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Abstract

Fabrication of mineralized structures is a widespread phenomenon among living organisms (e.g., shells, carapaces, spines,

spicules, bones and teeth). These ceramic biocomposites consist of layered assemblies of minute amounts of macromolecules

with well-ordered calcium-rich inorganic phases, resulting in the formation of products of unique morphologies and properties.

The characterization of the mechanisms controlling the processes of biomineralization is crucial for the development of novel

materials with desirable shape and texture properties. In previous reports on eggshells and mollusk and crustacean shells, we

have studied the cell–shell interactions, the crystalline microstructure of the inorganic component, the localization of particular

macromolecules and the capacity of various biomolecules to affect crystallization. Based on these comparative data, we propose

that biomineralization can be described as a four-step process: (1) substrate fabrication, (2) crystal nucleation on the substrate or

framework, (3) crystal growth in a gel and (4) mineralization arrest. These four steps open a new field for designing synthetic

processes in order to fabricate new bioinspired composites with desirable properties.
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1. Introduction teeth) [5–7]. This process leads to the formation of
Modern technologies require innovative approaches

for controlled fabrication of crystalline materials with

complex forms and novel properties [1–4]. Biomi-

neralization is a widespread phenomenon among

living systems (e.g., egg and mollusk shells, crus-

tacean carapaces, echinoderm exoskeleton and

spines, sponge spicules, pearls, corals, bones and
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precisely controlled inorganic–organic composites,

in which the minute organic component exerts

substantial control on the mineralization process,

which results in the formation of particles of uni-

form size, novel crystal morphology, specific crys-

tallographic orientation and interesting properties

[5–12]. For example, seashells exhibit mechanical

properties that are 1000 times greater than those of

the inorganic component alone [13,14]. Therefore,

biomimetic design for the production of advanced

composites with optimized novel properties has been

explored and has led to recent advances in materials

design inspired by biological processes [15–21]. A

wide variety of strategies have been explored to control
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nucleation and growth of crystals based on molecular

recognition at intrafaces or interfaces [4,22,23]. These

methods include template-directed crystallization un-

der compressed Langmuir monolayers, on self-assem-

bled monolayers or nanocomposite films, on

functionalized polymer surfaces, in surfactant aggre-

gates and in cross-linked gels [22–31]. Understanding

the mechanisms that regulate the fabrication of such

highly ordered biocomposite ceramics may provide

procedures for the synthesis of novel high-performance

composite materials.
2. Eggshell formation and structure

Eggshells are natural composite bioceramics con-

taining organic (5%) and inorganic (calcite) compo-

nents (95%) and composed of a two-layered

membrane and calcified extracellular matrix, which

are sequentially assembled during the 22 h that the

egg moves along the oviduct [1,32]. The structure and
Fig. 1. Structural localization of macromolecules involved in eggshell form

(top to bottom): Dermatan sulfate positive immunofluorescence in the

mammillae. Type X collagen positive immunofluorescence in the shell m
composition of the eggshell is shown in Fig. 1. The

first layer to be formed in the eggshell comprises the

shell membrane, a net of fibres composed by a core of

type X collagen surrounded by a fuzzy material

referred to as a mantle [33]. Although the shell

membrane never mineralizes, due to an inhibitory

effect of type X collagen, it acts as a substrate for

the deposition of the mammillary knobs, which are the

nucleation sites for calcite crystals [34]. These knobs

are randomly deposited on the outer side of the shell

membrane in the form of discrete organic aggrega-

tions (20–40 Am in diameter) containing mammillan,

which is a proteoglycan containing oversulfated ker-

atan sulfate [35–37]. Columns of calcite grow on the

top of these mammillary knobs, and their crystal

orientation and morphology are affected by ovogly-

can, a unique dermatan sulfate proteoglycan [36,37].

The dermatan sulfate glycosaminoglycan chains of

ovoglycan are polyanionic and acidic and have a high

calcium affinity. When sulfation of these macromole-

cules is experimentally affected, the eggshell crystal-
ation. Left: Scanning electron micrograph of eggshell (170� ). Right

shell matrix. Keratan sulfate positive immunofluorescence in the

embranes (400� ).
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line calcite columns show severe structural alterations

[37]. On the other hand, the sulfate content of these

macromolecules affects the calcite crystal morphology

[38]. These types of sulfated macromolecules have

also been found in eggshells other than chicken [39].
Fig. 2. (A) Schematic drawing of a bivalve mollusk shell. I: insoluble prot

layer. I: periostracum, AP: acidic proteins between prismatic calcite crystals

(D) Organic sheets and protein envelopes after nacre layer decalcification.

proteins extracted from the prismatic layer. (F) Aragonite crystal obtained i
Particular proteins secreted before oviposition are

involved in the process of arresting eggshell formation

[11,40]. Therefore, eggshell biomineralization is af-

fected by particular macromolecules, which are pro-

duced by specialized cells in a spatiotemporally
ein layer or periostracum, P: prismatic layer, N: nacre. (B) Prismatic

. (C) Nacre layer showing brick wall of plate-like aragonite crystals.

(E) Calcite primatic crystal obtained in vitro influenced by soluble

n vitro influenced by soluble proteins extracted from the nacre layer.
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dependent assembly line sequence as the egg passes

along the oviduct [40,41].
3. Seashells formation and structure

Seashells are microlaminate composite bioceramics

of mineral and biopolymers, which show exceptional

regularity and a strength far exceeding that of the

mineral itself. As in eggshells, the calcium carbonate

phase of the seashell highly contributes to its mass

(98%), while it is the integral organic matrix moiety
Fig. 3. (A) Polished transversal section of barnacle shell showing the layere

electron microscopy of partially decalcified shell showing calcite crystals b

to them (*). (C) Transmission electron microscopy of a decalcified shel

between them (*). (D) Immunogold positive reaction with antichondroitin

reaction with antidermatan sulfate antibody on the granular material. (F) Im

associated to chitin sheets.
(2% of the shell mass) that determines the precise

structural formation, organization and properties of

the mineralized composite [13,14,42].

Mollusk shells are mainly composed of layers of

prismatic calcite crystals, brick-wall aragonite crystals

or both types of construction (Fig. 2) [5–7]. The

control of this polymorphism is exerted by a specific

association of particular macromolecules [9,10,43].

Crystal nucleation occurs on an organic sheet (h-
chitin or other organic matter of unknown composi-

tion) coated with hydrophilic, aspartate-rich macro-

molecules, while growth occurs within an organic
d structure, dark lamellae correspond to chitin (400� ). (B) Scanning

etween chitin sheets (arrow) and a granular organic material attached

l showing laminated sheets of chitin (arrow) and granular material

4 sulfate antibody on the granular material. (E) Immunogold positive

munogold positive reaction with antikeratan sulfate antibody closely
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envelope consisting of a silk fibroin-like protein gel

containing acidic proteins [10,44,45]. Mineralization

arrest is affected by the secretion of hydrophobic

macromolecules such as those forming the periostra-

cum or the scaffolding of the nacre layers. Therefore,

crystal growth is modulated by specific proteins, while

the final arrangement of crystals is determined by

crystallographic constraints and space limitations [46].

Barnacle shell is also composed by a layered

structure of calcite crystals (Fig. 3) [47]. The crystal-

line layer is sandwiched between two sheets of chitin,

which are coated with a polyanionic sulfated proteo-

glycan (keratan sulfate), probably acting as the nucle-

ation site, while crystal growth occurs in a dermatan

and chondroitin 4 sulfate polyanionic gel [48]. Min-

eralization arrest is affected by the deposition of a new

chitin sheet.
Fig. 4. A four-step model of shell mineralization. Crystal nucleation

occurs on an organic sheet (S1) coated with polyanionic nucleation

sites (N). Crystal growth (Ca) occurs within a polyanionic gel (G).

Mineralization arrest is associated with the deposition of another

organic sheet or specific macromolecules (S2).
4. A model of shell mineralization

A commonly used strategy in shell biomineraliza-

tion is the elaboration of a well-organized extracellu-

lar organic matrix, which regulates where, when and

in what form mineralization will occur [1]. Three

general biological processing principles have been

identified, which govern the composition, architecture

and methods of assembly of bioceramics and which

have implications for material scientists and engineers

[1]: (1) Biomineralization occurs within specific sub-

unit compartments or microenvironments, which

implies stimulation of crystal production at certain

functional sites and inhibition or prevention of the

process at all other sites. (2) A specific mineral is

produced with a defined crystal size, shape and

orientation. (3) Formation of macroscopic shape is

accomplished by packing many incremental units

together, which results in unique composites with

layered microarchitectures that impart exceptional

material properties. In some natural systems, remod-

eling of the original mineral structure occurs.

The geometric shape (habit) of a crystal is deter-

mined by the external expression of a selected set of

symmetry-related faces [4]. Although the unit cell

symmetry governs the spatial relation between the

faces, the final form of a crystal is determined by the

relative rates of growth along different crystallograph-

ic directions. Faces perpendicular to the fast directions
of growth have smaller surface areas, and slow-

growing faces therefore dominate the morphology.

Thus, the preferential adsorption of organic molecules

to specific faces can specify a face-selective nucle-

ation, change the crystal surface energies and the

process of growth and finally modify the crystal habit

[4,15,25].

From the comparative studies of the structure and

formation of shells, it is possible to propose a four-

step mechanism of biomineralization consisting of a

precise spatiotemporal arrangement of sequentially

deposited macromolecules (Fig. 4). The first step is

the fabrication of an inert laminar substrate or frame-

work, which compartmentalizes a microenvironment

where mineralization will take place. This scaffolding

consists of a nonmineralized, well-ordered hydropho-

bic organic material and usually is composed of h-
chitin, type X collagen or other not well-characterized

biopolymers. The second step is the fabrication of

particular polyanionic macromolecules, which are

deposited on the previously formed inert scaffolding

and where nucleation of the calcium crystals takes

place. These macromolecules are aspartate- or gluta-

mate-rich proteins or keratan sulfate-rich proteogly-

cans. The third step is the fabrication of a gel structure

consisting of silk fibroin-like proteins or proteogly-

cans and containing acidic proteins or dermatan sul-

fate. This gel not only controls polymorphism but also

the diffusion-controlled growth, face-growing rates

and habit of the crystal formed. The fourth step is

the arrest of crystal formation and is related to the
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fabrication of a new inert scaffolding or the deposition

of particular hydrophobic inhibitory proteins (e.g., the

eggshell cuticle).
5. Conclusions

Substantial progress has been made in using basic

principles of biomineralization to accomplish con-

trolled processing of engineering materials. Inorganic

and organic substrates have been chemically modified

to have charged surface groups, which successfully

induce growth of specific ceramic films. Despite the

successes, no processing system has yet been devised

that approaches the exquisite molecular control evi-

dent in nature. Mimicking biological processes is not

only a matter of fabricating films or soluble macro-

molecules with specific affinities or molecular recog-

nition in the form of charge, stereochemical and

structural matching but equally important is the spa-

tiotemporal sequence, concentration and ionic

strength, in which such molecules must be present

during the assembly line process of crystal formation.

The process of biological remodeling is still a princi-

ple that remains to be developed into a practical

engineering process. Contrary to materials science,

biomineralization has evolved over eons. As such,

there is still much to learn from the assembly of

biocomposite ceramics.
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