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Volatile species with thiol functions are important contributors to the flavour of a wide variety of wine
types. However, in spite of their importance, their fate during winemaking has not been fully elucidated.
In this work, the iron-catalysed reaction between 3-sulfanyl-1-hexanol, catechol-containing phenolics,
and sulfurous acid, under in vitro aerobic conditions was evaluated by means of electrospray ionisation
mass spectrometry (ESI-MS). The results indicate that a direct addition reaction between the thiol and

some of the phenolics tested, and between sulfite and some of the phenolics may occur, thus contributing
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evidence of a possible route of thiol losses in wines.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Ripe grape berries contain numerous non-volatile conjugated
compounds, some of which are released during winemaking, giv-
ing rise to volatiles that contribute part of the characteristic aro-
mas of wines. Among these, thiol-containing compounds have
been given a good deal of attention (Pardon et al., 2008), mainly
because they contribute very powerful odorants that are present
in a wide variety of wines (Bouchilloux, Darriet, Henry, Lavigne-
Cruege, & Dubourdieu, 1998; Ferreira, Ortin, Escudero, Lopez, & Ca-
cho, 2002; Fretz, Luisier, Tominaga, & Amado, 2005; Tominaga,
Darriet, & Dubourdieu, 1996). 3-Sulfanyl-1-hexanol (3SH), also
known as 3-mercaptohexan-1-ol, is one of the most significant
thiol-containing compounds in wine, given its tropical fruit nuan-
ces and occurrence in several white, rose, and red wine products
(Blanchard, Darriet, & Dubourdieu, 2004; Brajkovich et al., 2005).

Production of 3SH results from odourless (S)-cysteine and (S)-
glutathionyl conjugates present in grape juices that are cleaved
of their amino acid moiety during fermentation, probably by the
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action of B-lyase type enzymes of the fermenting yeast, by break-
ing the S—C bonds of the conjugate (Murat et al., 2001; Schneider,
Charrier, Razungles, & Baumes, 2006; Tominaga, Baltenweck-
Guyot, Des Gachons, & Dubourdieu, 2000; Tominaga, des Gachons,
& Dubourdieu, 1998). (E)-2-hexenal (Schneider et al., 2006) and
(S)-3-(hexan-1-ol)-glutathione (Des Gachons, Tominaga, &
Dubourdieu, 2002; Roland, Schneider, Le Guerneve, Razungles, &
Cavelier, 2010) have also been proposed as potential precursors
of 3SH in wines. Given the relatively low yields of 3SH obtained
based on all these mechanisms, the likelihood of additional
unidentified precursor(s) have also been acknowledged (Subileau,
Schneider, Salmon, & Degryse, 2008). Moreover, grape variety
and winemaking conditions (i.e. the type of fermenting yeast or
the grape pressing cycles employed, among others) may influence
the concentration of volatile thiols obtained in the finished product
(Patel et al., 2010; Roland et al., 2011; Swiegers et al., 2007; Ugli-
ano et al.,, 2011).

Under an oxidative environment, both wine colour and aroma
changes are expected to take place during wine production and
ageing (Lambropoulos & Roussis, 2007; Laurie & Clark, 2010; Sin-
gleton, 1987). These changes are mainly due to the interaction of
oxygen and transition metals catalyst with oxidisable constituents,
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such as phenolic compounds and ascorbic acid. The oxidation of
phenolic compounds allows a cascade of reactions that encompass
the formation of reactive quinones (electrophiles) and hydrogen
peroxide, leading to further reactions of addition between qui-
nones and wine nucleophiles, and the oxidation of multiple wine
species by peroxide-generated hydroxyl radicals (Danilewicz,
2003; Laurie & Clark, 2010; Laurie & Waterhouse, 2006; Singleton,
1987; Waterhouse & Laurie, 2006). The bisulfite ion, the main ion-
ised species of sulfur dioxide present at wine pH, is responsible for
the protection against chemical oxidation, owing its ability to react
with peroxide and prevent the formation of hydroxyl radicals
(Boulton, Singleton, Bisson, & Kunkee, 1996; Danilewicz, 2003).

Regarding 3SH, the evidence suggests that its decrease during
winemaking and ageing could be due to its reactivity towards elec-
trophilic quinones, more than as a result of direct thiol oxidation
(Blanchard et al., 2004; Murat, Tominaga, Saucier, Glories, &
Dubourdieu, 2003; Nikolantonaki, Chichuc, Teissedre, & Darriet,
2010). Nevertheless, the oxidative degradation of thiols has also
been reported (Jocelyn, 1972; Sarrazin et al., 2010).

The aim of these trials is to present further evidence on the
reactivity of 3SH with catechol-containing phenolics under
in vitro aerobic conditions, and discuss the likelihood of the reac-
tions suggested happening in wine.

2. Materials and methods
2.1. General

All glass and plasticware was thoroughly washed and rinsed
with abundant water. Ultra-pure water was used to prepare all
solutions and dilutions. Ethanol (>99.9%), iron(III) chloride hexa-
hydrate (>99%), sulfurous acid (=6% SO,), hydrochloric acid
(1 M), and 3SH were purchased from Merck or Aldrich. 4-Methyl-
catechol ( =95%), (+)-catechin hydrate (>95%), and quercetin hy-
drate (>95%) were purchased from Sigma-Aldrich. All reagents
and chemicals described were wused without additional
purification.

2.2. Experimental set-up

12% (v/v) aqueous ethanol solutions containing 1 ug L~ of 3SH
alone, or in combination with 500 mg L~! of phenolics (either 4-
methylcatechol, catechin, or quercetin), adjusted to pH 3.5 using
hydrochloric acid, were the base solutions used to evaluate their
reactivity. Each of the above solutions was treated with the follow-
ing reagents, as indicated in Table 1: (a) Iron(Ill) chloride
(1 pg L"), (b) sulfurous acid (30 mg L"), or (c) a combination of
both. These amounts of reagents were chosen to avoid saturation
of the spectrometric system.

The level of dissolved oxygen (DO) reached during the prepara-
tion of the solutions was approximately 5.8 mg L~'. The equipment

Table 1
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Fig. 1. EPR spectra of the DMPO spin adducts formed in Fe* (1 pgL~')/SO,
(30mg L") solutions. DMPO/-OH spin adducts are denoted as (°) and DMPO/
MeCHOH spin adducts are denoted as (*).

used for measuring DO was a NomaSense oxygen analyser set
(NomaSense, Zebulon, NC). Further trials to evaluate pH changes
after sulfurous acid addition showed an acidity reduction to
approximately pH 3. The samples were stored at room temperature
(20 °C) in 1.5-mL vials and analysed by ESI-MS at 0, 5 min, 15 min,
30 min, 1 h, and 24 h after the addition of iron, sulfurous acid, or
their combination. In an attempt to obtain further evidence of
the oxidative conditions of the environment chosen, analyses of
free radicals by ESR spectrometry were performed as explained
below.

2.3. Free radical analyses

The formation of free radicals generated from the Fe(IIl)/SO,
combination (1 and 2 pg L~! of Fe(Ill) and 30 mg L' SO,) present
in the solutions used (12% ethanol adjusted to pH 3.5 with HCI),
was evaluated by means of an ESR spectrometer using 5,5-dimeth-
ylpyrroline-N-oxide (DMPO 1.5 M) as spin trapping agent, as de-
scribed elsewhere (Elias, Andersen, Skibsted, & Waterhouse,
2009). ESR spectra were recorded in the X band (9.7 GHz) using a
rectangular-cavity spectrometer, Bruker ECS 106. The field modu-
lation frequency was 50 kHz. The hyperfine splitting constants
were estimated to be accurate within 0.05G. The experiment
was conducted at room temperature.

2.4. High-resolution mass spectrometry

ESI-MS and ESI-MS/MS analyses were conducted in a high-res-
olution hybrid quadrupole (Q) and orthogonal time-of-flight (TOF)

Experimental conditions employed to evaluate the reactivity of 3-sulfanyl-1-hexanol in solutions containing phenolics, iron or/and sulfite.

Treatments 3-Sulfanyl-1-hexanol (ug L") Phenolics® (mg L™1) Iron(IlI) chloride (g L™") Sulfurous acid (mg L")
a 1 - - -

b 1 - 1 -

c 1 - - 30

d 1 - 1 30

e 1 500 - -

f 1 500 1 -

g 1 500 - 30

h 1 500 1 30

2 Phenolics being either 4-methylcatechol, catechin, or quercetin.
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Fig. 2. ESI-MS spectrum of: (a) 3-sulfanyl-1-hexanol (3SH), (b) 3SH and sulfite, (c) 3SH and iron, and (d) 3SH, sulfite and iron in vitro, under aerobic conditions.

mass spectrometer (Waters/Micromass Q-TOF micro, Manchester,
UK) with a constant nebuliser temperature of 100 °C. The experi-
ments were carried out in positive ion mode, and the cone and
extractor potentials were set at 10 and 3.0V, respectively, with a
scan range of m/z 100-600. MS/MS experiments were carried out
by mass selection of a specific ion in Q1, which was then submitted
to collision-induced dissociation (CID) with helium in the collision
chamber. The product ion MS analysis was accomplished with the
high-resolution orthogonal TOF analyser. The samples were di-
rectly infused into the ESI source, via a syringe pump, at flow rates
of 5 uL min~!, via the instrument’s injection valve.

3. Results and discussion
3.1. Free radical formation evidence

The formation of free radicals was tested using ESR, by means of
the addition of DMPO into the Fe(Ill)/SO, solutions employed
(solutions containing either iron or sulfite alone did not form any
radicals). The results obtained suggest that 1-hydroxyethyl and
hydroxyl radicals were being formed (Fig. 1). The coupling con-
stants due to the DMPO/-‘OH adduct obtained were: ay=15.6 G,
ag=15.5G, whilst those due to DMPO/MeCH'OH were:
an=15.6 G and ay=229G, values that are similar to those

obtained elsewhere (Elias et al., 2009) (an=14.7 G, ay=14.0G
and ay = 15.7 G, ay = 22.4 G, respectively). At wine pH (i.e. roughly
between pH 3 and 4), sulfite will be mainly in the form of the bisul-
fite ion (HSOj3, pK; = 1.81), thus allowing the reduction of Fe(Ill) to
Fe(Il) and the radical-mediated formation of the adducts shown.
Similarly, phenolic compounds have metal reducing properties
that allow them to lower their oxidation states, for instance, from
Cu(Il) to Cu(I) or Fe(Ill) to Fe(Il), thus increasing their ability to
catalyse oxidation reactions (Waterhouse & Laurie, 2006).

3.2. Reactivity of 3-sulfanyl-1-hexanol

As expected, the ESI-MS spectrum of 3SH (m/z 135) remained
stable at all reaction times analysed (0-24 h) if no other reagents
were added to the solution (Fig. 2a). When 3SH and sulfite
(Fig. 2b), 3SH and iron (Fig. 2c), or all three reactants were mixed
(Fig. 2d), the formation of adducts at m/z of 167 (possibly an adduct
with S=0 (OH)) and/or m/z of 149 (possibly a cyclic adduct with
S=0) were observed (Fig. 3).

When a simple phenol (i.e. 4-methylcatechol) was included as
part of the reaction vials, the results were the following. When
3SH and 4-methylcatechol (Fig. 4a); 3SH, 4-methylcatechol, and
sulfite (Fig. 4b); and 3SH, 4-methylcatechol, and iron (Fig. 4c)
were mixed, the m/z signals corresponding to 3SH (m/z 135), 4-
methylcatechol (m/z 125) and its quinone (m/z 123) were found.
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Fig. 3. Possible adducts formed due to the reaction of 3-sulfanyl-1-hexanol (3SH) and sulfite, 3SH and iron, and the combination of all three reagents.
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Fig. 4. ESI-MS spectrum of: (a) 3-sulfanyl-1-hexanol (3SH) and 4-methylcatechol; (b) 3SH, 4-methylcatechol and sulfite; and (c) 3SH, 4-methylcatechol and iron in vitro,

under aerobic conditions.

Interestingly, a signal at m/z of 257 (probably an adduct between
the catechol and 3SH) was observed when 3SH, the catechol and
iron were mixed.

Finally, if all reagents were part of the solution (i.e. 3SH, 4-
methylcatechol, iron and sulfite), the resulting ESI-MS data suggest
the formation of addition products with m/z of 205 (probably a
reaction product between the catechol and sulfite), and m/z of
256 and 257 (an intermediate and product of the reaction between
the catechol and thiol, respectively) (Fig. 5). Spectra collected at
different time points after the addition of the reagents indicate that
the formation of these products was fast and that they remain rel-
atively stable during the time of the experiment (Fig. 5).

Additionally, the results shown above suggest that although
competitive reactions occur between 4-methylcatechol and 3SH,
and between 4-methylcatechol and sulfite, the adduct resulting
from the reaction between the phenolic and 3SH does happen
(Fig. 6). In wine systems, especially reds, where longer reaction
times are typical for the maturation/ageing of the product, one

could expect that the catechol-containing phenolics-3SH adducts
might still be forming, in spite of the smaller concentration of
3SH compared with sulfites.

When quercetin was used instead of 4-methylcatechol, its com-
bination with Fe(Ill) and sulfite produced an adduct between the
flavonol and sulfite, but none was observed between the flavonol
and 3SH, suggesting that longer reaction times could have been re-
quired (Fig. 7). Also, the same species previously observed at m/z
149 with cyclic S=0 and m/z 167 with S=O(OH) were detected
(Fig. 7). Conversely, when the former phenolic compounds were re-
placed by catechin, the addition reactions with sulfite or 3SH were
not observed. This could be explained by the differences in struc-
tural stability between the three phenols. For instance, in a study
performed in slightly acidic hydroalcoholic media, catechin was
shown to be more stable than quercetin (Makris, Turan, Gulsen,
& Kefalas, 2007).

Well known examples of the reactivity between quinones and
thiols are that of caftaric acid-quinone and glutathione in the
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Fig. 5. ESI-MS spectrum of the reaction among 3-sulfanyl-1-hexanol, 4-methylcatechol, sulfite and iron in vitro, under aerobic conditions, at different time points (5, 15, 30,

60 min and 24 h).
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Fig. 6. Possible mechanism for the reaction of 3-sulfanyl-1-hexanol and sulfite in
catechol-containing solutions, under aerobic conditions.

formation of “grape reaction product” (Singleton, 1987; Singleton,
Salgues, Zaya, & Trousdale, 1985), and 3SH and quinones (Blan-
chard et al., 2004). In the latter, the authors showed that after
the oxidation of catechin, the content of 3-sulfanyl-1-hexanol de-
creases, suggesting the reaction of 3SH with quinones. Moreover,

sensory studies conducted in vitro have also suggested an interac-
tion between 3SH and polyphenols, based on the suppression of
the thiol aroma in the presence of phenolics, such as quercetin
and catechin, with the flavonol having a more powerful suppres-
sion effect (Lund, Nicolau, Gardner, & Kilmartin, 2009).

SO, has been shown to protect volatile compounds, such as es-
ters and alcohols, in bottled wine (Garde-Cerdan & Ancin-Azpilicu-
eta, 2007). Regarding bottle closure systems, there is evidence
suggesting that the loss of 3SH during wine ageing could be due
to adsorption by the closure or wine oxidation; the latter being
triggered by high oxygen exposure during bottling or due to the
use of a high oxygen transfer rate closure during ageing (Brajko-
vich et al., 2005; Lopes et al., 2009). Quantification of 3SH and ad-
ducts yields based on the proposed mechanism should be
addressed in future experiments.

During wine ageing, the long periods of time required to
achieve this process may contribute to the progress/likelihood of
these reactions, in spite of the reduced molar fraction of thiols to
phenolics in wine. However, considering the limitations on the de-
sign of these in vitro lab-scale trials, these results might be used
mainly as an indication of possible reactions that will require con-
firmation using real wine systems. Moreover, searching for some of
the adducts observed here in different wines is a goal of future
investigations.
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Fig. 7. ESI-MS spectrum of the reaction between 3-sulfanyl-1-hexanol (3SH), quercetin, iron and sulfite in vitro, under aerobic conditions.

4. Conclusions

Further evidence on the reactivity of sulphur-containing com-
pounds, based on ESR spectroscopy and ESI-MS monitoring of the
reaction of 3SH with oxidising agents was shown. Evidence of a di-
rect addition reaction between 3SH and 4-methylcatechol, com-
peting with that of sulfite with phenolics (4-methylcatechol and
quercetin) was shown. This information reinforces the key role that
iron and sulfite may play in oxidation reactions in matrices such as
wine. These observations suggest the need to explore the presence
of these adducts in wine, as well as performing supplementary
experiments to elucidate the mechanism by which some phenolics
would be less reactive or unreactive.
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