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Purpose of review

Despite maximum medical and mechanical support therapy, heart failure remains a

relentlessly progressive disorder with substantial morbidity and mortality. Autophagy, an

evolutionarily conserved process of cellular cannibalization, has been implicated in

virtually all forms of cardiovascular disease. Indeed, its role is context dependent,

antagonizing or promoting disease depending on the circumstance. Here, we review

current understanding of the role of autophagy in the pathogenesis of heart failure and

explore this pathway as a target of therapeutic intervention.

Recent findings

In preclinical models of heart disease, cardiomyocyte autophagic flux is activated;

indeed, its role in disease pathogenesis is the subject of intense investigation to define

mechanism. Similarly, in failing human heart of a variety of etiologies, cardiomyocyte

autophagic activity is upregulated, and therapy, such as with mechanical support

systems, elicits declines in autophagy activity. However, when suppression of

autophagy is complete, rapid and catastrophic cell death occurs, consistent with a

model in which basal autophagic flux is required for proteostasis. Thus, a narrow zone of

‘optimal’ autophagy seems to exist. The challenge moving forward is to tune the stress-

triggered autophagic response within that ‘sweet spot’ range for therapeutic benefit.

Summary

Whereas we have known for some years of the participation of lysosomal mechanisms in

heart disease, it is only recently that upstream mechanisms (autophagy) are being

explored. The challenge for the future is to dissect the underlying circuitry and titrate the

response into an optimal, proteostasis-promoting range in hopes of mitigating the ever-

expanding epidemic of heart failure.
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Introduction
Our understanding of molecular mechanisms governing

pathophysiology in the disease-stressed heart has

expanded rapidly in recent decades. However, despite

these important advances, emergence of new, clinically

meaningful therapeutic strategies, apart from the rapid

expansion of device-based therapies, has disappointed.

Thus, most patients with heart failure experience unre-

lenting disease progression, and heart failure-associated

morbidity and mortality remain high worldwide [1].

Further, the prevalence of this syndrome is increasing,

impacted simultaneously by deteriorations in the western

lifestyle and by success in taming the acutely lethal

manifestations of other diseases. Given all this, there is

great urgency to identify and exploit novel therapeutic

targets of heart failure pathogenesis.

Recently, studies from laboratories around the world

have shown that autophagy [from the Greek auto (self)
 

and phagein (eating)], a nearly ubiquitous process of

cellular cannibalization in which intracellular com-

ponents are delivered to lysosomes for bulk degra-

dation, is a key element of stress-triggered cardiac

remodeling [2]. Autophagy is a dynamic process that

ensures cellular homeostasis by eliminating damaged

organelles and toxic protein aggregates, as well as by

recycling nutrients during starvation and stress [3].

Three types of autophagy have been recognized:

microautophagy, chaperone-mediated autophagy, and

macroautophagy [4]. Here, we focus on macroauto-

phagy (hereafter termed autophagy), the most highly

characterized type.

Autophagy: a ubiquitous catabolic process
Molecular mechanisms governing mammalian autophagy

are increasingly defined and will be discussed here only

in broad overview. Readers are referred to several out-

standing reviews for additional details [5–7].
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Key points

� Autophagy is an evolutionarily conserved pathway

of protein and organelle catabolism, active in vir-

tually all forms of cardiovascular pathology.

� Depending on the context, cardiomyocyte auto-

phagy can be adaptive or maladaptive.

� Autophagy is regulated by multiple signaling path-

ways, including class I PI3K–AKT–mTOR, class

III PI3K and Beclin, insulin, and AMPK pathways.

� Judicious titration (tuning) of autophagy within an

optimal zone of activation may be a therapeutic

strategy with clinical relevance.
Governing signaling pathways

In the presence of nutrient abundance and circulating

insulin, class I phosphatidylinositol-3-kinases (PI3K-I)

are activated, phosphorylating and activating AKT, a

nexus of metabolic signaling in many cell types. AKT,

in turn, triggers the protein mammalian Target of Rapa-

mycin (mTOR), which blocks autophagy by inhibiting

nucleation of a macromolecular complex composed of class

III PI3K and vacuolar protein sorting 34 (Vps34). Activated

class III PI3K (PI3K-III) and Vps34 then localize to the

phagophore, in which they interact with Beclin 1/ATG6

and ATG14 to promote autophagic flux [3,8].

Under conditions of nutrient inadequacy, in contrast,

mTOR is inhibited, and the autophagic flux pathway is

released from repression [8]. Consistently with this, the

class III PI3K inhibitor 3-methyladenine (3-MA) blocks

autophagy [4]. In addition, AMP-activated protein kinase

(AMPK) is activated by depletion of intracellular nutrient

stores, inhibits mTOR, and upregulates autophagy [9].

Alternatively, in the setting of pathologic stress (e.g.,

starvation, ischemia, hypoxia, oxidative stress, mitochon-

drial damage, chemotherapeutic drugs), a Beclin

1–PI3K-III complex is formed, promoting initiation of

autophagy [6]. Disrupting the interaction of Beclin 1 with

the Vps34 complex, or depleting Beclin 1 by genetic

knockdown, significantly diminishes progression of the

autophagic cascade [3].

Molecular anatomy of the autophagy cascade

The first step of the autophagic pathway is termed

nucleation, a class III PI3K-promoted process in which
Figure 1 Schematic of autophagy pathways

A variety of stimuli, including both physiological (e.g., starvation) and patholo
nucleation. Classically, a complex composed of class III PI3K and Beclin 1 c
membrane and subsequent membrane elongation. The membrane then fuse
During the following fusion step, autophagosomes ultimately fuse with
autolysosome cargo degradation provide both fuel and elemental building
elements. ATG, autophagy-related genes; PI3K-III, class III phosphatidylinos
the membrane compartment phagophore begins to

develop by utilizing intracellular membrane sources or

by de-novo membrane synthesis (Fig. 1). Next, the

elongation step is accomplished by activation of two

parallel pathways: in one, the E1-like enzyme ATG7

mediates the conjugation of ATG12 to ATG5, which

then couples with ATG16. This complex is required for

autophagosome formation and dissociates from the

vacuole upon maturation. In the other, microtubule-

associated protein 1 light chain 3 (LC3/ATG8) is cleaved

by ATG4, producing the so-called LC3-I form. LC3-I is

subsequently activated by conjugation to phosphatidyl-

ethanolamine by means of its interaction with ATG7 and

ATG3 (E2-like enzymes), resulting in LC3-II [6,7]. LC3-

II levels are a frequently tracked marker of autophagy, as

the molecule remains attached to the autophagosome

membrane until degradation is completed [4]. The final

step is accomplished by the fusion of the autophagosome
gic stresses, trigger cardiac autophagy. The first step in the process is
omplex is involved. This complex initiates formation of an isolated double
s upon itself, forming the distinctive double-membrane autophagosome.
lysosomes, culminating in cargo degradation. The end-products of
blocks to preserve vital cellular functions and remove toxic cellular

itide-3-kinase; Vps34, vacuolar protein sorting 34.



218 Molecular genetics
with a lysosome, forming an autolysosome. Degradation

of the autolysosomal cargo is accomplished by several

lysosomal hydrolases, and the catabolized products are

released into the cytosol and recycled for nutrient and/or

structural needs [7].
Autophagy in human cardiovascular disease
Despite the rapid emergence of mechanistic insights into

the role(s) of autophagy in preclinical models of heart

disease (see below), much less is known about cardio-

myocyte autophagy in human disease (Table 1 [10–12,

13��,14�,15,16�,17�]). Most evidence to date has been

obtained in myocardial samples obtained from patients

with heart failure, Danon disease, ischemic heart disease,

and cancer chemotherapy cardiomyopathy. Genetic

studies are largely lacking.

Techniques used to detect autophagy in human samples

are largely limited to electron microscopic ultrastructural

and immunohistochemical analyses. And, not surpris-

ingly, human cardiac tissue samples are obtained with

limitations, such as being from either endomyocardial

biopsies harvested during right heart catheterization,

explanted hearts obtained at the time of cardiac trans-

plantation, or ventricular tissue cores extracted at the

time of assist device implantation. Further, a vast spec-

trum of disease type, severity, duration, and therapies

further limits the mechanistic insights which can be

derived from their analysis.

Heart failure

Evidence for autophagy in human heart disease

emerged first from tissue samples of dilated cardiomyo-

pathy [10]. Twenty-seven hearts explanted from end-

stage heart failure patients undergoing partial ventricu-

lectomy were examined. Ultrastructural analyses

revealed numerous autophagic vacuoles containing

cytoplasmic material and organelles that were localized

within degenerated cardiomyocytes. In dilated cardio-
Table 1 Autophagy in human cardiovascular disease

Cardiovascular disease Sample source No. o
patien

Heart failure (DCM) Ventriculectomy 27
Heart failure

(unclassified cardiomyopathy)
Endomyocardial biopsy 1

Heart failure (idiopathic DCM) Explanted hearts 19
Heart failure (idiopathic DCM, LVAD) Explanted hearts 9

Glycogen storage disease Animal model of human
disease

N/A

Ischemic heart disease
(ischemia–reperfusion)

Animal model of human
disease

N/A

Anticancer drug-induced
cardiomyopathy (doxorubicin)

Animal model of human
disease

N/A

Anticancer drug-induced
cardiomyopathy (bortezomib)

Animal model of human
disease

N/A

DCM, dilated cardiomyopathy; EM, electron microscopy; LVAD, left ventric
myopathic hearts, autophagy appeared to be associated

not only with degradation of damaged intracellular

organelles but also with progressive destruction of car-

diomyocytes [10]. Interestingly, in 19 explanted hearts

from end-stage heart failure patients who underwent

transplantation, cardiomyocyte death occurring by

multiple mechanisms was inferred, with autophagic

mechanisms a prominent example; the estimated preva-

lence of apoptotic, necrotic, and autophagic cells was

0.002, 0.06 and 0.08%, respectively [12].

Autophagic cell death, or programmed cell death type II,

may be a significant contributor to the pathogenesis of

heart failure [11,12]. In patients with isolated aortic

valvular stenosis and varying degrees of left ventricular

systolic dysfunction, cell loss, mainly by autophagy and

oncosis (necrotic cellular morphology with swelling of

cytoplasmic organelles), was associated with the pro-

gression of left ventricular systolic dysfunction [8]. More

recently, biopsy samples of left ventricular myocardium

from nine patients with idiopathic dilated cardiomyopa-

thy were obtained at the time of implantation and

explantation of a left ventricular assist device (LVAD)

[13��]. Molecular studies of these samples showed that

mechanical unloading of the failing human heart was

associated with decreased markers of autophagy. The

authors went on to suggest that autophagy may be an

adaptive mechanism in the failing heart, a phenomenon

which is attenuated by LVAD support [13��]. It is not

known whether mechanical unloading of the failing heart

leads to normalization of cardiomyocyte autophagic

activity back to basal levels.

Glycogen storage disease-related cardiomyopathy

Glycogen storage disease can present as hypertrophic

cardiomyopathy [14�,18,19�]. This is particularly the case

for Danon disease, a condition characterized by defective

autophagosome–lysosome fusion owing to a mutation in

the lysosomal membrane receptor LAMP-2. Consequent
f
ts

Methods to detect autophagy Autophagic
activity

Reference

EM Increased [10]
EM Increased [1]

EM, ubiquitinated proteins Increased [12]
Beclin 1, ATG5, LC3II mRNA

and protein level
Decreased

after LVAD
[13��]

EM Decreased [14�]

EM, Beclin 1, LC3, cathepsin D Increased [15]

EM, Beclin 1 Increased [16�]

EM, LC3-GFP Increased [17�]

ular assist device; N/A, not available.
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accretion of unprocessed autophagosomes provokes

cardiomyopathy [4]. In a mouse model of Pompe disease,

a disorder marked by defective metabolism of glycogen

due to insufficiency of lysosomal acid alpha-glucosidase,

suppression of the initiation steps of autophagy by

inactivating ATG7 facilitates successful enzyme replace-

ment therapy [20�]. A novel LAMP-2-positive dilated

cardiomyopathy has also been reported [21]. This late-

onset cardiomyopathy is characterized by increased

autophagic vacuoles along with clinical features sugges-

tive of Danon disease, yet LAMP-2 gene mutations are

lacking [21].

Ischemic heart disease

Cardiomyocyte autophagy is a prominent feature in

ischemic disease. That said, analysis of tissue samples

from patients with ischemic heart disease is typically

confounded by co-existing heart failure [10]. Activation

of cardiomyocyte autophagy has been reported in a

porcine model of chronic ischemia–reperfusion (I/R)

[15], and rodent I/R models have been employed exten-

sively in studies focusing on mechanism.

Anticancer drug-induced cardiomyopathy

Cancer chemotherapy, particularly with anthracyclines,

has long been associated with significant cardiotoxicity,

cardiomyopathy, and heart failure [22]. However, the fact

that cancer patients are typically treated with multiple

drugs in combination has made it difficult to pinpoint

a unique culprit. Of course, availability of human

tissues in this context is rare. However, in a rat model

of doxorubicin-induced cardiomyopathy, cardiomyocyte

autophagy was implicated as a catabolic pathway

important in the development of heart failure [16�].

Furthermore, in cancer patients treated with the revers-

ible proteasome inhibitor bortezomib, drug-related car-

diotoxicity has been suspected [17�]. Rats exposed to

bortezomib developed heart failure, and endoplasmic

reticulum stress and upregulated autophagy have been

described [17�].
Mechanistic studies in animal models of
cardiovascular disease
Increases in autophagic flux have been documented in

virtually all forms of human cardiovascular disease,

including ventricular hypertrophy, heart failure, ischemic

disease, and glycogen storage disorders. However,

whether this catabolic process is adaptive or maladaptive

remains unknown. To address this knowledge gap, a

number of studies have been performed in preclinical

animal models seeking to decipher the role of this process

in disease pathogenesis, tease out its mechanistic under-

pinnings, and ultimately discover molecular targets for

potential therapeutic intervention.
Autophagy in the transition from hypertrophy to

heart failure

The initial response of the heart to increases in afterload

is hypertrophic growth [23]. If the afterload stress per-

sists, the heart will eventually become dilated, contractile

function will decline, and heart failure ensues [24].

Indeed, this progressive course of disease occurs com-

monly in patients with hypertension or ischemic heart

disease [25]. Now, recent work has demonstrated that

autophagic flux in cardiomyocytes is activated in this

context. For example, in a model of pressure overload

induced surgically by transverse aortic constriction

(TAC), we have reported that autophagic activity

increases rapidly after TAC, peaks at 72 h, and is main-

tained at elevated levels for at least 3–4 weeks [26]. The

degree of autophagic activity correlates with the magni-

tude of hypertrophic growth and with the rate of tran-

sition to heart failure [26], and steady-state levels of

autophagic flux correlate with heart mass [27��]. Consist-

ently with these findings, transgenic mice with cardio-

myocyte-restricted overexpression of Beclin 1, a rate-

limiting protein in the autophagic cascade, manifest

increased autophagic activity in the setting of elevated

afterload and a correspondingly amplified pathological

remodeling response, including ventricular dilation, sys-

tolic dysfunction, and early mortality [26,27��]. Conver-

sely, suppression of autophagy in the context of Beclin 1

haploinsufficiency halved the stress-induced autophagic

response and partially rescued the phenotype [26].

Collectively, these data suggest that autophagy is mal-

adaptive under conditions of pressure overload, a common

clinical scenario. One potential mechanism for this dis-

ease-promoting behavior is that autophagy may facilitate

hypertrophic growth and allow the sustenance of greater

degrees of hypertrophy; this, in turn, promotes the emer-

gence of systolic dysfunction and heart failure. In this

context, afterload-induced cardiomyocyte autophagy is a

potential target for therapeutic intervention. To test this,

we recently employed small molecule inhibitors of

histone deacetylases (HDACs). We, and others, have

shown previously that HDAC inhibitors are efficacious

in the suppression of pathological cardiac remodeling

[28]. Given this, we hypothesized that HDAC-dependent

pathological autophagy may contribute to the disease

process and that suppression of pathological autophagy

by HDAC inhibition (HDACi) may underlie their

beneficial effects. Consistently with this model, we found

that HDACi was, in fact, capable of profoundly suppres-

sing load-induced cardiomyocyte autophagy, and this

autophagic response is required for much of the patho-

logical growth response [27��].

Even as overexuberant cardiomyocyte autophagy can be

maladaptive, complete abrogation of the catabolic response

is similarly maladaptive. For example, inactivation of the
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gene coding for ATG5 in the heart triggers rapid-onset

heart failure [29��]. More recently, in a model of systemic

inactivation of the gene coding for the lysosomal enzyme

cysteine endopeptidase cathepsin L (Ctsl), emergence of

large dysmorphic vesicles in the cytoplasm and dilated

cardiomyopathy were documented [30]. Nutrient depri-

vation and mTOR suppression with rapamycin, two

robust triggers of autophagy, were each incapable of

activating autophagic flux. From this, the authors con-

cluded that impaired degradation of autolysosomal con-

tent in the absence of Ctsl was a major mechanism

underlying the cardiomyopathic phenotype [30]. These

observations, then, are consistent with the notion that

basal levels of cardiomyocyte autophagy are critically

required for cellular proteostasis. Given this, we favor a

model in which titration of cardiomyocyte autophagy

within an optimal, adaptive zone is an approach of thera-

peutic interest [2] (Fig. 2). Importantly, HDACi sup-

presses, but does not eliminate, the autophagy response

to stress and hence is an attractive strategy worthy of

additional investigation [27��].

Autophagy in ischemic heart disease

Multiple studies have demonstrated that cardiomyocyte

autophagy is activated during ischemia, and suppression

of that autophagic response can be detrimental [31,32].

Underlying mechanisms may relate to autophagy-depen-

dent replenishment of cellular metabolic needs in the

setting of their inadequacy and elimination of dysfunc-

tional mitochondria, which would otherwise release reac-

tive oxygen species (ROS) and pro-apoptotic mediators

[32]. However, most patients with ischemic heart disease

recanalize their coronary vessels spontaneously, or this is

effected mechanically by percutaneous intervention. As

such, in most clinical scenarios, myocardial ischemia is

coupled with restoration of blood flow and myriad associ-

ated events, including robust release of ROS [33]. Here,

reperfusion following coronary artery occlusion triggers
Figure 2 Adaptive and maladaptive autophagy in the heart

Norma
heart

Proteost

Danon disease, ATG 5-null and
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Under normal physiological conditions, basal autophagy is critically required fo
intracellular elements to maintain cardiac homeostasis. Excessive, or abrogate
stress, overactivated autophagy fuels hypertrophic growth, leading to aut
abrogation of cellular autophagy eliminates critical housekeeping functions
robust increases in autophagy [33]. Multiple studies,

conducted in tissue culture [34], rodents [26], and large

animal models [15], have revealed marked activation of

autophagic flux during the reperfusion phase. Oxidative

stress is thought to be a major underlying mechanism

[33]. However, whether this upregulated autophagy is

adaptive or maladaptive is the subject of debate. In

heterozygous Beclin 1-null mice, I/R-induced autophagy

was significantly attenuated compared with wild-type

controls. Following experimental I/R, these mice devel-

oped less infarction and less apoptosis [31]. Similar find-

ings have been reported in cultured neonatal cardiomyo-

cytes exposed to simulated I/R, in which chemical

suppression of autophagy with 3-MA improved cell via-

bility [35]. In contrast, it has been reported that simulated

I/R-induced autophagy in cultured cell lines can be

protective [34,36]. Recently, it was reported that sulfa-

phenazole, an inhibitor of cytochrome P450-2C9, acti-

vates autophagy and is protective against I/R injury, both

in tissue culture and in isolated perfused rat hearts [37].

At present, the extent to which these discrepancies

derive from differing cell types, model systems, or exper-

imental paradigms is unclear.

Anticancer drug-induced cardiac autophagy

Doxorubicin-induced cardiomyopathy has been studied

extensively [16�,38]. However, precise understanding of

underlying mechanisms is lacking. Cardiomyocyte death

by apoptosis and necrosis is thought to be the primary

mechanism of doxorubicin-induced cardiomyopathy.

However, in a rat model of doxorubicin-induced cardio-

myopathy, pharmacological suppression of autophagy

was associated with significant rescue of cardiac function

[16�]. Furthermore, doxorubicin-induced autophagic

vacuoles were blocked by 3-MA in failing rat heart

[16�]. A recent report showed that the transcription factor

GATA4 inhibits doxorubicin-induced autophagy and

cardiomyocyte death through upregulating the survival
l 
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Heart failure
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heart

I/R
Cardiotoxic

drugs 

r protein quality control, removal of damaged organelles, and recycling of
d, autophagy is maladaptive. In the setting(s) of maladaptive, pathological
ophagic cell death and ultimately heart failure. Conversely, complete
of autophagy, triggering rapid and catastrophic cardiac dysfunction.



Therapeutic titration of cardiomyocyte autophagy Xie et al. 221
factor Bcl2 and downregulating autophagy-related genes

[38]. Current management of doxorubicin-induced car-

diotoxicity includes regular monitoring of cardiac func-

tion and limiting the maximum dose of exposure. One

day, inhibition of maladaptive autophagy may be a thera-

peutic option for this common condition.
Therapeutic targets of maladaptive
autophagy
Clearly, cardiomyocyte autophagy participates, in one

form or another, in virtually all forms of heart disease.

As such, titration of autophagic flux is an objective of

potential therapeutic interest: suppression of excessive

autophagy without eliminating basal fluxes required for

cell survival may be the key.

Currently, there are no active clinical trials testing anti-

autophagic interventions in cardiac disease. However,

several possible targets in the autophagy pathways have

been identified. In the UM-X7.1 hamster model of

dilated cardiomyopathy, heart failure develops progress-

ively, culminating in 50% mortality by 30 weeks of age

[39]. Treatment with granulocyte colony-stimulating fac-

tor (G-CSF) significantly improves both survival and

cardiac function, and suppression of autophagy, as

opposed to suppression of apoptosis or promotion of

regeneration, has been implicated [39]. In a porcine

I/R model, the antibiotic chloramphenicol succinate is
Figure 3 Therapeutic targets for maladaptive autophagy
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Therapies targeting cardiomyocyte autophagy can be envisioned at
three levels: removal of inciting stressors, regulation of autophagy-
initiating signals, and direct targeting of the autophagic molecular
machinery. Potential molecular targets are indicated. AMPK, AMP-acti-
vated protein kinase; ATG, autophagy-related genes; I/R, ischemia–
reperfusion; GCSF, granulocyte colony-stimulating factor; mTOR, mam-
malian target of rapamycin; PI3K, phosphatidylinositide-3-kinase.
protective in association with increased levels of the

autophagy proteins Beclin 1 and LC3 [40]. AMPK

regulates autophagy and has been implicated in pro-cell

survival effects of autophagy in cardiac ischemia [31]. In a

canine model of pacing-induced heart failure, AMPK

activation by metformin, a commonly used antidiabetic

medication, prevents apoptosis and promotes relative

functional preservation of cardiac performance [41].

Although autophagy was not examined in this model,

it is tempting to speculate that its effects on autophagy

contribute to the salubrious actions. Finally, urocortin, an

endogenous cardiac peptide, blocked autophagy induced

by I/R, and downregulated Beclin 1 was implicated [35].

Owing to the dearth of small-molecule agents regulating

autophagy, new therapeutic options must be developed,

such as siRNA targeting autophagy genes. However,

given the critical housekeeping function of basal auto-

phagy in all cell types, additional molecular detail regard-

ing the autophagic circuitry – and how it interfaces with

metabolic, anabolic, and cell death-inducing events – is

required (Fig. 3).
Conclusion
Whereas involvement of autophagosomal or lysosomal

mechanisms in heart disease is long-established, their

context-dependent role in disease promotion and disease

antagonism is just now emerging. A great deal of data from

preclinical models demonstrate that excessive autophagy

elicited by pathological stimuli, such as pressure overload

and ischemia–reperfusion, is maladaptive and promotes

cell death. Conversely, basal levels of constitutive auto-

phagy are essential to maintain proteostasis, and elimin-

ation of this means of protein quality control triggers rapid

cell death. Our vision for the future includes elucidation of

the autophagic circuitry in the heart such that precise

tuning of its actions – promoting proteostasis and inhibiting

cell death – can be accomplished for therapeutic gain.
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