	3.30	6.64	8.25	8.33	7.61	
3c	8.92	4.34	3.33	6.23	8.25	8.28	7.77	
3d	9.04	4.38	3.37	6.46	8.27	8.57	8.34	
3e	6.69	3.33	3.04	6.18	5.62	7.85	7.30-7.41	(m)
3f	6.62	3.33	3.01	6.15	5.58	7.82	6.93	
3g	6.74	3.32	3.02	6.24	5.68	7.88	7.41	
3h	6.72	3.32	3.01	6.19	5.64	7.81	7.54	
3i	6.90	3.34	3.08	6:33	5.77	8.19	8.10	

[a] For 3e-i this signal corresponds to 8-NH₂. CH₃O for 3f 3.79 ppm.

The final elucidation of structure of compounds 3a-i was carried out by analysis of the $^{13}\text{C-nmr}$ spectra (Table 2). Signal assignment was made based on DEPT and two-dimensional experiments. Relevant features are as follows. The signal of C-2 is in the range δ 40.9-43.9 ppm whereas the signal of C-3 appears at δ 23.4-24.0 (for 3a-d) and 34.5-34.8 ppm (for 3e-i). A peak related to C-5a is at δ 100.7-107.2. In contrast, C-9a shows at δ 155.9-165.4 ppm. These findings can be explained in terms of the strong push-pull effect of the amino and C=N groups linked to the CC double bond in structures 3. HMBC experiments show three-bond correlations between H1 and C-5a and between the geminal protons at position 2

and C-9a. These experiments rule out the formation of the regioisomeric product 4 (Scheme 1) and confirm that the title reaction proceeds *via* a two-step sequence, similar to that discussed in [4-6]. Thus, the initial step is the reaction of 4,5-diaminopyrimidines (1) with β -dimethylaminopropiophenones (2), through the condensation between the carbonyl group of 2 and the more nucleophilic amino group (5-NH₂ in 1) [7-10]. In the second step, a Michael addition of the amino group at position 4 to the C=C double bond of the aryl vinyl ketone, formed by loss of one dimethylamine molecule, takes place.

EXPERIMENTAL

Melting points were taken on a Buchi melting point apparatus and are uncorrected. The UV-Vis and ir spectra were recorded on Philips PU-8600 and Nicolet FT-55X spectrophotometers, respectively. The ¹H- and ¹³C nmr spectra were acquired on a Bruker AVANCE DRX 300 spectrometer in DMSO-d₆. The mass spectra were recorded on a Fisons-Platform interface APCI in MeOH. The elemental analyses have been obtained using a LECO CHNS-900 instrument.

6-Amino-2,3-dihydro-4-arylpyrimido[4,5-b][1,4]diazepines 3a-d and 6,8-diamino-2,3-dihydro-4-arylpyrimido[4,5-b]-[1,4]diazepines 3e-i.

General Procedure.

A solution of 3.2 mmoles of 1a, b and 3.2 mmoles of a suitable 1-aryl-3-dimethylamino-1-propanone hydrochloride (3-dimethylaminopropiophenone) 2 was refluxed in 40 mL of absolute ethanol for 8-20 hours (tlc control). The reaction mixture was then cooled to 0°C overnight. The resulting solid was filtered and recrystallized from p-xylene. Yields and melting points are summarized in Scheme 1.

6-Amino-4-phenyl-2,3-dihydropyrimido[4,5-b][1,4]diazepine (3a).

Ir Data (KBr): 3148, 3343 for NH, NH₂ and 1662 for C=N, C=C. The mass spectrum shows $(M+H)^+ = 240 (100)$.

Anal. Calcd. for $C_{13}H_{13}N_5$: C, 65.26; H, 5.48; N, 29.27. Found: C, 65.13; H, 5.52; N, 29.21.

¹³C-NMR data of 3a-i (δ values, TMS as the Internal Standard, in DMSO-d₆, 300 MHz)

Compound	3a	3b	3c	3d	3e	3f	3g	3h	3i
C-2	43.1	43.2	43.9	.43.2	41.4	41.7	41.3	41.2	40.9
C-3	23.4	23.4	24.0	23.7	34.8	34.5	34.7	34.6	34.8
C-4	167.5	166.6	167.4	165.3	154.4	154.6	152.8	152.8	150.7
C-5a	106.2	106.0	107.2	106.0	100.9	101.0	100.9	100.7	101.0
C-6	149.6	148.9	147.6	148.4	160.5	160.3	160.6	160.6	161.0
C-8	156.2	156.3	151.8	149.2	164.1	163.9	164.2	164.2	164.5
C-9a	165.4	163.5	157.0	156.6	156.1	155.9	156.3	156.3	156.8
Ar Ci	144.1	142.7	142.2	141.8	. 141.2	133.9	140.1	140.4	146.5
$C_{o,m}$	128.2	128.7	130.9	123.5	126.3	113.7	128.1	128.4	123.5
	128.6	130.0	132.2	129.4	128.3	127.8	128.2	131.1	127.2
C_{ρ}	128.7	130.3	123.5	141.2	128.2	159.8	132.9	121.7	147.1

6-Amino-4-(4-chlorophenyl)-2,3-dihydropyrimido[4,5-b]-[1,4]diazepine (3b).

Ir Data (KBr): 3182, 3251, 3328 for NH, NH₂ and 1576, 1619, 1659 for C=N, C=C. The mass spectrum shows $(M+H)^+ = 273/275$ (100/34).

Anal. Calcd. for $C_{13}H_{12}N_5Cl$: C, 57.04; H, 4.42; N, 25.59. Found: C, 57.12; H, 4.36; N, 25.49.

6-Amino-4-(4-bromophenyl)-2,3-dihydropyrimido[4,5-b]-[1,4]diazepine (3c).

Ir Data (KBr): 3184, 3253, 3324, 3379 for NH, NH₂ and 1576, 1619, 1658 for C=N, C=C. The mass spectrum shows $(M+H)^+$ = 317/319 (100/96).

Anal. Calcd. for C₁₃H₁₂N₅Br: C, 49.07; H, 3.80; N, 22.01. Found: C, 49.14; H, 3.72; N, 22.12.

6-Amino-4-(4-nitrophenyl)-2,3-dihydropyrimido[4,5-b]-[1,4]diazepine (3d).

Ir Data (KBr): 3152, 3256, 3350, 3439 for NH, NH₂, 1604, 1625, 1665 for C=N, C=C and 1345, 1512 for NO₂ group. The mass spectrum shows (M+H)+ = 285 (100).

Anal. Calcd. for $C_{13}H_{12}N_6O_2$: C, 54.93; H, 4.25; N, 29.56. Found: C, 54.87; H, 4.22; N, 29.65.

6,8-Diamino-4-phenyl-2,3-dihydropyrimido[4,5-b][1,4]-diazepine (3e).

Ir Data (KBr): 3308, 3350, 3407, 3454 for NH, NH₂ and 1531, 1562, 1658 for C=N, C=C. The mass spectrum shows $(M+H)^+ = 255$ (100).

Anal. Calcd. for $C_{13}H_{14}N_6$: C, 61.40; H, 5.55; N, 33.05. Found: C, 61.30; H, 5.46; N, 33.15.

6,8-Diamino-4-(4-methoxyphenyl)-2,3-dihydropyrimido[4,5-b]-[1,4]diazepine (3f).

Ir Data (KBr): 3180, 3347, 3448 for NH, NH₂ and 1529, 1595, 1655 for C=N, C=C. The mass spectrum shows $(M+H)^+$ = 285 (100).

Anal. Calcd. for $C_{14}H_{16}N_6O$: C, 59.14; H, 5.67; N, 29.56. Found: C, 59.18; H, 5.65; N, 29.48.

6,8-Diamino-4-(4-chlorophenyl)-2,3-dihydropyrimido[4,5-b]-[1,4]diazepine (3g).

Ir Data (KBr): 3134, 3246, 3473 for NH, NH₂ and 1535, 1586, 1628 for C=N, C=C. The mass spectrum shows $(M+H)^+ = 289/291$ (100/35).

Anal. Calcd. for $C_{13}H_{13}N_6Cl$: C, 54.08; H, 4.54; N, 29.11. Found: C, 54.14; H, 4.52; N, 29.18.

6,8-Diamino-4-(4-bromophenyl)-2,3-dihydropyrimido[4,5-b]-[1,4]diazepine (3h).

Ir Data (KBr): 3134, 3247, 3370, 3466 for NH, NH₂ and 1534, 1585, 1628 for C=N, C=C. The mass spectrum shows $(M+H)^+ = 333/335 (100/97)$.

Anal. Calcd. for C₁₃H₁₃N₆Br: C, 46.86; H, 3.93; N, 25.22. Found: C, 46.81; H, 3.86; N, 25.29.

6,8-Diamino-4-(4-nitrophenyl)-2,3-dihydropyrimido[4,5-b]-[1,4]diazepine (3i).

Ir Data (KBr): 3109, 3247, 3435, 3535 for NH, NH₂, 1529, 1585 for C=N, C=C and 1334, 1506 for NO₂ group. The mass spectrum shows (M+H)+ = 300 (100).

Anal. Calcd. for C₁₃H₁₃N₇O₂: C, 52.17; H, 4.38; N, 32.76. Found: C, 52.24; H, 4.34; N, 32.82.

Acknowledgment.

This work was financially supported by COLCIENCIAS and UNIVERSIDAD DEL VALLE.

REFERENCES AND NOTES

- [1] A. Costanzo, F. Bruni, G. Auzzi, S. Selleri and L. P. Vettori, J. Heterocyclic Chem., 27, 695 (1990).
- [2] T. A. Kelly, D. W. McNeil, J. M. Rose, E. David, C.-K. Shih and P. M. Grob, *J. Med. Chem.*, 40, 2430 (1997) and references therein.
- [3] H. A. DeWald, S. Lobbestaell and B. P. H. Poschel, J. Med. Chem., 24, 982 (1981).
- [4] B. Insuasty, M. Ramos, J. Quiroga, A. Sanchez, M. Nogueras, N. Hanold and H. Meier, J. Heterocyclic Chem., 31, 61 (1994).
- [5] B. Insuasty, M. Ramos, R. Moreno, J. Quiroga, A. Sanchez, M. Nogueras, N. Hanold and H. Meier, J. Heterocyclic Chem., 32, 1229 (1995).
- [6] B. Insuasty, A. Perez, J. Valencia and J. Quiroga, J. Heterocyclic Chem., 34, 1555 (1997).
- [7] L. A. Yanovskaya, G. V. Kryshtal and V. V. Kulganek, Usp. Khim., 53, 1280 (1984); Chem. Abstr., 101, 190667x (1984).
- [8] V. D. Orlov, I. Z. Papiashvili and P. A. Grigorov, Khim, Geterotsikl. Soedin., 671, (1983).
- [9] E. S. Petrov, Usp. Khim., 52, 1974, (1983); Chem. Abstr., 100, 84905t (1984).
- [10] E. Bosch, J. Guiteras, A. Izquierdo and M. D. Prat, *Anal. Letters.*, 21, 1273 (1988).