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Abstract

We show that in a liquid-crystal-light-valve with optical feedback the Fréedericksz transition displays a subcritical character.
Experimentally, we determine the extension of the bistable region and we study the propagation of fronts connecting the different
metastable states. Theoretically, we derive an amplitude equation, valid close to the Fréedericksz transition point, which accounts
for the subcritical character of the bifurcation. When, in the space of parameters, we move far from the Fréedericksz transition
point, we adopt a mean-field model which is able to capture the qualitative features of all the successive branches of bistability.
Close to the points of nascent bistability, by including diffraction effects we show the appearance of localized structures. Highly
symmetric configurations of localized structures may be observed in the experiment by imposing aN-order rotation angle in the
feedback loop. For increase of the input light intensity complex spatio-temporal dynamics arise, with either periodic or irregular
o local shift
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scillations in the position of the localized states. Rings dynamics is also observed, by the introduction of a small non
n the feedback loop.
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. Introduction

Nonequilibrium processes often lead in nature to the
ormation of spatially periodic and extended structures,
o-called patterns [1]. The birth of a pattern from a ho-
ogeneous state takes place through the spontaneous
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breaking of one or more of the symmetries chara
izing the system [2]. In some cases, it is possibl
localize a pattern in a particular region of the av
able space, so that we deal with localized instea
extended structures. From a theoretical point of v
localized structures in out of equilibrium systems
be seen as a sort of dissipative solitons [3]. Experim
tally, during the last years localized patterns or isol
states have been observed in many different fields
amples are domains in magnetic materials [4], ch



bubbles in liquid crystals [5], current filaments in gas
discharge experiments [6], spots in chemical reactions
[7], oscillations in granular media [8], localized fluid
states in surface waves [9] and in thermal convection
[10], solitary waves in nonlinear optics [11–18]. All
these localized states can be considered to belong to
the same general class of localized structures, that is,
they are patterns that extend only over a small por-
tion of a spatially extended system. The mechanisms
of localization of spatial structures rely on two main
ingredients: the bistability, either between two homo-
geneous states or between a homogeneous state and a
spatially periodic one, and the existence of an intrinsic
spatial length, that is necessary to stabilize a localized
state and which determines its typical size [19].

In optics, solitary waves have first been predicted
to appear in bistable ring cavities [11]. Then, localized
states have been largely studied not only for their fun-
damental properties but also in view of their potential
applications in photonics [20–23]. The liquid-crystal-
light-valve (LCLV) with optical feedback, as it was
originally designed by the Akhmanov group [24], has
been proved to be a suitable system for the observation
and the study of localized structures [12–15]. Recently,
we have proposed a Lifshitz normal form equation that
describes the appearance of localized structures in the
LCLV system [25]. Here, the bistability between ho-
mogenous states results from the subcritical character
of the Fŕeedericksz transition, when the local electric
field, which applies to the liquid crystals, depends on
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calized structures show permanent dynamics, such as
propagation and oscillations of their positions [28]. In-
deed, it is known that nonvariational effects are respon-
sible of the permanent dynamics observed in extended
patterns, such as the phase turbulence [29], the prop-
agation of Ising–Bloch walls, predicted in oscillatory
media [30] and observed in liquid crystal experiments
[31], and the rotation of spirals observed in excitable
media [35]. In the experiment, we observe a complex
spatio-temporal dynamics of localized structures.

In this article, we present the LCLV experiment and
the subcritical character of the Fréedericksz transition
in the presence of optical feedback. A brief introduction
to Fŕeedericksz transition is given in Section 2. Then,
we outline the main mechanisms for the stabilization of
the localized structures and we present their dynamical
behaviours. The experiment is described in Section 3.
In Section 4we present the subcritical Fréedericksz
transition and in Section 5 the propagation of fronts.
The theoretical model is presented in Section 6, where
we derive an amplitude equation which is valid close to
the Fŕeedericksz transition point. Sections 7 and 8 are
devoted to the experimental characterization of local-
ized structures and their dynamics. Finally, in Section 9
we present a theoretical approach, based on a mean-
field approximation, which is able to capture the essen-
tial features of the system dynamics for all the succes-
sive branches of bistability far beyond the Fréedericksz
transition point. Section 10 are the conclusions.
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he liquid crystal reorientation angle [26,27]. Then,
imultaneous presence of bistability and pattern fo
ng diffractive feedback assures the conditions for
ppearance of localized structures.

Close to the point of Fŕeedericksz transition, the su
ritical character of the bifurcation can be describe
n amplitude equation derived from the Frank free
rgy of the liquid crystal [26,27]. Far from Fréedericks

ransition, a mean-field model accounts for the app
nce of successive branches of bistability [25]. In
pace of parameters, the points of nascent bistabilit
dentified as the locations where the surface of sta
ry states becomes s-shaped. Then, the Lifshitz no

orm equation accounts for the appearance of ano
ranch of solutions, corresponding to a spatially p
dic state, giving rise to localized structures [25,28

As a consequence of the nonvariational charact
he LCLV system, it is generically expected that
. General features of the Fŕeedericksz
ransition

Liquid crystal materials are composed
nisotropic-shaped organic molecules. This
ults in the anisotropy of all their physical propert
ike the dielectric and the magnetic susceptib
32]. Most of the more popular liquid crystals a
omposed of molecules that are strongly elong
n one direction, so that they appear as a collec
f rod-like molecules. In the isotropic phase the a
f the molecules are randomly distributed wherea

he nematic phase, the configuration of lowest en
s reached when all the molecules are, on ave
ligned along a single direction, pointed out by
irector�n. This long-range orientational order is a d

inctive feature of nematic liquid crystals. The liqu



crystals we are going to consider in the following are
always in the nematic phase, the temperature for the
isotropic to nematic phase transition being∼35 degC
for our samples.

The nematic director, having the symmetry�n ↔
−�n, identifies a direction that can be experimentally
specified either by applying an external field, like an
electric or magnetic one, or by imposing some partic-
ular boundary conditions at the confining surfaces of
the sample, that are theanchoringconditions. When
two of these constraints are competing, the long-range
orientational order may be partially destroyed.

The Fŕeedericksz transition is the elastic distortion
of a nematic liquid crystal film under the action of a
magnetic or electric field [33]. We will consider here
the action of an electric field, but similar considerations
and results can be obtained by substituting the electric
field with a magnetic field and the dielectric tensor with
the magnetic susceptibility. For a sufficiently high mag-
nitude of the applied field, the initial alignment due to
the anchoring conditions changes and, in the bulk of
the sample, the system exhibits a reorientation of the
nematic director, the so-called Fréedericksz transition
[33,32]. The chosen geometry, that is, the orientation
of the anchoring direction with respect to the externally
applied field, determines the kind of elastic distortion
that appears in the medium at the onset of the transition.

The Fŕeedericksz transition is usually associated to
a supercritical bifurcation for the value of the reorien-
tation angle inside the liquid crystal volume. The pos-
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Fig. 1. Experimental setup: the LCLV is illuminated by a plane wave;
the wave, reflected by the mirror of the LCLV, is sent back to the
photoconductor through the optical fiber bundle.∆ is the angle of
rotation of the fiber with respect to the front side of the LCLV.�n
is the liquid crystal nematic director;Pin andPfb are the input and
feedback polarizers;L1 andL2 are two confocal 25 cm focal length
lenses andL is the free propagation length.

parent electrodes covering the two confining plates per-
mit the application of an electric field across the liquid
crystal layer. The photoconductor behaves like a vari-
able resistance, which decreases for increasing illumi-
nation. The feedback is obtained by sending back onto
the photoconductor the light which has passed through
the liquid-crystal layer and has been reflected by the
dielectric mirror. The light beam experiences a phase
shift which depends on the liquid crystal reorientation
and, on its turn, modulates the effective voltage that lo-
cally applies to the liquid crystal layer. Thus, a feedback
is established between the liquid crystal reorientation
and the local electric field.

The feedback loop is closed by an optical fiber
bundle and is designed in such a way that diffrac-
tion and polarization interference may be simultane-
ously present [12]. The free end of the fiber bundle is
mounted on a precision rotation stage, which allows to
fix a feedback rotation rotation angle∆with a precision
of ±0.01 deg.

Diffraction is due to the optical free propagation
lengthL. This last one can be varied fromL = 0 to
±20 cm and it is either positive or negative with respect
to the plane on which a 1:1 image of the front side of the
LCLV is formed (dashed line in Fig. 1). At the linear
stage for the pattern formation, a positive (negative)L
selects the first unstable branch of the marginal stability
ibility of modifying the Fŕeedericksz transition into
rst-order one was first considered in [34], where s
ral theoretical predictions were given on the ass
ted spatial effects. In the LCLV with optical feedba

hese spatial effects, like the propagation of fronts
ecting differently oriented states, have been dem
trated experimentally [26,27].

. Description of the experiment

The experiment, as shown in Fig. 1, consists
CLV with optical feedback. The LCLV is compos
f a nematic liquid crystal film sandwiched in betwe
glass window and a photoconductive plate over w
dielectric mirror is deposed. Coating of the bound
urfaces induces a planar anchoring of the liquid cry
lm (nematic director�n parallel to the walls). Tran



curve as for a defocusing (focusing) medium [36,37].
The corresponding unstable wave numbers are, respec-
tively

q1 =
√

3π

√
2

λ|L| , L > 0

and

q0 = π

√
2

λ|L| , L < 0.

The polarization interference is realized by fixing the
anglesψ1 andψ2 that the input and feedback polarizers
form with to the liquid crystal director (see the left bot-
tom of Fig. 1). In most of the experiments,ψ1 andψ2
are fixed to 45 deg and−45 deg, respectively. For this
condition, the system displays successive branches of
bistability, either between two homogeneous and dif-
ferently oriented states (L = 0), or between a homoge-
neous state and a periodic pattern (L 
= 0).

The total incident intensity isIin = 0.90 mW/cm2.
A 50% beam splitter is positioned before the LCLV, so
that the intensity of the feedback light beam is limited
to 25% of the total incoming intensity. This condition
ensures that the LCLV works only around the switch-
up point of his bistable response. The input beam has
a Gaussian profile with a transverse size of approx-
imately 2 cm, whereas a diaphragm before the fiber
b er of
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coming from noise sources or inhomogeneities of the
LCLV.

In both cases, either close toV0 = 18.5Vrmsor close
to the Fŕeedericksz transition point, the LCLV works
around a point of nascent bistability, where it may be
assimilated to a phase slice with a step-like response
[38].

4. Subcritical Fréedericksz transition

In general, the equation for the phase shift induced
by the liquid crystal reorientation,ϕ = ϕ(x, y, t), can
be written as [12]

∂ϕ

∂t
= −ϕ − ϕ0

τ
+D∇2

⊥ϕ + αIw(x, y, t), (1)

whereIw is the light intensity reaching the photocon-
ductor. The expression forIw is given by [12]

Iw = |ei(L/2k)∇2
⊥ (sinψ1 sinψ2

+ cosψ1 cosψ2e−iϕ)|2Iin, (2)

whereϕ = β cos2 θ is the overall phase shift experi-
enced by the light travelling forth and back through
the liquid crystal layer,θ is the liquid crystal reorien-
tation angle andβ = 2kd �n, wherek = 2π/λ is the
optical wave number (λ = 633 nm),d = 15�m is the
thickness of the liquid crystal layer and�n = 0.2 is
the difference between the extraordinary (‖ to �n) and
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undle selects a central active zone with a diamet
.2 cm.

The Fŕeedericksz transition point is attained
n applied voltageV0 of approximately 3Vrms with
frequency of 5 kHz [26]. By increasingV0, suc-

essive branches of bistability are observed. Mo
he experimental observations here reported were
ained either close to the Fréedericksz transition poin
0 � 3.2Vrms, or close to the bistable branch loca
roundV0 = 18.5Vrms. For this high value of the a
lied voltage, the reoriented liquid crystal sample
omes similar to an homeotropic one (nematic di
or �n perpendicular to the confining walls). Thus,
quilibrium state of the reoriented sample is cl

o saturation of the response, because the ne
irector is almost aligned with the applied elec
eld. In this almost saturated regime, the system
omes much less sensitive to external perturbat
rdinary (⊥ to �n) index of refraction of the liquid crys
al.

Whenψ1 = −ψ2 = 45 deg andL = 0, that is, in
he purely interferential case, Eq. (2) becomes

w = (1 + cosϕ)Iin,

hat gives multi-valued solutions forϕ when inserte
n Eq. (1). In this case, several branches of bistab
etween differently oriented states may be obser

n particular, we will focus here on the bistable
aviour shown by the system close to the Fréedericks

ransition point.
In the experiment, we setL = 0, thus eliminating

iffraction, and we adjust the fiber bundle in suc
ay that there is no rotation or translation in the fe
ack image. Then, in order to construct the experim

al bifurcation diagram, we measure the intensityIw



reaching the photoconductor. This is done by extract-
ing a small portion of the feedback light and by sending
it onto a photodiode. When the applied voltageV0 is be-
low the threshold for molecular reorientation,Iw has a
value fixed byβ. When reorientation occurs, we expect
this value to change according to expression given in
Eq. (2). Variations ofIw induce, on their turn, variations
of the effective voltage applied across the liquid crystal
film and hence a further reorientation. Once feedback is
established between the applied voltage and the liquid
crystal director, the Fréedericksz transition becomes
subcritical.

A typical bifurcation diagram, as shown in Fig. 2,
displays a large hysteresis region. In the bistable re-
gion, the nonoriented (θ = 0) and the oriented (θ 
= 0)
state coexist. Correspondingly, after the feedback po-
larizer, we observe a dark (Iw = 0) or a white state
(Iw 
= 0). Note thatIw is measured by a small area
photodiode, i.e., it is a local measurement taken at the
center of the feedback beam. By looking at the entire
image of the beam with a CCD camera, we see that the
transition point is characterized by a white spot devel-
oping over a dark background. The interface around the
white spot is a front, connecting the reoriented region
to the nonreoriented one. Three representative images
of the feedback field are displayed in Fig. 2, show-

Fig. 2. Iw as a function of the applied voltageV0: open circles are
dark states with writing light off; stars are white states with writing
light off; cross are white states with writing light on. The white state
shrinks to zero or expands to infinity depending on the initial location
of the perturbation. Beyond (and close to) the Maxwell point it exists
a critical droplet radius for which the front velocity is zero.

ing the direction of the front propagation in depen-
dence on the mutual stability of the white and the dark
states.

5. Front propagation

In a spatially extended system, a subcritical transi-
tion gives rise to a transient behaviour characterized by
front dynamics. At the onset of bistability, the system
displays moving interfaces, so-calledfronts, that con-
nect the two stable states. Once created, the front moves
into the most energetically favorable state with a well
defined velocity. In the case of one or two-dimensional
variational system and small interface curvature, the
front velocity is proportional to the energy difference
between the two states. By increasing the bifurcation
parameter, the metastable state becomes energetically
equivalent to the other state, thus the front stops prop-
agating. In this case, the system is said to be at the
Maxwell point,µM [39]. By further increase of the bi-
furcation parameter, the front velocity is reversed, that
is, the most energetically favoured state invades the less
favoured one.

When the state becomes unstable through a pitch-
fork bifurcation, there is also a front that con-
nects a stable state with an unstable one. This
type of front is called Fisher–Kolmogorov–Petrosvky–
Piskunov (FKPP) [40,41]. At variance with the normal
front, the velocity of the FKPP front is not determined
b cted
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ion,
w Ne
l per-
t e to
y the difference of energy between the two conne
tates. There is instead an infinite set of possible
ocities, each one determined by the initial conditi
42,2]. In the case of bounded perturbations of the
table state, the front propagate with the minimum
ocity [42].

In Fig. 2, the dashed line marks the Maxwell po
M. Below this point the white state is less stable t

he dark one and the white spot, once created b
riting light, contracts to zero. Above the Fréedericks

ransition point, FT, the white spot nucleates spo
eously and the front expands until the white state
rs all the background. In between, the front expa
r retracts depending on the size of the perturbati

In order to determine the size of the bistable reg
e inject an additional light spot (low power He–

aser) into the feedback loop. This acts as a small
urbation, triggering the transition from the dark stat



the white one. The white state persists when we block
the additional writing light, while it switches to the
dark state if we perturb the feedback. In Fig. 2, the ar-
rows delimit the region over which this writing-erasing
procedure is robust. The three crucial points, i.e., the
beginning of the bistability,B, the Maxwell point,µM,
and the Fŕeedericksz transition point, FT, are also iden-
tified by the divergence of the response times, as it was
shown in [26].

In order to measure the front velocity, we have per-
formed quasi-1D experiments, in such a way to mini-
mize the influence of the 2D curvature onto the front
velocity. A ring-shaped mask is introduced in the op-
tical setup, in contact to the entrance side of the fiber
bundle.

The ring shape of the mask constraints the system
to be quasi-1D and to satisfy periodic boundary con-
ditions [27]. The choice of the ring is for the sake of
simplicity, but any closed and smooth domain leads to
similar results for the front velocity. The inner diame-
terD of the ring was chosen in between 5 and 10 mm
whereas the ring thicknessl was between 0.5 and 1 mm,

Fig. 3. Snapshots of the front propagation, recorded at (a)V0 = 3.05Vrms, a l
point. The successive instant times (in seconds) are indicated in the w

so that the aspect ratioD/l is quite large and the system
can be considered as 1D. The large curvature of the ring
mask is considered not to affect the front propagation
that develops in the transverse direction. Moreover, the
ring thickness is considered large enough not to intro-
duce relevant boundary effects.

The velocity of the front propagating between the
two differently oriented states has been measured by
recording a movie of the front propagation along the
ring. Instantaneous snapshots, forV0 = 3.05Vrms, are
shown in Fig. 3. Above the Maxwell point,V0 is
switched on from zero and the front nucleates sponta-
neously over any inhomogeneities present in the LCLV.
To see the front propagation below the Maxwell point,
the initial condition forV0 is chosen in the region of
well developed reorientation and thenV0 is switched
to a lower value, below Maxwell point. In this case,
the front velocity is reversed and the white state con-
tracts to zero. Instantaneous snapshots recorded for
V0 = 2.84Vrms are shown in Fig. 3

Either below or above the Maxwell point, the front
velocity is measured by unfolding the rings over a line
bove the Maxwell point, and (b)V0 = 2.84Vrms, below the Maxwel
hite labels.



Fig. 4. Spatio-temporal plot showing the propagation of the front at
(a)V0 = 3.05Vrms, above the Maxwell point, and (b)V0 = 2.84Vrms,
below the Maxwell point. Dashed lines mark the slope of the regions
used to evaluate the front velocity.

and by constructing the corresponding spatio-temporal
diagrams, as shown in Fig. 4. The front velocity can
be evaluated by measuring the ratio between the hori-
zontal (space –x) and vertical (time –t) displacements.
Note that LCLV inhomogeneities introduce a pinning
of the front in particular spatial locations, so that the
front stops or largely slow down at these places. When
measuring the front velocity, we have averaged only
the slopes of the linear portions on the spatio-temporal
plots, such as the ones marked by the dashed lines in
Fig. 4. Pinning of the front over LCLV inhomogeneities
is also responsible for the stripe patterning which ap-
pears on the spatio-temporal plots.

The resulting front velocities are plotted in Fig. 5 as
a function of the applied voltageV0. On this figure, we
can identify the Maxwell point, where the front velocity
goes to zero, and the FT point, beyond which the fronts
become of a FKPP type. The regime of FKPP fronts
is characterized by a transient propagation with a quite
high velocity, which then relaxes to the minimal one. In
Fig. 5the transient and the steady-state velocities cor-

Fig. 5. (a) Front velocity as a function of the bifurcation parame-
ter V0. Solid lines are guides for the eyes. Dashed lines mark the
three critical points: B,µM, FT. (b) Spatio-temporal plot showing
the propagation of a FKPP front (V0 = 3.2Vrms).

respond to the upper and lower branch, respectively. In
the inset of Fig. 5it is shown a spatio-temporal diagram
for a FKPP front, where it is possible to distinguish the
nonlinear transient characterizing the early times of the
front propagation.

6. The amplitude equation near the
Fr éedericksz transition point

Near the Fŕeedericksz transition point we can de-
velop a theoretical model starting from the physics of
the nematic liquid crystals. The Fréedericksz transition
takes place when the electric torque overcomes the elas-
tic restoring force. The competition between the elastic
and the electric forces is ruled by the Frank free energy
[32]. In the LCLV, as a consequence of the optical feed-
back, the electric field�E, that locally apply to the liquid
crystals, depends on the director�n. Thus, the variation
δF of the free energy, resulting from a variationδ�n of



the director, takes the form

δF = 1

2

∫
δ[K1( �∇ · �n)2 +K2(�n · ( �∇ ∧ �n))2]d3x

+ 1

2

∫
δ[K3(�n ∧ ( �∇ ∧ �n))2]d3x

−
∫

�Eδ �D(�n)d3x, (3)

whereK1, K2 andK3 are the elastic constants de-
scribing the elastic deformation of the nematic film
for splay, twist and bend, respectively, and the last in-
tegral accounts for the electromagnetic contribution.
The displacement vector�D is related to the director
by �D = (ε⊥/2)�E(�n) + (εa/2)(�n · �E(�n))�n, with εa be-
ing the dielectric anisotropy andε⊥ the perpendicular
dielectric permeability.

The variation of the displacement vector is

δ �D = ε⊥
2

∂ �E(�n)

∂�n δ�n+ εa

2
(δ�n · �E(�n))�n

+ εa

2
(�n · �E(�n))δ�n+ εa

2

(
�n∂

�E(�n)

∂�n δ�n
)

�n,

where∂ �E/∂�n is a tensor of order two with (∂ �E/∂�n)i,j =
∂Ei/∂nj. The dynamical equation for the liquid crystal
director is given by

γ�n ∧ ∂t�n = −�n ∧ δF

δ�n , �n�n = 1,

w m.
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alongz, �E = (0,0, Ez) and forεa > 0, the director re-
orients in thex–z plane. As a consequence, the director
becomes�n = (nx,0, nz) with n2

x + n2
z = 1.

In the absence of light on the photoconductor, the
electric fieldEz applied to the liquid crystal layer is
Ez(Iw=0) ≡ E(Iw=0) = ΓE0 = ΓV0/d, whereV0 is the
total voltage applied to the LCLV, andΓ < 1 is a trans-
fer factor that depends on the electrical characteristics
of the photoconductor, dielectric mirror and liquid crys-
tal layers (impedances). As long as the light intensity is
sufficiently small, that is, of the order of a few mW/cm2,
the response of the photoconductor can be fitted by a
linear function. Under this approximation, the total ef-
fective electric field applied to the liquid crystal film
can be expressed asEeff = E(Iw=0) + αIw, whereα is
a phenomenological dimensional parameter that can be
evaluated from the characteristics of the LCLV [27].

After substituting the write intensityIw, Eq. (2), in
the expression for the electric field, we obtain

E(�n) = E(Iw=0) + αIw(�n) = E(Iw=0)

+αIin[A+ B cos(β cos2 θ)], (4)

where

A = 1
4[cos 2(ψ1 − ψ2) + cos 2(ψ1 + ψ2) + 2],

B = 1
4[cos 2(ψ1 − ψ2) − cos 2(ψ1 + ψ2)], (5)

whereψ1 andψ2 are, respectively, the angles formed
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hereγ is the rotational viscosity of the nematic fil
For the sake of simplicity, we assumeK1 = K2 =

3 = K. Thus, the dynamical equation reads

∂t�n = K[∇2�n− �n(�n · ∇2�n)] + εa(�n · �E)[ �E

− �n(�n · �E)] + ε⊥
4

∂ �E2

∂�n − ε⊥
4

[
�n · ∂

�E2

∂�n

]
�n+ εa

2

× (�n · �E)

[
∂ �E
∂�n · �n−

(
�n ·
(
∂ �E
∂�n · �n

))
�n
]
,

here∂ �E/∂�n · �n = nx �∇Ex + ny �∇Ey + nz �∇Ez.
At rest (without any electric field applied), the l

id crystal alignment is planar, that is, all the molecu
re parallel to thex-axis (x andy being in the plane o

he confining plate andz perpendicular to it), so th
� = (1,0,0). In the presence of an electric field app
y the input and feedback polarizers with the nem
irector�n.

Close to the onset of the Fréedericksz transitio
he director reorientation can be expressed as a Fo
eriesnz(x, y, z, t) =∑n un(x, y, t) sin(nπz/d). For a
mall reorientation angle, the director reorienta
long thezdirection,nz, describes quite well the orie

ation angle of the liquid crystal molecules. By me
f the standard bifurcation theory [2], it is possi

o derive an amplitude equation for the first un
le Fourier mode,nz = u(x, y) sin(πz/d) and nx =
− u2 sin2(πz/d)/2. The amplitude equation reads

tu = c1u+ c3u
3 + c5u

5 + K

γ
∇2

⊥u, (6)

here the development has been extended up to th
rder since the third order coefficientc3 can becom
ositive depending on the parameters of the syste



Fig. 6. Coefficientsc1 (dotted line),c3 (continuous line) andc5

(dashed line) as a function of the polarizer angleψ2 (radian). The
system is close at the onset of the bifurcation, that is,c1 is close to
zero, andψ1 = −45 deg.

The amplitude equation, Eq. (6), describes qual-
itatively the subcritical bifurcation close to the
Fréedericksz transition point. The coefficientsc1, c3
andc5 are functions of the physical parameters of the
experiments, that is,c1, c3 andc5 are functions ofβ, ε⊥,
εa, E0, Iin, ψ1, ψ2. The three coefficients may change
sign depending on the parameters set in the experiment,
and in particular the sign ofc3 depends on the polar-
ization anglesψ1 andψ2 [26,27]. Note thatAandBare
periodic inψ1 andψ2, so that changing the polarizer
angles modulates the response of the LCLV. Whenc3
is negative and of order one, Eq. (6) describes a second
order Fŕeedericksz transition. This transition becomes
of a first-order one whenc1 andc3 are positive (and
small) with c5 negative. The complete expression of
the coefficients is reported in [27].

F of the p
t b) Bifu

In Fig. 6 c3 and c5 are reported as a function of
ψ2 and for a fixed value ofψ1 = −45 deg. The first
coefficientc1 is set close to zero in order to keep the
system close to the transition point. The other param-
eters are fixed at the experimental values. As we can
see on the plot,c3 becomes positive for small values
ofψ2, whereasc5 is already negative, thus assuring the
saturation of the amplitude. In particular, the values set
in the experiment,ψ2 = −ψ1 = 45 deg, assure that the
Fréedericksz transition becomes of first-order.

In Fig. 7a it is shown a phase diagram in the plane
of the input light intensityIin and of the polarizer an-
gle ψ2. The applied electric fieldE0 is computed in
order to set the system at the bifurcation point, that is,
atc1 = 0. Then, we look at the sign ofc3 to determine
whether the bifurcation is subcritical or supercritical.
The line marks the transition between the two cases,
corresponding toc3 = 0. The phase diagram charac-
terizes entirely the dependence ofc3 from the physical
parameters that are readily accessible from the exper-
imental side. Changing the value ofc3 leads to tun-
ing the character of the Fréedericksz transition, from a
largely subcritical one to a small subcriticality or even
to supercriticality.

It is important to remark that in the general case
of nascent bistability the bifurcation is associated to a
cusp catastrophe in the space of parameters. However,
this picture can change when the system presents a
symmetry, like the reflection symmetry, as it occurs for
the Fŕeedericksz transition. In this case, the system goes
ig. 7. (a) Phase diagram as a function of the input intensityIin and
he border between the subcritical and the supercritical case. (
olarizer angleψ2 (radian). Solid line corresponds toc3 = 0, marking
rcation diagram in the subcritical case (µ is the bifurcation parameter).



through a pitchfork bifurcation and the reoriented state
u is equivalent to the−u state, as it is schematically
depicted in Fig. 7b. Correspondingly, in the parameter
space, the catastrophe becomes smooth, like it is shown
in Fig. 7a, at variance with the cusp singularity. At
the transition line between the sub and supercritical
regimes the bifurcation diagram looks like a pitchfork
bifurcation, but the equilibrium state as a function of the
bifurcation parameter scales asµ1/4, at variance with
the supercritical bifurcation where it scales asµ1/2.

7. Localized structures and crystal-like
symmetries

When we insert a free propagation lengthL in the
feedback loop, the system displays localized structures.
Fig. 8 displays typical distributions of localized struc-
tures, observed forL = −10 cm, an applied voltage
V0 = 18.45Vrms at 5 kHz frequency and a feedback ro-
tation angle∆ = 2π/N with N = 6. The size of each
individual spot is approximatelyΛ = 350�m, which
corresponds to the basic wavelengthΛ = 2π/q0 =√

2λL (λ = 633 nm is the optical wavelength) pre-
dicted by the linear analysis for a focusing medium
with a feedback mirror [36]. The distance between the
spots is in average much larger than their size, which
indicates that we deal with a collection of localized
structures instead of a fully correlated pattern.

Fig. 8. Near-field images of localized structure configurations reco

Here, for a fully correlated pattern we mean an ex-
tended spatial structure that cannot, in any case, be de-
composed into its basic cells. For example, in a full
pattern of hexagons, like the ones arising in thermal
convection [2], we cannot destroy a single cell without
destroying the whole pattern or without avoiding that
the cell be replaced by another one. In the case of local-
ized structures, even though an overall correlation may
be imposed by the geometrical constraints, each cell of
the pattern is independent of the whole configuration
and may be addressed as a single element [43]. In our
case, for the symmetry imposed by the rotation angle,
the basic independent element that we have to consider
is a set ofN structures, always appearing along con-
centric rings. The center is a singular point, that may
or not be occupied by a localized structure, depending
on the initial condition. The recurrence constraint im-
posed by the feedback rotation stabilizes the positions
of the localized structures that, once created, remains
fixed to their positions.

The input light intensity is fixed toIin =
0.9 mW/cm2, a value close to the point of nascent bista-
bility. Different stationary configurations may be ob-
tained, depending on the initial condition. The result-
ing configurations stay stable for several minutes. If
we perturb the system by blocking the feedback loop,
another configuration may appear. Actually, close to
the point of nascent bistability, the dark homogeneous
state is also stable. Thus, once erased by blocking the
rded for∆ = 2π/N with N = 6 and for different initial conditions.



Fig. 9. A typical image observed in the far-field when the near-field
displays localized structures.

feedback loop, there are no localized structures until
we introduce a perturbation able to trigger their ap-
pearance. This can be done either by slightly, and tem-
porarily, increasingV0, or by injecting in the feedback
loop a weak additional light beam, such as the one of
a commercial laser pointer. With the laser pointer, it is
possible to address different positions for the excitation
of localized structures. Starting from a single set ofN
localized structures, we can locally perturb the system
and switch on another set in a different position or a
single spot in the center. All these manipulations prove
that the observed spots are indeed localized structures,

F served∆
( ctor is

in the sense that the whole pattern is highly decom-
posable, that is, each structure may be considered as
a single element, independent of the other structures
[43].

The localization in the near-field manifests his coun-
terpart as a strong delocalization in the far-field. Indeed,
observations in the far-field show a diffusion of the
light intensity around the central peak (zero spatial fre-
quency). In the same time, no wave vector structure is
distinguishable. A typical far-field image is displayed
in Fig. 9, where the dashed line marks the location that
would be occupied by the wave vectors of a fully corre-
lated pattern, at the spatial frequencyq0 = 2π/Λ, cor-
responding to the size of the individual spots. The same
diffraction pattern is observed in the far-field also by
changing the symmetry of the near-field distributions,
as we have verified for several cases by changing∆.

Another related aspect of the localization is that the
near-field patterns assume the aspect of what it is nor-
mally expected to appear in the far-field. By choosing
∆ = 2π/N with differentNwe can construct in the real
space a highly regular distribution of light spots, that
can be seen as the structure function (in the Fourier
space) of a correspondingN-order crystal. By keeping
ig. 10. Near-field images of stationary localized structures ob
h, i)N = 7, (j)N = 8 and (k, l)N = 9. In (l) the magnification fa
for= 2πN with (a)N = 2, (b, c)N = 3, (d, e)N = 4, (f, g)N = 5,
2/3 with respect to the other frames.



the input light intensity close to the point of nascent
bistability, the spots remain fixed to their position and
we can control their appearance and position by means
of a local writing procedure. This is very appealing
for the possibility to synthesize in the real space a sort
of “crystallography”, where all theN rotational-order
structures may be figured out.

A few examples are displayed in Fig. 10, where
we show the crystal and quasi-crystal like distribu-
tions of light spots that are observed for∆ = 2πN with
N = 2,3,4,5,7,8,9. Note that theseN-order spot dis-
tributions, here observed for a complete localization in
the near-field, are the spectral counterpart of the spa-
tially extended crystals and quasi-crystals that appear
in the near-field of a LCLV experiment, when a perfect
localization is instead manifested in the far-field [44].

8. Dynamics of localized structures

8.1. Ring dynamics induced by a nonlocal shift in
the feedback loop

If we introduce a small additional rotation angle,
δ = 0.1 deg, in such a way that∆ = 2π/N + δ, the lo-
calized structures acquire a rotation dynamics along
concentric rings. Even though the nonlocal shift,δ, is
along one direction, often, two adjacent rings rotate in
opposite directions.
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Fig. 11. Instantaneous snapshots of localized structures for∆ =
2π/N + δ with N = 6 andδ = 0.1 deg. The number of rings is in-
creasing during time: (a)t = 0, (b)t = 5, (c)t = 10 and (d)t = 22 s.

After their creation, the structures are characterized
by a complex spatio-temporal dynamics, developing
both along the radial and the azimuthal directions. The
spots rotates over the rings and the ring diameter also
changes during the time. Eventually, the radial motion
may lead to the collapse of two adjacent rings or to the
splitting of one ring into two neighboring ones. Near-
field snapshots showing this dynamical behaviour are
displayed in Fig. 11. It can be noticed that each ring
reflects the underlying hexagonal symmetry, so that the
number of spots is 6 on the inner ring and increases by
step of 6 over two adjacent ones. However, for the outer
rings, the number of spots is 17, 23, 29, that is, one
spot is missing with respect to the underlyingN = 6
hexagonal symmetry. In a similar way, for other values
of N we find either an exceeding or a missing spot on
the outer rings [16].

In Fig. 12 azimuthal (θ − t), spatio-temporal plots
are reported as an example of the rings dynamics.
Fig. 12a and b show, respectively, the rotation of the
localized structures over the 12 and 17 spot rings. Note
that the two rings are counter-rotating with different
speed of rotation. At longer times, eventually each ring
undergoes a radial instability, leading to creation and
annihilation of adjacent rings. An example is shown in
For ∆ = 2π/N + δ, with N = 6 andδ = 0.1 deg
e have set the applied voltage toV0 = 18.49Vrms

5 kHz) and we have studied the dynamics of lo
zed structures. For this value ofV0, the structures ap
ear spontaneously, nucleating from the intrinsic n

n the LCLV (inhomogeneities or fluctuations). Mo
ver, in the vicinity of the bistability point, the slig
radients provided by the Gaussian beam profile

mposing the O(2) circular symmetry, leading to
ppearance of successive and concentric rings. W
ect that other shapes of the beam profile or diffe

nitial conditions would lead to different distributio
f localized structures, as shown numerically in [3
ote that similar near-field patterns,Akhseals, have
lso been reported by the Akhmanov group [24]. E

hough not explained in terms of localized structu
hey are indeed observed in experimental condit
imilar to ours.



Fig. 12. Azimuthal (θ − t) space-time plots for (a) 12-spots and (b) 17-spots ring; (c) shows the transition from 12 to 6 spots.

Fig. 13. Radial (r − t) space-time plot showing the creation and an-
nihilation of rings.

Fig. 12c where, the fusion of two adjacent spots leads
to the transition from 12 to 6 localized structures. In
the azimuthal plots the radial distance is normalized to
the instantaneous diameter of each ring. In Fig. 13 is
shown a radial (r − t), spatio-temporal plot (averaged
over θ), where the ring creation-annihilation may be
distinguished.

We show in Fig. 14 the measured speed of rotation
vn for increasing numbern of spots along the succes-
sive rings. It must be recalled that the diameter of the
rings is not constant during time, so that the number
n is only roughly related to the distance from center.
The measured data suggest that the change of rotation
direction could be related to the existence of a critical
radius, above which an overall phase shift changes its
sign. Correspondingly, the number of spots along the
outer rings becomes “wrong”.

8.2. Intrinsic dynamics of localized structures

As a consequence of the nonvariational character of
the LCLV experiment, we expect the localized struc-
tures to exhibit an intrinsic and permanent dynamics
for some range of the control parameters. Indeed, as
we slightly increase the input light intensity above the
point of nascent bistability, we observe oscillations in
the positions of the localized structures, and this even
though the feedback rotation angle∆ is exactly fixed

Fig. 14. Speed of rotation for increasing numbernof localized struc-
tures along the successive rings.

to a value commensurate to 2π. In Fig. 15 we show
the instantaneous snapshots of theN = 5 distributions
observed in the same experimental conditions as for
Fig. 10f–g and by increasing the input light intensity
toIin = 0.95 mW/cm2. The observed dynamics consist
of a periodic bouncing of two adjacent spots one over
the other.

The periodic behaviour can be extracted by plotting
a spatio-temporal plot along a line passing through the
centers of two adjacent spots, as shown by the dashed
line in Fig. 15a. The resulting diagram is displayed in
Fig. 15e. By further increase ofIin the oscillations in the
structure positions become irregular in time. Similar
dynamical behaviours can be observed for all the other
N-order distributions of localized structures.

In order to single out the dynamics independently
of the symmetry imposed by the feedback rotation an-
gle ∆, we have carried out one-dimensional experi-
ments by fixing∆ = 0 deg. In this case, the system
becomes very sensitive to the influence of optical mis-
alignments, such as small drifts, inhomogeneities or
any other source of small gradients. We have selected
the one-dimensional region on a central part of the
LCLV, where illumination gradients and misalignment
effects are negligible. A rectangular mask is introduced



Fig. 15. Instantaneous snapshots showing the oscillations of the localized structure positions. Times: (a) 0.0, (b) 2.6, (c) 5.0, (d) 8.2 s. The dashed
line in (a) marks the one-dimensional cut along which the spatio-temporal diagram has been recorded. (e) Space (vertical)-time (horizontal)
diagram showing the periodic oscillations of the structure positions. The total elapsed time is 120 s.

Fig. 16. Instantaneous snapshots showing three bouncing localized
structures. Times: (a) 0.0, (b) 1.0, (c) 1.3, (d) 1.7, (e) 2.1, (f) 2.4 and
(g) 2.8 s.

in the optical feedback loop, just in contact to the en-
trance side of the fiber bundle. The widthD of the
aperture is 0.50 mm whereas its lengthl is 20 mm. The
transverse aspect ratioD/Λ � 1 is small enough for the
system to be considered as one-dimensional, whereas
the longitudinal aspect ratiol/Λ � 60 is large enough
for the system to be considered as a spatially extended
one. In Fig. 16 are shown the instantaneous snapshots
of three adjacent localized structures, with two of them
bouncing periodically in time one over the other. The
corresponding spatial profiles are plotted in Fig. 17
whereas in Fig. 18b it is displayed the correspond-
ing spatio-temporal plot. Besides, Fig. 18a represents
two stationary localized structures, whose position re-
mains fixed during time and Fig. 18c is the spatio-

Fig. 17. Spatial profile of the localized structures. Times: (a) 0.0, (b) 1.3 and (c) 1.7 s. The horizontal scale is in pixel units.

Fig. 18. Space (vertical)-time (horizontal) diagrams showing (a) two
stationary localized structures, (b) the periodic and (c) the aperiodic
oscillations of the structure positions. The total elapsed time is 94 s.

temporal diagram corresponding to the aperiodic os-
cillations in the positions of two adjacent localized
structure.

9. The model beyond the Fŕeedericksz
transition

When we move beyond the Fréedericksz transition,
a one-dimensional model can be setup starting from
the standard description of the optical feedback loop
[12]. By taking into account both diffraction and polar-
ization interference, the light intensityIw reaching the
photoconductor is given by

Iw = 1
2Iin|ei(L/2k)∂xx (1 + e−iβ cos2 θ)|2



wherex is the transverse direction of the liquid crystal
layer.

Let us introduce the average director tilt,θ = θ(x, t),
of the director.θ = 0 is the initial unperturbed planar
alignment whereasθ = π/2 is the homeotropic align-
ment corresponding to the saturation of the molecular
reorientation. The liquid crystal dynamics is described
by a local relaxation equation of the form

τ∂tθ = l2∂xxθ − θ + π

2

(
1 −

√
VFT

ΓV0 + αIw(θ, ∂x)

)

(7)

with V ≡ ΓV0 + αIw(θ, ∂x) > VFT, whereVFT is the
Fréedericksz transition threshold voltage andl is the
electric coherence length. The above model have been
deduced by fitting the experimental data measured for
the open loop response of the LCLV [27,25] and it is
slightly different with respect to the one proposed in
Ref. [12].

The homogeneous equilibrium solutions areθ0 =
π/2(1− √

VFT/V ) whenV > VFT and θ0 = 0 when
V ≤ VFT. The graph ofθ0(V0, Iin) is shown in Fig. 19
for a value ofIin close to the experimental conditions.
Several successive branches of bistability can be dis-
tinguished, corresponding to the critical points where
θ0(V0, Iin) is a multi-valued function. Note that once

Fig. 19. The multi-valued functionθ0(V0, Iw).

the reorientation takes place, that is,θ0 
= 0, the sys-
tem loose the inversion symmetry around the equilib-
rium solutions. Moreover, the spatial dependence ofIw
is nonlocal, hence the dynamics of the above model,
Eq. (7), is of nonvariational type, that is, the system
cannot be described by a Lyapunov functional.

Close to each point of nascent bistability (in Fig. 19
the points of nascent bistability are represented by the
bright circles), and neglecting the spatial derivatives,
we can developθ = θ0 + u+ · · · and derive a normal
form equation

∂tu = η+ µu− u3 + h.o.t., (8)

whereµ is the bifurcation parameter andη accounts for
the asymmetry between the two homogeneous states.
The higher order terms are ruled out by the scaling anal-
ysis, sinceu ∼ µ1/2, η ∼ µ3/2 and∂t ∼ µ, µ � 1. If
we now consider the spatial effects, due to the elastic-
ity of the liquid crystal and to the light diffraction, the
system exhibits a spatial instability as a function of the
diffraction length. The confluence of the nascent bista-
bility and the spatial bifurcation give rise to a multicrit-
ical point of codimension three. Close to this point, we
derive an amplitude equation, that we call the Lifshitz
normal form [28]

∂tu = η+ µu− u3 + ν∂xxu− ∂xxxxu+ du∂xxu

+ c(∂xu)2, (9)

where∂x ∼ µ1/4, ν ∼ µ1/2 accounts for the intrinsic
l
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ength of the system,d ∼ O(1) andc ∼ O(1). The term
xxxxu is a kind of super-diffusion, accounting for t
hort distance repulsive interaction, whereas the t
roportional tod andc are, respectively, the nonline
iffusion and convection. The full and lengthy expr
ions of the coefficients for the LCLV will be report
lsewhere [45].

The model shows bistability between a homo
eous and a spatially periodic solutions and there

t exhibits a family of localized structures. Depend
n the choice of the parameters, the localized s

ures may show periodic or aperiodic oscillations
heir position. Numerical simulations of Eq. (9) sh
qualitative agreement with the experimental obse

ions [25]. Moreover, there is a quantitative agreem
etween the location of the points of nascent bistab
redicted by the surface of equilibrium states and t
bserved in the experiment.



10. Conclusions

In the LCLV experiment, we have singled out a
regime of parameters where the response of the LCLV
is closely similar to that of a binary phase slice work-
ing around a point of nascent bistability. In these con-
ditions, and by changing the feedback rotation angle
∆ = 2π/N, we are able to control the appearance of
N-ordered configurations of localized structures, that
can be seen as the spectral components of a crystal
or a quasi-crystal structure functions. By introducing
a small nonlocal shift in the feedback loop, localized
structures display a dynamical motion over concentric
rings.

Moreover, localized structures are characterized
by an intrinsic dynamics. Indeed, when the input
light intensity is slightly increased above the point of
nascent bistability, the localized states show complex
behaviours like the periodic or aperiodic oscillations of
their positions. We have related the intrinsic dynamics
of the localized structures to the nonvariational char-
acter of the system under study and we have derived
a generic model taking it into account. The model is
a Lifshitz normal form equation, that could be in gen-
eral applied to a large class of different physical sys-
tems, the main requirements being the bistability and
the presence of an intrinsic spatial length.
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elp in calculations. M.G. Clerc thanks the supp
f FONDECYT project 1020782, and FONDAP gr
1980002.

eferences

[1] G. Nicolis, I. Prigogine, Self-organization in Non Equilibriu
Systems, Wiley, New York, 1977.

[2] For a review on pattern formation see e.g. M. Cross, P. Ho
berg, Rev. Modern Phys. 65 (1993) 581.

[3] S. Fauve, O. Thoual, Phys. Rev. Lett. 64 (1990) 282.
[4] H.A. Eschenfelder, Magnetic Bubble Technology, Sprin

Verlag, Berlin, 1981.
[5] S. Pirkl, P. Ribiere, P. Oswald, Liq. Cryst. 13 (1993) 413.
[6] A. Astrov, Y.A. Logvin, Phys. Rev. Lett. 79 (1997) 2983.
25] M.G. Clerc, A. Petrossian, S. Residori, Phys. Rev. L
submitted for publication.

26] M.G. Clerc, S. Residori, C.S. Riera, Phys. Rev. E 63 (2
060701(R).

27] M.G. Clerc, T. Nagaya, A. Petrossian, S. Residori, C.S. R
Eur. Phys. J. D 28 (2004) 435.

28] M.G. Clerc, Phys. Lett. A, submitted for publication.
29] Y. Kuramoto, Chemical Oscillations, Waves and Turbule

Springer-Verlag, 1984.
30] P. Coullet, J. Lega, B. Houchmanzadeh, L. Lajzerowicz, P

Rev. Lett. 65 (1990) 640.
31] T. Kawagishi, T. Mizuguchi, M. Sano, Phys. Rev. Lett.

(1995) 3768.
32] P.G. de Gennes, J. Prost, The Physics of Liquid Crystals

ed., Oxford Science Publications/Clarendon Press, 1993.
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