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TGF-B; and Smad4 overexpression induce a less invasive phenotype
in highly invasive spindle carcinoma cells
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Abstract We have examined the effect of transforming growth
factor B; (TGF-B,) and overexpression of the Smad4 gene on the
phenotype of Car C, a ras mutated highly malignant spindle
carcinoma cell line. TGF-B;-treated Car C cells overexpressing
Smad4 spread with a flattened morphology with membrane
ruffles abundant in vinculin and show a reduction in their
invasive abilities. TGF-B; treatment and overexpression of
Smad4 also enhanced the production of PAI-1 measured by the
activation of the p3TP-lux reporter gene containing a PAI-1-
related promoter. This activation was abolished with a
dominant-negative Smad4 construct. These results lead us to
conclude that both TGF-B; and Smad4 overexpression reduce
the invasive potential of Car C cells, probably via the Smad
pathway. © 2002 Published by Elsevier Science B.V. on behalf
of the Federation of European Biochemical Societies.
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1. Introduction

Transforming growth factors B (TGF-B) are a family of
growth factors which express a wide range of biological activ-
ities including effects on cell proliferation, extracellular matrix
deposition, fibrosis, angiogenesis, morphogenesis, and im-
mune regulation [1,2]. Epithelial cells are particularly sensitive
to TGF-B-induced growth arrest while most cells of mesen-
chymal origin show little or no growth inhibition [1]. During
epithelial carcinogenesis, TGF-; acts as a tumor suppressor
at early stages of tumorigenesis by inhibiting cell proliferation
and inducing terminal differentiation [3-5]. However, growth
arrest is lost at later stages of carcinogenesis [6,7]. Thus, car-
cinoma cells respond to TGF-B; by eliciting an epithelial-
mesenchymal transition (EMT) associated with the develop-
ment of highly invasive and metastatic spindle cell carcinoma
[8]. This role of TGF-B; in promoting malignancy has been
demonstrated in the model of mouse skin carcinogenesis [9—
11], as well as in human carcinoma cell lines [12-14]. Our
previous work has demonstrated that in transformed kerati-
nocytes TGF-B-dependent EMT proceeds through the acti-
vation of the Ras-Erk pathway or the blockage of Smad4 and
includes the enhancement of urokinase-type plasminogen ac-
tivator (uPA) production and invasiveness [15,16].

Smad4 is a candidate tumor suppressor gene whose protein
product acts as a cofactor that binds TGF-B; receptor-acti-
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vated Smad2 and Smad3 and generates transcriptional com-
plexes [17]. Inactivating mutations in Smad4 are the most
important of the known TGF-B; post-receptor defects in co-
lon and pancreatic cancers [18]. Also, it has been shown that
re-expression of Smad4 induces suppression of tumorigenicity
[19].

Some authors have proposed a mechanism for the mainte-
nance of the spindle phenotype through the autocrine action
of TGF-B; overproduced by the tumor cells and activated by
surrounding stromal cells [12]. However, very few reports
have analyzed the effects of TGF-B; on spindle tumor cells
[20,21].

In this report, we have examined the action of TGF-B; and
the overexpression of Smad4 (Smad4wt cells) on the pheno-
type and invasiveness of spindle Car C cells. The Car C cell
line was derived from a spindle cell carcinoma [22] and con-
tains the typical genetic alterations found in vivo in spindle
tumors, such as a mutated H-Ras gene (and loss of the nor-
mal allele), inactivated p53, and deletion of the INK4 locus
that encodes the cell cycle regulators pl5 and pl6 [23,24].
Furthermore, Car C cells are insensitive to the TGF-f; anti-
proliferative response [6]. We found that, in contrast to trans-
formed keratinocytes, Car C cells respond to TGF-B; and
overexpression of Smad4 by an enhancement of cell spreading
and reduction of invasiveness. The mechanism appears to be
due, in part, to the capacity of TGF-B; to stimulate the ex-
pression of PAI-1, a specific inhibitor of uPA, and to promote
focal contacts that inhibit cellular motility. These results sug-
gest that phenotypic changes induced by TGF-B; in a spindle
carcinoma cell line are mediated mainly by the Smad path-
way.

2. Materials and methods

2.1. Cell culture, treatment conditions and transfection assays

The origin of the Car C cell line has been described [6]. Cells were
grown in Ham’s F-12 medium supplemented with amino acids and
vitamins (Gibco, Paisley, UK), 10% fetal bovine serum and antibiot-
ics. For TGF-B; treatments, human recombinant TGF-B; (Calbio-
chem-Novabiochem, La Jolla, CA, USA) was added to the cell cul-
tures at a final concentration of 10 ng/ml.

2.2. Generation of stably transfected cells

Car C cells (2X10°) were stably co-transfected with an empty
pcDNA3 containing a Neomicin-resistant gene (In Vitrogene, San
Diego, CA, USA) and a pCMVS5 expression vector containing a
Flag tag full-length Smad4 cDNA in a 1:10 ratio, using Lipofectamine
Plus (Gibco) according to the manufacturer’s protocols. After 2 weeks
of selection with 400 pg/ml G-418 two overexpressing clones were
obtained. Car C cells transfected with only pcDNA3 empty vector
(EV) were used as a transfection control. Clones transfected with
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Smad4 gene were analyzed for expression of Smad4 and Flag tag with
antibodies purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA) and M2 (Sigma, St. Louis, MO, USA) respectively.

2.3. Transient transfection and reporter gene measurements

For the invasive assay, Car C cells (10°) were transiently transfected
using the above-mentioned methods with 5 pg of C-terminal truncated
dominant-negative Smad4 (1-514) pCMV construct or 5 pg of
pcDNA3 EV along with 1 pg of SV40 lacZ vector as an internal
control. To measure the PAI-1 promoter activity Car C cells
(3% 10%) were transiently co-transfected as above with 0.5 pg of full-
length pCMV or 1-514 truncated Smad4, pCDNA3 as a control vec-
tor and 0.5 pg of 3TPLux-specific luciferase construct along with
200 ng of SV40 lacZ vector as an internal control for transfection
efficiency. After 18 h, the medium was changed and TGF-f1 (10 ng/
ml) was added for an additional 24 h, cells were lysed and luciferase
activity was determined [25].

2.4. Invasion and uPA activity assays
The capacity of the cells to migrate through Matrigel-coated filters
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was measured by using Transwell chambers (Costar, Cambridge, MA,
USA) as described [25]. uPA secreted activity, radial caseinolytic and
zymographic assays were also measured as described [25].

2.5. Immunofluorescence analysis

Indirect immunofluorescence staining of vinculin and vimentin was
performed in cells grown on glass coverslips and fixed in methanol
using mouse monoclonal antibodies (Sigma) at a 1:100 dilution and a
FITC-labeled secondary antibody. Double immunofluorescence stain-
ing of uPA and PAI-1 was performed in non-permeabilized cells fixed
in paraformaldehyde (4% in phosphate-buffered saline (PBS)) using
an anti-uPA mouse monoclonal antibody [25] at 10 pug/ml and a goat
anti-PAI-1 polyclonal antibody (Santa Cruz Biotechnology) at 1:100
dilution. Secondary antibodies were FITC-labeled anti-goat 1gG and
TRITC anti-mouse IgG (Jackson ImmunoResearch, West Grove, PA,
USA).

2.6. Western blot analysis
For p-ERK-1,2 (Santa Cruz Biotechnology) and p-Smad2 (Upstate,
Lake Placid, NY, USA) determinations, cells were lysed in PBS buffer
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Fig. 1. Morphology, vinculin organization and vimentin network expression of TGF-B;-treated and Smad4wt Car C cells. A: Upper row: Mi-
crographs of methanol-fixed and crystal violet-stained Car C cells in culture. Left column: control cells. Center column: cells treated for 72 h
with TGF-B;. Right column: wtSmad4 gene Car C transfected cells. Immunofluorescence detection of vinculin (middle row) and vimentin (low-
er row) in the three experimental conditions described. B: Expression of Smad4 (upper row) and Flag tag Smad4 (lower row) was determined
by immunoblot analysis in: control Car C cells (C), cells transfected with EV, and two positive clones transfected with wtSmad4 gene (2 and

4). Arrows show molecular weight standards.
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containing 150 mM NaCl, 1% Triton X-100, pH 7.4 and 10 pg/ml
leupeptin, 1| mM phenylmethylsulfonyl fluoride, 2 mM N-ethylmalei-
mide, | mM orthovanadate and 1 mM NaF. For Smad4 analysis, cells
were lysed in the same buffer mentioned above and in the absence of
phosphatase inhibitors. Proteins (50 pg/lane) were resolved by 10%
SDS-PAGE and transferred to Immobilon P membranes (Millipore,
Bedford, MA, USA). PAI-1 was detected in the conditioned media of
both intact and Smad4wt transfected cells untreated or treated for 48 h
with TGF-B; in serum-free medium. Five-fold concentrated condi-
tioned media were processed by Western blot analysis as above using
a goat anti PAI-1 polyclonal antibody (Santa Cruz Biotechnology) at
1:500 dilution and developed using the enhanced chemoluminescent
system (ECL, Amersham, Arlington Heights, FL, USA).

3. Results

3.1. TGF-B; and overexpression of wtSmad4 stimulate
spreading and induce morphological changes in Car C cells
Car C are spindle-shaped fibroblastic cells that grow in
culture forming a densely packed tubular-like network
(Fig. 1). Treatment with TGF-B; or transfection with the
wild type Smad4 gene disrupted these structures and cells
dissociated from each other adopting a flat and well spread
morphology. Immunofluorescence analysis also revealed a
poor organization of vinculin-containing adhesion plaques in
untreated Car C cells while cells treated with TGF-B; or over-
expressing the Smad4 gene (Smad4wt clone 2) displayed a well
developed adhesion plaque system suggesting that both treat-
ments promoted increased adhesion to the substratum and
reinforced focal adhesion (Fig. 1A, middle row). Morpholog-
ical changes induced by TGF-B; or overexpression of the
Smad4 gene also included significant alterations of the micro-
filament cytoskeleton, generating a branched network as is
shown in cells assayed by immunofluorescence to vimentin
(Fig. 1A, lower row). The expression level of Smad4 protein
and Flag tag Smad4 protein of control cells and cells trans-
fected with EV and two different clones of Smad4wt+ cells is
also shown (Fig. 1B).

3.2. TGF-B; and overexpression of Smad4 gene decrease
invasiveness of Car C cells and stimulate PAI-1 expression
and secretion

We examined the effect of TGF-B; on the invasiveness of
Car C cells, which normally show extremely high invasive
abilities through the reconstituted basement membrane Ma-
trigel. We studied the effects of TGF-B; and the stable trans-
fection with wild type (Smad4wt) and a transiently transfected
dominant-negative (Smad4dn) version of Smad4 on the inva-
siveness of Car C spindle cells. As shown in Fig. 2A, TGF-B,
significantly reduced invasiveness of the intact spindle Car C
cells (C). A similar inhibition was observed in cells treated
with 2 pg/ml PAI-1 (P). Cells transfected with EV behave as
the controls parental cells. However, wtSmad4 cells show a
strong inhibition of the invasiveness in the presence or the
absence of TGF-B;. In contrast, transfection with the domi-
nant-negative version of Smad4 does not affect the invasive-
ness of Car C cells and block the TGF-fB;-induced inhibition
of invasiveness.

To investigate if the diminished invasive capacity of TGF-
Bi-treated and Smad4wt Car C was due to an alteration in the
balance of the cellular proteolytic potential, we analyzed the
expression of PAI-1, a specific inhibitor of uPA, in both ex-
perimental conditions. Fig. 2B shows that Smad4wt-2 cells
express a higher amount of PAI-1 than control cells and
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Fig. 2. Effect of TGF-B; and modification of Smad4 expression on
Car C cell invasiveness, PAI-1 expression and PAI-1 promoter activ-
ity. A: Invasion analysis was assayed in the presence or absence of
TGF-B,. Parental Car C cells (C), PAI-l-treated cells (P), cells
transfected with: EV, the full-length wtSmad4 gene (wt), the domi-
nant-negative mutant Smad4 gene (dn). Results are expressed as a
percentage of migrating cells in 24 h. B: Western blot analysis of
PAI-1 production in the presence or absence of TGF-B; of control
(C) and wtSmad4 (wt) cells. C: TGF-B;-dependent transcriptional
activation of the p3TP-lux (PAI-1) reporter measured as luciferase
activity in Car C cells transfected with: EV, full-length wtSmad4
gene (wt) and dominant-negative mutant Smad4 gene (dn).

that TGF-B; was able to increase the production of PAI-1
in both control and Smad4wt cells. In a separate experiment,
we transiently co-transfected Car C cells with Smad4,
Smad4dn and pcDNA3 EV with the p3TP-lux reporter gene
which contains a TGF-;-responsive PAI-1-related promoter.
As Fig. 2C shows, TGF-f; stimulates PAI-1 promoter activ-
ities in cells harboring EV. Interestingly, Smad4dn Car C cells
express a lower promoter activity (compared with control
cells) and PAI-1 is not stimulated by the addition of TGF-
B1. The overexpression of Smad4wt in Car C cells results in a
cellular phenotype with a potent promoter activity that retains
the potential to be stimulated by TGF-f;.
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Fig. 3. TGF-B, effect of uPA production and immunofluorescence analysis of uPA and PAI-1 in Car C cells. A: uPA was analyzed in 24 h se-
rum-free conditioned media of parental and Smad4wt transfected cells by zymographic assay (Z) and by radial diffusion assay (RD) according
to Section 2. B: Parental cells transfected with EV and Smad4wt transfected cells (wt) were analyzed for uPA (upper row) and PAI-1 (lower

row) expression by immunofluorescence in non-permeabilized cells.

3.3. TGF-B; treatment and Smad4wt transfection do not affect
uPA production. PAI-1 and uPA co-localize at the cell
surface

Measurements were also made to investigate if TGF-B,
treatment and stable Smad4wt gene transfection affect the
production of uPA. As Fig. 3A shows, neither TGF-B, treat-
ment nor Smad4wt transfection affects the net secreted activ-
ity of uPA analyzed by zymography (Z). However, when en-
zymatic activity was assayed by radial diffusion (RD),
inhibition of uPA activity was observed in parental control
cells (C) treated with TGF-B;. Smad4wt cells secreted a very
low uPA activity in the presence or absence of TGF-f;.
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Fig. 4. Effect of TGF-B; on the activation of Smad2 and ERK-1,2
signaling routes. Parental (C) and Smad4wt transfected cells (wt)
were stimulated with TGF-B; and phospho-Smad2 and phospho-
ERK-1,2 were detected by Western blot analysis according to Sec-
tion 2.

The interaction of uPA and PAI-1 was also analyzed by
double immunofluorescence experiments in non-permeabilized
cells. Fig. 3B shows that uPA was concentrated at plasma
membrane extensions in untreated, TGF-f;-treated and
Smad4wt cells while no sign of PAI-1 was observed in un-
treated cells. Upon stimulation with TGF-B; PAI-1 was pro-
duced and co-localized with uPA in the same regions of the
plasma membrane.

3.4. TGF-B; treatment and Smad4wt transfection activate
Smad signaling in Car C cells

To assess if the phenotypic changes provoked by TGF-f;
treatment or by transfection with the Smad4 gene in Car C
cells occur by activation of the Smad pathway, we measured
the kinetics of phosphorylation of Smad? in intact Car C cells
and in Smad4wt-2 cells. As Fig. 4 shows, TGF-B; was able to
activate Smad2 in parental as well as in Smad4wt-2 Car C
cells with different kinetics. We also studied the possible acti-
vation by TGF- of the Ras-MAPK signaling route in both
cell types. As Fig. 4 shows, the same experimental conditions
that induce the activation of Smad2 do not modify ERK-1,2
activity.

4. Discussion

In the present study, we show that TGF-f; treatment and
overexpression of Smad4 gene in Car C cells induce a set of
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phenotypic changes that generate a less invasive phenotype.
These results clearly show that these changes are not depen-
dent on the activation of the Ras-ERK pathway but rather on
Smad activation.

Smad4 plays a central role in TGF-B; signaling by serving
as a common partner of other Smad proteins and accumulat-
ing in the nucleus in a highly regulated process [26]. The
potential tumor suppressive activity of Smad4 has also been
evaluated in Smad4-defective colon cancer cells by stable re-
expression of Smad4, a phenomenon associated with reduced
uPA expression [27]. In mouse cells, the Smad4 gene is located
on chromosome 18q [28]. Car C cells possess an intact pair of
chromosome 18 and express a non-mutated version of Smad4
(Quintanilla et al., unpublished results). In our data, clones
transfected with Smad4wt express three to four times the
amount of Smad4 protein of control cells and also express
the Flag-tagged protein confirming the exogenous origin of
the gene (Fig. 1B).

TGF-B,-treated and Smad4wt Car C cells show changes in
morphology illustrated in the expression of a network of vi-
mentin and an increased peripheral localization of vinculin, an
essential component of focal contact. This cellular shape is
suggestive of a high cellular contact with the extracellular
matrix and a less motile phenotype as has been previously
demonstrated [29]. The vimentin network collaborates to
maintain cellular mechanical stability, as has been demon-
strated in other cellular phenotypes [30].

TGF-B;-treated and Smad4wt Car C cells display a dimin-
ished invasive capacity as measured in a Matrigel assay, prob-
ably associated with the changes in cellular shape and the
induction of the expression and secretion of PAI-1. The in-
vasive capacity of spindle Car C was unaffected by transient
transfection with Smad4dn or by treatment of these trans-
formed cells with TGF-B; (see Fig. 2A). In contrast, cells
transfected by the wild type version of Smad4 show inhibition
of invasiveness even in the absence of added factor. These
results permit us to suggest that the overexpression of
Smad4 has as a consequence the recruitment of Smad2/3
and the onset of a cellular response similar to those of stimu-
lated parental TGF-B,-treated cells. The inhibition of the in-
vasive capacity by TGF-B,; treatment or Smad4wt transfection
in Car C cells can also be attributable to the stimulated ex-
pression of PAI-1. This hypothesis was confirmed in experi-
ments where invasion was inhibited directly by the addition of
PAI-1 (see Fig. 2A). Induction of PAI-1 appears to require
Smad signaling, since Smad4wt cells show similar PAI-1 se-
cretion to parental TGF-B;-treated cells (Fig. 2B) and the
transcriptional activation of the p3TP-lux reporter gene by
TGF-B; was blocked by a dominant-negative construct (Fig.
2C). That the augmented production of PAI-1 inhibits the
uPA-mediated proteolytic potential was suggested by the spe-
cific uPA-PAI-1 interaction observed on the surface of paren-
tal TGF-B;-treated and Smad4wt cells (Fig. 3B). Also, it is
important to note that TGF-B; induced the expression and
secretion of PAI-1 in Car C cells without affecting the net
uPA secreted activity. In a radial assay, where uPA and
PAI-1 activities co-exist, a diminished uPA activity was ob-
served in parental TGF-B;-treated cells. In the same assay,
Smad4wt showed a strong inhibition of uPA activity (Fig.
3A) probably attributable to the formation of a PAI-1-uPA
complex. Interestingly, the exogenous addition of PAI-1 exerts
similar effects to TGF-f; treatment or Smad4wt transfection
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on cell invasiveness but does not induce phenotypic changes
(data not shown).

Results in Fig. 4 permit us to confirm that in intact Car C
cells TGF-B,; stimulates the Smad2 phosphorylation in a time-
dependent manner while, in the same conditions, activation of
ERK-1,2 is not observed. These results are in agreement with
the assumption that Car C cells exhibit a Ras-ERK pathway
permanently activated by the expression of a mutated version
of H-Ras and the loss of the normal allele [23,24]. A similar
result was obtained when Smad4wt cells were used, although,
interestingly, in this case a basal activation of the pathway
was observed. This finding can be compared with results of
PAI-1 expression, where in the absence of added factor,
Smad4wt cells express a two-fold increased stimulation in
the TGF-B;-responsive PAI-1 promoter activity which is in-
creased further with the addition of the factor. It is important
to note that other authors have reported that components of
the JNK pathway can also regulate the TGF-B-dependent
PAI-1 promoter activity but this possibility was not tested
by us [31].

In conclusion, our results suggest that spindle Car C cells
respond to TGF-fB; stimulation oppositely than transformed
keratinocytes because the expression of a different signaling
behavior. In fact, while spindle Car C shows a very low re-
sponse through its permanently active Ras-Erk pathway,
transformed keratinocytes mount a robust EMT that depends
specifically on this signaling pathway [15]. Our results also
suggest that Car C cells conserve an intact Smad signaling
pathway and that the loss of the TGF-B; antiproliferative
response cannot be linked to inactivation of Smad signaling.
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