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Abstract Efforts have been made to develop a chemoprevention
that selectively triggers apoptosis in malignant cancer cells.
Here, we demonstrated that a mutated Ha-Ras activity is re-
quired in Anisomycin-induced apoptosis in transformed keratino-
cytes. Anisomycin stimulates JNK activity and apoptosis in
oncogenic Ha-Ras positive cells, but not in normal keratinocytes.
This effect was demonstrated in stably transfected cells with
dominant negative Ha-Ras, that protected transformed cells,
and oncogenic Ha-Ras that sensitized non-transformed cells to
Anisomycin-induced apoptosis. Lastly, the treatment of cells
with inhibitors of the JNK displayed resistance to Anisomycin in-
duced apoptosis. These data suggests that the oncogenic Ha-Ras
is important for Anisomycin-induced JNK activation and apop-
tosis in transformed keratinocytes.
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1. Introduction

Ras genes have been shown to be a major participant in the

development and progression of a series of human tumors [1].

It has been shown recently that oncogenic Ras has a key role in

tumor maintenance and resistance to apoptosis [2]. The influ-

ence of ras oncogene or wild type Ras expression on sensitiza-

tion to agent inducing apoptosis has been poorly studied and

has led to conflicting results. Ras expression was shown to

cause increased sensitivity to apoptosis induction by TNF-a
[3], and over expression of normal ras genes act as pro-

apoptotic proteins [4]. On the other hand, ras expression

inhibits drug- and UV-induced apoptosis [5], and is function-

ally involved in FGF-dependent suppression of apoptosis [6].

The mitogen-activated protein kinase (MAPK) family of pro-

teins belongs to distinct and evolutionarily conserved signal

transduction pathways that are activated by extracellular stim-

uli. In particular, c-Jun N-terminal kinase (JNK) and p38

pathways are activated by stress agents and correlate with

induction of apoptosis by these agents [7–9]. Anisomycin

(Ani) has been shown to activate efficiently a cellular stress re-

sponse involving the activation of JNKs [10]. Furthermore, it

was demonstrated that this stress response originates from
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an interaction of Ani with ribosomal 28S RNA and that trans-

lationally active ribosome are involved [11]. Using normal and

transformed mouse keratinocytes as model system, we have

investigated the role of oncogenic Ha-Ras on Ani-induced

apoptosis. Our observations demonstrate that Ani induces

apoptosis preferentially in oncogenic Ha-Ras transformed

cells, while cells expressing normal Ha-Ras were unaffected.

2. Materials and methods

2.1. Cells lines culture, and treatment conditions
The origin of the cell lines used in this study has been described else-

where [12]. Cells were cultured in Ham�s F-12 medium supplemented
with aminoacids and vitamins (Gibco Ltd., Paisley, Scotland), 10% fe-
tal bovine serum (FBS) and 80 lg/ml gentamicine. Cultures were main-
tained on plastic at 37 �C in 5% CO2 humidified atmosphere.
For Ani treatments (Calbiochem, San Diego, CA) cells were plated

on six wells plates at a density of 3.5 · 10 cells, and DMSO dissolved
Ani was added at indicated concentration and times, the control cells
were treated with the similar volume of vehicle DMSO. Curcumin
(Sigma, St. Louis, MO) and SP600125 a JNK inhibitor (Calbiochem)
were added 1 h before Ani treatment.

2.2. Internucleosomal DNA fragmentation assay and DNA cell cycle

analysis
DNA was extracted from cells as described previously by Song et al.

[13]. Fragmented DNA samples were separated by electrophoresis on
1.5 agarose gel and visualized with ethidium bromide.

2.3. DNA cell cycle analysis
Cells were plated at 5 · 105/plate in 60 mm dishes and treated for

indicated times and harvested with Trypsin/EDTA, and fixed in 70%
ethanol. Cells were washed two times with ice-cold PBS, and resus-
pended in 25 lg propidium iodide/ml and 50 lg RNase A/ml in PBS.
Samples were incubated at 37 �C for 1 h. and DNA profiles were ana-
lyzed by FACS using a FACScan cytometer (Becton Dickinson).

2.4. Transfected cells
MCA3D transfected with active form of Ha-Ras (Q61L) or the

empty vector, and PDV cells transfected with dominant negative Ha-
Ras gene (Ras N17) or empty vector were previously described [14].

2.5. Activation of JNK and Ras expression
A cell monolayers were lysed in 300 ll of lysis buffer (100 mM so-

dium phosphate, pH 7.2, 1% NP-40, 150 mM NaCl, 5 mM EDTA,
10 mM b-glycerophosphate, 1 mM Na3VO4, 5 mM NaF, 10 lg/ml leu-
peptin, 1 lg/ml pepstatin, and 1 mM PMSF). Samples were separated
on a reducing 10% SDS–PAGE, and blotted onto PDV membrane
(Immobilon P, millipore, Bedford, MA). Activation of JNK was as-
sayed by immune-detection with antibody (Santa Cruz, CA) that rec-
ognized the activated (phosphorylated) form of JNK. Duplicated
filters were probed with antibody (Santa Cruz) that recognized both
phosphorylated and unphosphorylated forms of JNK to verify equal
loading. To determinate de expression level of Ha-Ras in PDV cells
transfected with Dominant negative Ha-Ras, parental and transfected
cells were seeded in 60 mm diameter plates (2 · 106 cells) and subject as
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Fig. 1. Anisomicin-induced internucleosomal DNA fragmentation in a Ha-Ras mutated PDV cells but not in normal Ha-Ras MCA3D cells. MCA-
3D and PDV cells (5 · 105) were seeded in six plate wells and treated with Anisomicin at 37 �C. (A) Cells were treated with increased amounts of
Anisomicin for 16 h and assayed for internucleosomal DNA fragmentation. (B) Cells were treated with Anisomicin (0.5 lg/ml) for 8 h and subject to
DNA cell cycle analysis and % of apoptosis was observed as population cells containing a hypodiploid DNA contents in area into doted box included
in figures. (C) MCA3D cells were subject to long time of treatment with Anisomicin (1 lg/ml) and assayed as (A). Figures represent at least three
independent experiments.
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above. Samples were separated in 12.5% SDS–PAGE and blotted with
anti-Ha-Ras antibody (Santa Cruz), and reblotted against b-tubulin
(Sigma) to normalized Ha-Ras expression.
Fig. 2. Anisomicin stimuli increases JNK-mediated phosphorylation
in PDV cells but not in MCA3D cells. (A) MCA3D and PDV cells
were seeded at 2.5 · 105 cells/well in six wells plates. Cells were treated
with 0.5 lg/ml Anisomicin from 15 to 90 min, and phospho-JNK and
total JNK were determined by Western blot analysis. (B) Cells were
pretreated with curcumin (Cur, 10 lM) or JNK inhibitor SP 600125
(SP, 10 lM) for 1 h, after this 0.5 lg/ml of Anisomicin was added for
additional 16 h, and analyzed by internucleosomal DNA fragmenta-
tion. (C) Cells were treated with inhibitors as above, except Anisomicin
treatment was for 8 h and subject to DNA Cell cycle analysis and
expressed as Table 1. (D) Cells were pretreated 1 h with Cur for 1 h,
and 0.5 lg/ml of Anisomicin was added for additional 1 h. JNK
phosphorylation was determined by Western blot. Results are repre-
senting three independent experiments.
3. Results

3.1. Ani treatment induces apoptosis in Ha-Ras transformed cell

lines but not in immortalized MCA3D cell line

We selected for this study two epidermal cell lines: MCA3D

a normal immortalized keratinocytes with normal Ha-Ras;

and PDV cells a transformed keratinocytes with two normal

allele of normal Ha-Ras and one allele of oncogenic Ha-

Ras, for review see [15]. We compared the relative ability of

Ani to induce apoptosis in both cells lines. The results show

(Fig. 1A) that Ani treatment caused an internucleosomal

chromatin cleavage in PDV cells in a dose dependent form,

but this effect was not observed in MCA3D. Quantification

of apoptosis by propidium iodide staining and FACs analysis

(Fig. 1B) showed that 8 h of treatment with Ani induces DNA

fragmentation observed by population cells containing a

hypodiploid DNA contents. In contrast, no increase in

DNA fragmentation was observed in MCA3D cells. To deter-

mine the MCA3D resistance to Ani induced apoptosis, we

treated the cells at different long periods of time with 1 lg/
ml (Fig. 1C). MCA3D displayed a resistance to apoptosis in-

duced by Ani, and a slight DNA fragmentation was observed

over 48 h of treatment.

3.2. Role of JNK on Ani-induced apoptosis

Ani has been shown to strongly activate a cellular stress

response involving the activation of SAPK/JNK [10], and

we studied the possibility that this MAP kinase plays a role

in the apoptosis sensibility of cells. We compared the relative

ability of Ani to activate JNK (Fig. 2A) in MCA3D and

PDV cells. When 0.5 lg/ml of Ani was added to PDV cell

culture, JNK activation was observed at 15 min of treatment

and maintained in the following periods of time, as deter-

mined by extent phosphorylation of this MAP kinase. When

MCA3D was treated in the same way as PDV then no acti-

vation of JNK was observed upon treatment with Ani,

although unphosphorylate form of JNK was present. To

asses whether JNK mediated Ani-induced apoptosis, we used

curcumin and SP600125, both inhibitors of JNK pathway

[16,17]. The results (Fig. 2B and C) demonstrated that curcu-

min and SP600125 protects against Ani-induced apoptosis in

Ha-Ras oncogenic positive cells. Pretreatment of the cells

with curcumin or SP600125 suppressed strongly the DNA

fragmentation and population cells containing a hypodiploid

DNA induced by Ani. We therefore, tested whether curcu-

min inhibits Ani-mediated phosphorylation of JNK by Wes-

tern blot analyses. As shown in Fig. 3D, pretreatment with

curcumin inhibited Ani-induced JNK-activation in PDV

and cells.

3.3. A dominant negative Ras mutant gene protected PDV cells

from Ani-induced apoptosis

Oncogenic Ha-Ras has been shown to be related to cellular

malignance, and to play an important role in tumoral progres-

sion [1]. We therefore investigated the possibility that Ha-Ras

activation could explain the sensibility of tumorigenic cells to

Ani induced-apoptosis. We treated with Ani the PDV cell
clone transfected with a vector containing a dominant negative

RasN17 mutant gene, named RN7, and observed that a

RasN17 transfection conferred resistance to apoptosis that

shown as non DNA fragmentation or hypoploid DNA con-

tents (Fig. 3A and B). Clone RN7 expressed a high level of

Ha-Ras (endogenous and dominant negative Ha-Ras transfec-

ted gene) compared with control cells transfected with empty

vector (Fig. 3C).



Fig. 3. A Ha-Ras inhibition block Anisomicin-induced apoptosis. Cells were seeded at 2.5 · 105 cells/well. (A) Control cells or a RN clone stably
transfected with dominant negative Ha-Ras mutant (N17) were treated with Anisomicin (0.5 lg/ml) for 16 h to internucleosomal DNA fragmentation
assay. (B) PDV RN clone was treated wit Anisomicin (0.5 lg/ml) for eight hours and DNA cell cycle analysis was performed. (C) Western blot for
Ha-Ras expression in control cells and RN clone. Results are representing three independent experiments.
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3.4. Active mutant of Ha-Ras confers sensitivity to Ani induced

apoptosis and JNK activation in MCA 3D cells

When we transfectedMCA3Dwith an active form of Ha-Ras

(3D-R) a strong morphological changes were observed, trans-

fected cells lost the epithelial phenotype and acquired more

fibroblastic characteristics. When treated 3D-R with Ani cells

displayed typically morphological changes a hallmarks of

apoptosis (Fig. 4A), showing a DNA laddering, and enhanced

the hypodiploid DNA contents compared with a MCA3D

transfected with a empty vector, interestingly MCA3D trans-

fected with active Ha-Ras showing more elevated basal level

of apoptosis than cells transfected with empty vector (Fig. 4

B and C). The treatment of 3D-R with Ani by 30 min induced

a significant activation of JNK while displaying an important

basal activation levels than 3D cells transfected with empty vec-

tor that did not responding to drug treatment (Fig. 4D).
4. Discussion

Apoptosis is mainly the most potent defense against cancer

development, and efforts have been made to develop a chemo-

prevention and therapeutics strategies that selectively trigger

apoptosis in malignant cancer cells. Mutated ras genes are

found in about 30% of all human cancers [1], and allow the pos-

sibility to differentially sensitized tumoral cells to drug-induced

apoptosis.

Paradoxically, Ha-Ras can either inhibit or promote apopto-

sis, with the outcome probably dependent upon the cell type

and the presence of other pro-apoptotic or anti-apoptotic sig-

nals [18]. While the mechanisms by which Ha-Ras provides

protection against apoptosis are being elucidated, and

although several reporters had shown that Ha-Ras sensizate

cells to apoptotic stimulus [3,19–22], less is understood about

how Ha-Ras can sensitize cells to different apoptotic stimuli.

Our results indicate that oncogenic Ha-Ras transformed

PDV keratinocytes cells are highly sensitive to Ani-induced
apoptosis. These transformed cells produce squamous carci-

noma tumors upon injection in skin of nude mice, and acquire

more malignant phenotype in Ha-Ras dependent fashion to

TGF-b1 treatment [14,23]. In contrast, Ani-treatment had no

effect in immortalized and non-tumorigenic MCA3D keratino-

cytes that have a normal Ha-Ras [15]. Sustained Ha-Ras activ-

ity is necessary for induction of apoptosis by Ani, as

demonstrated by the protection against apoptosis performed

by inhibition of Ha-Ras activity by dominant negative

N17-Ras (Fig. 3A and B). Furthermore, Ha-Ras activity is

also sufficient for induction of apoptosis by Ani, as shown

by the sensitivity conferred by transfection of activated

Ha-Ras (Q61L) into non-transformed cells (Fig. 4A–C).

JNK is a critical signaling component in the regulation

apoptosis [24], and activation of JNK by Ani that bind to or

alter the structure of 28S ribosomal RNA was proposed as

ribotoxic stress response in eukaryotic cells [11], and this ribo-

toxic stress could sensitize tumors cells to chemotherapy [25].

We found that Ani activated JNK in oncogenic Ha-Ras trans-

formed PDV cells, and normal immortalized MCA3D kerati-

nocytes cells were very little stimulated (Fig. 2A). The JNK

activation was necessary for the induction of apoptosis by

Ani in PDV cells, observed by using both JNK inhibitors cur-

cumin and SP600125 (Fig. 3B and C). The mechanism by

which Ha-Ras could sensitize cells to Ani-induced JNK activa-

tion remains not elucidate, as does the reason for which acti-

vated JNK is involved in triggering apoptotic mechanism.

Recent studies showed that JNK translocates to mitochon-

dria after genotoxic stress and inhibits the anti-apoptotic func-

tion of proteins belonging to Bcl2 family members [26], thereby

allowing the release of mitochondrial apoptogenic proteins to

cytosol as well cyto-c and Smac/Diablo [27], and subsequent

activation of caspases to promote apoptosis [28].

In resume, our data supports the conclusion that activation

of JNK is a major component of the mechanism of sensitiza-

tion by oncogenic Ha-Ras of keratinocytes transformed cells

to Ani-induced apoptosis. However, further analysis is neces-



Fig. 4. Oncogenic Ha-Ras confer sensibility to Anisomicin-induced apoptosis to resistant normal MCA3D cells. MCA3D cells stably transfected
with empty vector (3D-EV) or Q61L Ha-Ras mutant (3D-R) were seeded at 2.5 · 105 cells/well. (A) Morphological changes of cells after 16 h of
Anisomicin (0.5 lg/ml) treatment (magnification 40·). (B) Internucleosomal DNA fragmentation assay after 16 h with 0.5 lg/ml of Anisomicin.
(C) DNA cell cycle analysis after six hours of 0.5 lg/ml of Anisomicin treatment. (D) Western blot for JNK phosphorylation after 1 h of Anisomicin
treatment (0.5 lg/ml). Figures are representing at least two independent experiments.
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sary to understand the aspects associated with Ha-Ras sensi-

tizes cells to translation inhibition are important, and their

identification will be critical for designing strategies for the

treatment of tumoral disease.
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