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Abstract

We show that in a liquid-crystal-light-valve with optical feedback thedelericksz transition displays a subcritical character.
Experimentally, we determine the extension of the bistable region and we study the propagation of fronts connecting the different
metastable states. Theoretically, we derive an amplitude equation, valid close tegterffcksz transition point, which accounts
for the subcritical character of the bifurcation. When, in the space of parameters, we move far froéetherieksz transition
point, we adopt a mean-field model which is able to capture the qualitative features of all the successive branches of bistability.
Close to the points of nascent bistability, by including diffraction effects we show the appearance of localized structures. Highly
symmetric configurations of localized structures may be observed in the experiment by implisindex rotation angle in the
feedback loop. For increase of the input light intensity complex spatio-temporal dynamics arise, with either periodic or irregular
oscillations in the position of the localized states. Rings dynamics is also observed, by the introduction of a small nonlocal shift
in the feedback loop.
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1. Introduction breaking of one or more of the symmetries character-
izing the system [2]. In some cases, it is possible to
Nonequilibrium processes often lead in nature to the localize a pattern in a particular region of the avail-
formation of spatially periodic and extended structures, able space, so that we deal with localized instead of
so-called patterns [1]. The birth of a pattern from a ho- extended structures. From a theoretical point of view,
mogeneous state takes place through the spontaneoutocalized structures in out of equilibrium systems can
be seen as a sort of dissipative solitons [3]. Experimen-
"+ Corresponding author. Tel.: +33 4 92 96 73 17: tally, during the last years Iopalized pa}terns or isolated
fax: +33 4 93 65 25 17. states have been observed in many different fields. Ex-
E-mail addressresidori@inIn.cnrs.fr (S. Residori). amples are domains in magnetic materials [4], chiral



bubbles in liquid crystals [5], current filaments in gas calized structures show permanent dynamics, such as
discharge experiments [6], spots in chemical reactions propagation and oscillations of their positions [28]. In-
[7], oscillations in granular media [8], localized fluid deed, itis known that nonvariational effects are respon-
states in surface waves [9] and in thermal convection sible of the permanent dynamics observed in extended
[10], solitary waves in nonlinear optics [11-18]. All patterns, such as the phase turbulence [29], the prop-
these localized states can be considered to belong toagation of Ising—Bloch walls, predicted in oscillatory
the same general class of localized structures, that is,media [30] and observed in liquid crystal experiments
they are patterns that extend only over a small por- [31], and the rotation of spirals observed in excitable
tion of a spatially extended system. The mechanisms media [35]. In the experiment, we observe a complex
of localization of spatial structures rely on two main spatio-temporal dynamics of localized structures.
ingredients: the bistability, either between two homo- In this article, we present the LCLV experiment and
geneous states or between a homogeneous state and e subcritical character of the@adericksz transition
spatially periodic one, and the existence of an intrinsic inthe presence of optical feedback. A briefintroduction
spatial length, that is necessary to stabilize a localized to Fréedericksz transition is given in Section 2. Then,
state and which determines its typical size [19]. we outline the main mechanisms for the stabilization of

In optics, solitary waves have first been predicted the localized structures and we present their dynamical
to appear in bistable ring cavities [11]. Then, localized behaviours. The experiment is described in Section 3.
states have been largely studied not only for their fun- In Section 4we present the subcriticaleEdericksz
damental properties but also in view of their potential transition and in Section 5 the propagation of fronts.
applications in photonics [20-23]. The liquid-crystal- The theoretical model is presented in Section 6, where
light-valve (LCLV) with optical feedback, as it was we derive an amplitude equation which is valid close to
originally designed by the Akhmanov group [24], has the Féedericksz transition point. Sections 7 and 8 are
been proved to be a suitable system for the observationdevoted to the experimental characterization of local-
and the study of localized structures [12—15]. Recently, ized structures and their dynamics. Finally, in Section 9
we have proposed a Lifshitz normal form equation that we present a theoretical approach, based on a mean-
describes the appearance of localized structures in thefield approximation, which is able to capture the essen-
LCLV system [25]. Here, the bistability between ho- tial features of the system dynamics for all the succes-
mogenous states results from the subcritical charactersive branches of bistability far beyond th&Edericksz
of the FEedericksz transition, when the local electric transition point. Section 10 are the conclusions.
field, which applies to the liquid crystals, depends on
the liquid crystal reorientation angle [26,27]. Then, the
simultaneous presence of bistability and pattern form- 2. General features of the Feedericksz
ing diffractive feedback assures the conditions for the transition
appearance of localized structures.

Close to the point of edericksz transition, the sub- Liquid crystal materials are composed of
critical character of the bifurcation can be described by anisotropic-shaped organic molecules. This re-
an amplitude equation derived from the Frank free en- sults in the anisotropy of all their physical properties,
ergy of the liquid crystal [26,27]. Far from &edericksz like the dielectric and the magnetic susceptibility
transition, a mean-field model accounts for the appear- [32]. Most of the more popular liquid crystals are
ance of successive branches of bistability [25]. In the composed of molecules that are strongly elongated
space of parameters, the points of nascentbistability arein one direction, so that they appear as a collection
identified as the locations where the surface of station- of rod-like molecules. In the isotropic phase the axis
ary states becomes s-shaped. Then, the Lifshitz normalof the molecules are randomly distributed whereas in
form equation accounts for the appearance of anotherthe nematic phase, the configuration of lowest energy
branch of solutions, corresponding to a spatially peri- is reached when all the molecules are, on average,
odic state, giving rise to localized structures [25,28].  aligned along a single direction, pointed out by the

As a consequence of the nonvariational character of directors. This long-range orientational order is a dis-
the LCLV system, it is generically expected that lo- tinctive feature of nematic liquid crystals. The liquid



crystals we are going to consider in the following are

always in the nematic phase, the temperature for the [T
isotropic to nematic phase transition beir@5 degC ] - :,l.if.
for our samples.

The nematic director, having the symmefiy ] A
—n, identifies a direction that can be experimentally \ |
specified either by applying an external field, like an \ z R\ \
electric or magnetic one, or by imposing some patrtic- o ! |\\:—; L
ular boundary conditions at the confining surfaces of v , o ]]
the sample, that are thenchoringconditions. When Pin _ g DeatiEd

. . Wwoon 7

two of these constraints are competing, the long-range |
orientational order may be partially destroyed. RS o =]

The Féedericksz transition is the elastic distortion Pio far:eld

of a nematic liquid crystal film under the action of a
magnetic or electric field [33]. We will consider here  ig 1. Experimental setup: the LCLV isilluminated by a plane wave;
the action of an electric field, but similar considerations the wave, reflected by the mirror of the LCLYV, is sent back to the
and results can be obtained by substituting the electric photoconductor through the optical fiber bundteis the angle of
field with a magnetic field and the dielectric tensor with "tation of the fiber with respect to the front side of the LCRV.
the magnetic susceptibility. Forasufficientlyhigh mag- is the liquid cry_stal r.1emat|c directop;, and Py, are the input and
. . . T . feedback polarizerd;, andL, are two confocal 25 cm focal length
nitude of the applied field, the initial alignment due to  |enses and is the free propagation length.
the anchoring conditions changes and, in the bulk of
the sample, the system exhibits a reorientation of the parent electrodes covering the two confining plates per-
nematic director, the so-calledd&dericksz transition ~ mit the application of an electric field across the liquid
[33,32]. The chosen geometry, that is, the orientation crystal layer. The photoconductor behaves like a vari-
of the anchoring direction with respect to the externally able resistance, which decreases for increasing illumi-
applied field, determines the kind of elastic distortion nation. The feedback is obtained by sending back onto
thatappears in the medium at the onset of the transition. the photoconductor the light which has passed through
The Feedericksz transition is usually associated to the liquid-crystal layer and has been reflected by the
a supercritical bifurcation for the value of the reorien- dielectric mirror. The light beam experiences a phase
tation angle inside the liquid crystal volume. The pos- shift which depends on the liquid crystal reorientation
sibility of modifying the Feedericksz transition intoa  and, on its turn, modulates the effective voltage that lo-
first-order one was first considered in [34], where sev- cally appliestothe liquid crystal layer. Thus, afeedback
eral theoretical predictions were given on the associ- is established between the liquid crystal reorientation
ated spatial effects. In the LCLV with optical feedback and the local electric field.
these spatial effects, like the propagation of frontscon-  The feedback loop is closed by an optical fiber
necting differently oriented states, have been demon- bundle and is designed in such a way that diffrac-
strated experimentally [26,27]. tion and polarization interference may be simultane-
ously present [12]. The free end of the fiber bundle is
mounted on a precision rotation stage, which allows to
3. Description of the experiment fix a feedback rotation rotation angtewith a precision
of £0.01 deg.
The experiment, as shown in Fig. 1, consists of a  Diffraction is due to the optical free propagation
LCLV with optical feedback. The LCLV is composed lengthL. This last one can be varied from= 0 to
of a nematic liquid crystal film sandwiched in between +20cm and itis either positive or negative with respect
aglass window and a photoconductive plate over which to the plane onwhich a 1:1 image of the front side of the
a dielectric mirror is deposed. Coating of the bounding LCLV is formed (dashed line in Fig. 1). At the linear
surfaces induces a planar anchoring of the liquid crystal stage for the pattern formation, a positive (negatlve)
film (nematic directori parallel to the walls). Trans-  selectsthe first unstable branch of the marginal stability



curve as for a defocusing (focusing) medium [36,37].

coming from noise sources or inhomogeneities of the

The corresponding unstable wave numbers are, respecLCLV.

tively

=31 i L>0
q1 = )»|L|’
and

| 2
= —, L<0
qgo=m AL <

The polarization interference is realized by fixing the
angles/; andyr2 that the input and feedback polarizers
form with to the liquid crystal director (see the left bot-
tom of Fig. 1). In most of the experimentg; andy,
are fixed to 45 deg and45 deg, respectively. For this

In both cases, either close¥g = 18.5V;msor close
to the FEedericksz transition point, the LCLV works
around a point of nascent bistability, where it may be
assimilated to a phase slice with a step-like response
[38].

4. Subcritical Fréedericksz transition
In general, the equation for the phase shift induced

by the liquid crystal reorientatiory = ¢(x, y, t), can
be written as [12]

¥ _ _¢—¢o

+DV2 +aly,(x, y, 1),
o T ¥ w( y )

)

wherel,, is the light intensity reaching the photocon-

condition, the system displays successive branches ofductor. The expression fdy, is given by [12]

bistability, either between two homogeneous and dif-
ferently oriented state€.(= 0), or between a homoge-
neous state and a periodic pattefns£ 0).
The total incident intensity ig, = 0.90 mW/cnf.

A 50% beam splitter is positioned before the LCLV, so
that the intensity of the feedback light beam is limited
to 25% of the total incoming intensity. This condition
ensures that the LCLV works only around the switch-

I, = |L/29V2 (siny sinr

+ cosyr1 COSY2e?) |2 I,

)

whereg = gcog 6 is the overall phase shift experi-
enced by the light travelling forth and back through
the liquid crystal layerd is the liquid crystal reorien-
tation angle ang@ = 2kd An, wherek = 2/ is the

up point of his bistable response. The input beam has optical wave numben(= 633 nm),d = 15um is the
a Gaussian profile with a transverse size of approx- thickness of the liquid crystal layer antln = 0.2 is
imately 2cm, whereas a diaphragm before the fiber the difference between the extraordinajfytg 7) and
bundle selects a central active zone with a diameter of ordinary (L to7) index of refraction of the liquid crys-

1.2cm.

The Féedericksz transition point is attained for
an applied voltage/y of approximately ¥ms with
a frequency of 5kHz [26]. By increasin{p, suc-

tal.
When ¢ = —y» = 45deg andL = 0, that is, in
the purely interferential case, Eq. (2) becomes

cessive branches of bistability are observed. Most of I,, = (1 + cosg)lin,

the experimental observations here reported were ob-

tained either close to the &edericksz transition point,
Vo >~ 3.2Vims, OF close to the bistable branch located
aroundVp = 185V For this high value of the ap-
plied voltage, the reoriented liquid crystal sample be-

comes similar to an homeotropic one (nematic direc-

tor 71 perpendicular to the confining walls). Thus, the
equilibrium state of the reoriented sample is close

that gives multi-valued solutions fg@r when inserted
in Eq. (1). In this case, several branches of bistability
between differently oriented states may be observed.
In particular, we will focus here on the bistable be-
haviour shown by the system close to théédericksz
transition point.

In the experiment, we sdt = 0, thus eliminating

to saturation of the response, because the nematicdiffraction, and we adjust the fiber bundle in such a
director is almost aligned with the applied electric way that there is no rotation or translation in the feed-
field. In this almost saturated regime, the system be- backimage. Then, in order to construct the experimen-
comes much less sensitive to external perturbations, tal bifurcation diagram, we measure the intendity



reaching the photoconductor. This is done by extract- ing the direction of the front propagation in depen-
ing a small portion of the feedback light and by sending dence on the mutual stability of the white and the dark
it onto a photodiode. When the applied voltages be- states.
low the threshold for molecular reorientatiai, has a
value fixed by8. When reorientation occurs, we expect
this value to change according to expression given in 5. Front propagation
Eq. (2). Variations of,, induce, on their turn, variations
of the effective voltage applied across the liquid crystal In a spatially extended system, a subcritical transi-
film and hence afurther reorientation. Once feedback is tion gives rise to a transient behaviour characterized by
established between the applied voltage and the liquid front dynamics. At the onset of bistability, the system
crystal director, the Federicksz transition becomes displays moving interfaces, so-callédnts that con-
subcritical. nect the two stable states. Once created, the front moves
A typical bifurcation diagram, as shown in Fig. 2, into the most energetically favorable state with a well
displays a large hysteresis region. In the bistable re- defined velocity. In the case of one or two-dimensional
gion, the nonoriented(= 0) and the oriented(£ 0) variational system and small interface curvature, the
state coexist. Correspondingly, after the feedback po- front velocity is proportional to the energy difference
larizer, we observe a dark{ = 0) or a white state  between the two states. By increasing the bifurcation
(I, # 0). Note thatl,, is measured by a small area parameter, the metastable state becomes energetically
photodiode, i.e., it is a local measurement taken at the equivalent to the other state, thus the front stops prop-
center of the feedback beam. By looking at the entire agating. In this case, the system is said to be at the
image of the beam with a CCD camera, we see that the Maxwell point, unm [39]. By further increase of the bi-
transition point is characterized by a white spot devel- furcation parameter, the front velocity is reversed, that
oping over a dark background. The interface around the is, the most energetically favoured state invades the less
white spot is a front, connecting the reoriented region favoured one.
to the nonreoriented one. Three representative images When the state becomes unstable through a pitch-
of the feedback field are displayed in Fig. 2, show- fork bifurcation, there is also a front that con-
nects a stable state with an unstable one. This
type of front is called Fisher—Kolmogorov—Petrosvky—
Piskunov (FKPP) [40,41]. At variance with the normal
front, the velocity of the FKPP front is not determined
by the difference of energy between the two connected
states. There is instead an infinite set of possible ve-
locities, each one determined by the initial conditions
[42,2]. In the case of bounded perturbations of the un-
stable state, the front propagate with the minimum ve-
locity [42].

Iy, (MW/cmz2)

0.50r

0.25¢ In Fig. 2, the dashed line marks the Maxwell point,
um- Below this point the white state is less stable than
® 090 the dark one and the white spot, once created by the
0.00 | ‘ | ‘ ‘ | , writing light, contracts to zero. Above thed&edericksz
26 128 3.0 32| 34 3.6 transition point, FT, the white spot nucleates sponta-
B My FT Vo (Vrms) neously and the front expands until the white state cov-

ers all the background. In between, the front expands
or retracts depending on the size of the perturbation.
In order to determine the size of the bistable region,

Fig. 2. I,, as a function of the applied voltag®: open circles are
dark states with writing light off; stars are white states with writing
light off; cross are white states with writing light on. The white state

shrinks to zero or expands to infinity depending on the initial location
of the perturbation. Beyond (and close to) the Maxwell point it exists
a critical droplet radius for which the front velocity is zero.

we inject an additional light spot (low power He—Ne
laser) into the feedback loop. This acts as a small per-
turbation, triggering the transition from the dark state to



the white one. The white state persists when we block so thatthe aspectratio/ is quite large and the system
the additional writing light, while it switches to the canbe considered as 1D. The large curvature of the ring
dark state if we perturb the feedback. In Fig. 2, the ar- mask is considered not to affect the front propagation
rows delimit the region over which this writing-erasing that develops in the transverse direction. Moreover, the
procedure is robust. The three crucial points, i.e., the ring thickness is considered large enough not to intro-
beginning of the bistability3, the Maxwell point,um, duce relevant boundary effects.
and the Feedericksz transition point, FT, are also iden- The velocity of the front propagating between the
tified by the divergence of the response times, as it was two differently oriented states has been measured by
shown in [26]. recording a movie of the front propagation along the
In order to measure the front velocity, we have per- ring. Instantaneous shapshots, #or= 3.05Vys, are
formed quasi-1D experiments, in such a way to mini- shown in Fig. 3. Above the Maxwell pointy is
mize the influence of the 2D curvature onto the front switched on from zero and the front nucleates sponta-
velocity. A ring-shaped mask is introduced in the op- neously over any inhomogeneities presentin the LCLV.
tical setup, in contact to the entrance side of the fiber To see the front propagation below the Maxwell point,
bundle. the initial condition forVy is chosen in the region of
The ring shape of the mask constraints the system well developed reorientation and thé&p is switched
to be quasi-1D and to satisfy periodic boundary con- to a lower value, below Maxwell point. In this case,
ditions [27]. The choice of the ring is for the sake of the front velocity is reversed and the white state con-
simplicity, but any closed and smooth domain leads to tracts to zero. Instantaneous snapshots recorded for
similar results for the front velocity. The inner diame- Vp = 2.84V;s are shown in Fig. 3
ter D of the ring was chosen in between 5 and 10mm  Either below or above the Maxwell point, the front
whereas the ring thicknebwas between 0.5and 1 mm, velocity is measured by unfolding the rings over a line

Fig. 3. Snapshots of the front propagation, recorded atda} 3.05V;ms, above the Maxwell point, and () = 2.84Vms, below the Maxwell
point. The successive instant times (in seconds) are indicated in the white labels.
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Fig. 4. Spatio-temporal plot showing the propagation of the frontat Fig. 5. (a) Front velocity as a function of the bifurcation parame-

(@) Vo = 3.05Vims, above the Maxwell point, and (b = 2.84Vims, ~ ter Vp. Solid lines are guides for the eyes. Dashed lines mark the
below the Maxwell point. Dashe_d lines mark the slope of the regions three critical points: Buy, FT. (b) Spatio-temporal plot showing
used to evaluate the front velocity. the propagation of a FKPP fronVg = 3.2Vims).

and by constructing the corresponding spatio-temporal )

diagrams, as shown in Fig. 4. The front velocity can respond to the upper and lower brgnch, respect'lvely. In

be evaluated by measuring the ratio between the hori- the inset of Fig. Sitis shown a spatio-temporal diagram

zontal (space ) and vertical (time ) displacements. for a FKPP front, where it is possible to distinguish the

Note that LCLV inhomogeneities introduce a pinning nonlinear tran;ient characterizing the early times of the

of the front in particular spatial locations, so that the front propagation.

front stops or largely slow down at these places. When

measuring the front velocity, we have averaged only

the slopes of the linear portions on the spatio-temporal 6. The amplitude equation near the

plots, such as the ones marked by the dashed lines inFréedericksz transition point

Fig. 4. Pinning of the front over LCLV inhomogeneities

is also responsible for the stripe patterning which ap-  Near the Feedericksz transition point we can de-

pears on the spatio-temporal plots. velop a theoretical model starting from the physics of
The resulting front velocities are plotted in Fig. 5as the nematic liquid crystals. The&edericksz transition

a function of the applied voltagé. On this figure, we takes place whenthe electric torque overcomes the elas-

can identify the Maxwell point, where the front velocity tic restoring force. The competition between the elastic

goesto zero, and the FT point, beyond which the fronts and the electric forces is ruled by the Frank free energy

become of a FKPP type. The regime of FKPP fronts [32]. Inthe LCLV, as a consequence of the optical feed-

is characterized by a transient propagation with a quite back, the electric field, that locally apply to the liquid

high velocity, which then relaxes to the minimal one. In  crystals, depends on the direciofThus, the variation

Fig. 5the transient and the steady-state velocities cor- § F of the free energy, resulting from a variatiém of



the director, takes the form

SF = % / S[K1(V - )2 4 Ka(ii - (V A R))?d3x

+ % / S[K3(i A (V A7) d3x

_ / EsD(i)d3x., 3)

where K1, K2 and K3 are the elastic constants de-

scribing the elastic deformation of the nematic film

for splay, twist and bend, respectively, and the last in-

tegral accounts for the electromagnetic contribution.

The displacement vectab is related to the director

by D = (1 /2)E(i) + (ea/2)( - E(7))ii, with €, be-

ing the dielectric anisotropy and the perpendicular

dielectric permeability.

The variation of the displacement vector is

sh— €L BEEﬁ)

2 on

57t + %"(aﬁ EG))i

aE(n) Q> .
n | n,
on

wheredE /37 is atensor of order two With)@“/aﬁ)” =
0E;/on ;. The dynamical equation for the liquid crystal
director is given by

—(n R +E (

- - . O0F .
ynAOn=—-nA—-—, nn=1,
on
wherey is the rotational viscosity of the nematic film.
For the sake of simplicity, we assunig = K, =
K3 = K. Thus, the dynamical equation reads

yoii = K[V?i — ii(ii - V2i)] + eq(ii - E)[E

JE?2 L 9E?| .
€L n- ]n—i—

€|
— E L= =
B+ e =

OE - (. (9E _\\.
—-n—|n-| —-n nl|,
on on

wheredE/oii - i = n,VE, +n,VE, +n,VE,.

At rest (without any electric field applied), the lig-
uid crystal alignment is planar, thatis, all the molecules
are parallel to the-axis  andy being in the plane of
the confining plate and perpendicular to it), so that
n = (1,0, 0). Inthe presence of an electric field applied

on

x(ﬁ~E)

alongz, E= (0,0, E;) and fore, > 0, the director re-
orients in thex— plane. As a consequence, the director
becomesi = (ny, 0, n;) with n? + n2 = 1.

In the absence of light on the photoconductor, the
electric field £, applied to the liquid crystal layer is
E;(1,=0) = E@1,=0) = 'Eo = I'Vo/d, whereVy is the
total voltage applied to the LCLV, and < 1 is a trans-
fer factor that depends on the electrical characteristics
ofthe photoconductor, dielectric mirror and liquid crys-
tal layers (impedances). As long as the light intensity is
sufficiently small, thatis, of the order of a few mw/ém
the response of the photoconductor can be fitted by a
linear function. Under this approximation, the total ef-
fective electric field applied to the liquid crystal film
can be expressed & = E(7,—0) + oy, Wherex is
a phenomenological dimensional parameter that can be
evaluated from the characteristics of the LCLV [27].

After substituting the write intensity,,, Eq. (2), in
the expression for the electric field, we obtain

E(i) = E(1,-0) + alu(i) = E(1,—0)
+alin[A + Bcos@Bcos )], (4)
where
A = 3[cos 241 — ¥2) + €OS 2¢1 + ¥2) + 2],
B = 3[c0s 2()1 — vr2) — €0 2(/1 + ¥2)]., )

wherey; andyr; are, respectively, the angles formed
by the input and feedback polarizers with the nematic
directorz.

Close to the onset of the &edericksz transition,
the director reorientation can be expressed as a Fourier
seriesi (x, y, z,t) = Y, un(x, y, 1) sin(awrz/d). For a
small reorientation angle, the director reorientation
along thezdirection,n,, describes quite well the orien-
tation angle of the liquid crystal molecules. By means
of the standard bifurcation theory [2], it is possible
to derive an amplitude equation for the first unsta-
ble Fourier moden, = u(x, y)sin(rz/d) and n, =
1 — u?sin’(rrz/d)/2. The amplitude equation reads

3 5, Koo
ot = cqu + cau” + csu” + ;VLu, (6)
where the development has been extended up to the fifth
order since the third order coefficiery can become
positive depending on the parameters of the system.



Fig. 6. Coefficientsc; (dotted line),c3 (continuous line) ands
(dashed line) as a function of the polarizer angle(radian). The
system is close at the onset of the bifurcation, that;iss close to
zero, andy; = —45deg.

The amplitude equation, Eq. (6), describes qual-
itatively the subcritical bifurcation close to the
Fréedericksz transition point. The coefficients c3
andcs are functions of the physical parameters of the
experiments, thatis;, cz andcs are functions 0B, € ,
€, Eo, Iin, Y1, ¥2. The three coefficients may change

In Fig. 6 ¢3 and cs are reported as a function of
Y2 and for a fixed value ofy; = —45deg. The first
coefficientc; is set close to zero in order to keep the
system close to the transition point. The other param-
eters are fixed at the experimental values. As we can
see on the plotgs becomes positive for small values
of Y2, whereass is already negative, thus assuring the
saturation of the amplitude. In particular, the values set
in the experiment), = —y1 = 45deg, assure thatthe
Fréedericksz transition becomes of first-order.

In Fig. 7a it is shown a phase diagram in the plane
of the input light intensityli, and of the polarizer an-
gle y». The applied electric fieldkg is computed in
order to set the system at the bifurcation point, that is,
atcy = 0. Then, we look at the sign of to determine
whether the bifurcation is subcritical or supercritical.
The line marks the transition between the two cases,
corresponding t@3 = 0. The phase diagram charac-
terizes entirely the dependencecgfirom the physical
parameters that are readily accessible from the exper-

sign depending on the parameters setin the experimentimental side. Changing the value of leads to tun-

and in particular the sign af; depends on the polar-
ization angleg/r1 andiyr2 [26,27]. Note thafA andB are
periodic iny1 andyr, so that changing the polarizer
angles modulates the response of the LCLV. Whgn

ing the character of the Eedericksz transition, from a
largely subcritical one to a small subcriticality or even
to superecriticality.

It is important to remark that in the general case

is negative and of order one, Eq. (6) describes a secondof nascent bistability the bifurcation is associated to a
order Feedericksz transition. This transition becomes cusp catastrophe in the space of parameters. However,
of a first-order one when; andcs are positive (and  this picture can change when the system presents a
small) with c5 negative. The complete expression of symmetry, like the reflection symmetry, as it occurs for
the coefficients is reported in [27]. the Feedericksz transition. Inthis case, the system goes
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through a pitchfork bifurcation and the reoriented state
u is equivalent to the-u state, as it is schematically
depicted in Fig. 7b. Correspondingly, in the parameter

Here, for a fully correlated pattern we mean an ex-
tended spatial structure that cannot, in any case, be de-
composed into its basic cells. For example, in a full

space, the catastrophe becomes smooth, like itis shownpattern of hexagons, like the ones arising in thermal

in Fig. 7a, at variance with the cusp singularity. At
the transition line between the sub and supercritical
regimes the bifurcation diagram looks like a pitchfork
bifurcation, but the equilibrium state as afunction of the
bifurcation parameter scales a¥*, at variance with
the supercritical bifurcation where it scales.?.

7. Localized structures and crystal-like
symmetries

When we insert a free propagation lengttin the
feedback loop, the system displays localized structures.
Fig. 8 displays typical distributions of localized struc-
tures, observed fof. = —10cm, an applied voltage
Vo = 18.45V;nsat 5 kHz frequency and a feedback ro-
tation angleA = 27/N with N = 6. The size of each
individual spot is approximatelyt = 350,.m, which
corresponds to the basic wavelength= 27/go =
~2)LL (A =633nm is the optical wavelength) pre-
dicted by the linear analysis for a focusing medium
with a feedback mirror [36]. The distance between the
spots is in average much larger than their size, which
indicates that we deal with a collection of localized
structures instead of a fully correlated pattern.

convection [2], we cannot destroy a single cell without
destroying the whole pattern or without avoiding that
the cell be replaced by another one. In the case of local-
ized structures, even though an overall correlation may
be imposed by the geometrical constraints, each cell of
the pattern is independent of the whole configuration
and may be addressed as a single element [43]. In our
case, for the symmetry imposed by the rotation angle,
the basic independent element that we have to consider
is a set ofN structures, always appearing along con-
centric rings. The center is a singular point, that may
or not be occupied by a localized structure, depending
on the initial condition. The recurrence constraint im-
posed by the feedback rotation stabilizes the positions
of the localized structures that, once created, remains
fixed to their positions.

The input light intensity is fixed tolj, =
0.9 mW/cn?, avalue close to the point of nascent bista-
bility. Different stationary configurations may be ob-
tained, depending on the initial condition. The result-
ing configurations stay stable for several minutes. If
we perturb the system by blocking the feedback loop,
another configuration may appear. Actually, close to
the point of nascent bistability, the dark homogeneous
state is also stable. Thus, once erased by blocking the

Fig. 8. Near-field images of localized structure configurations recorded fer2z/N with N = 6 and for different initial conditions.



Fig. 9. Atypical image observed in the far-field when the near-field
displays localized structures.

in the sense that the whole pattern is highly decom-
posable, that is, each structure may be considered as
a single element, independent of the other structures
[43].

The localization in the near-field manifests his coun-
terpartas a strong delocalization in the far-field. Indeed,
observations in the far-field show a diffusion of the
light intensity around the central peak (zero spatial fre-
guency). In the same time, no wave vector structure is
distinguishable. A typical far-field image is displayed
in Fig. 9, where the dashed line marks the location that
would be occupied by the wave vectors of a fully corre-

feedback loop, there are no localized structures until lated pattern, at the spatial frequengy= 27/ A, cor-

we introduce a perturbation able to trigger their ap-

responding to the size of the individual spots. The same

pearance. This can be done either by slightly, and tem- diffraction pattern is observed in the far-field also by

porarily, increasing/g, or by injecting in the feedback

changing the symmetry of the near-field distributions,

loop a weak additional light beam, such as the one of as we have verified for several cases by changing

a commercial laser pointer. With the laser pointer, it is

Another related aspect of the localization is that the

possible to address different positions for the excitation near-field patterns assume the aspect of what it is nor-

of localized structures. Starting from a single selof

mally expected to appear in the far-field. By choosing

localized structures, we can locally perturb the system A = 27/ N with differentN we can constructin the real
and switch on another set in a different position or a space a highly regular distribution of light spots, that
single spot in the center. All these manipulations prove can be seen as the structure function (in the Fourier
that the observed spots are indeed localized structures space) of a correspondimgsorder crystal. By keeping

Fig. 10. Near-field images of stationary localized structures observed fo2z N with (@) N = 2, (b, c)N =3, (d,e)N =4, (f,g) N =5,
(h,i) N =7, () N =8and (k, )N = 9. In (I) the magnification factor is 2/3 with respect to the other frames.



the input light intensity close to the point of nascent
bistability, the spots remain fixed to their position and
we can control their appearance and position by means
of a local writing procedure. This is very appealing
for the possibility to synthesize in the real space a sort
of “crystallography”, where all th&\ rotational-order
structures may be figured out.

A few examples are displayed in Fig. 10, where
we show the crystal and quasi-crystal like distribu-
tions of light spots that are observed o= 27 N with
N =2,3,4,5,7,8, 9. Note that thesi-order spot dis-
tributions, here observed for a complete localization in
the near-field, are the spectral counterpart of the spa-
tially extended crystals and quasi-crystals that appear
in the near-field of a LCLV experiment, when a perfect
localization is instead manifested in the far-field [44].

8. Dynamics of localized structures

8.1. Ring dynamics induced by a nonlocal shift in
the feedback loop

If we introduce a small additional rotation angle,
8§ = 0.1deg, in such away that = 27/N + §, the lo-
calized structures acquire a rotation dynamics along
concentric rings. Even though the nonlocal shiftis
along one direction, often, two adjacent rings rotate in
opposite directions.

For A = 2x/N + 6, with N = 6 and$ = 0.1deg,
we have set the applied voltage @ = 18.49V s
(5kHz) and we have studied the dynamics of local-
ized structures. For this value &, the structures ap-
pear spontaneously, nucleating from the intrinsic noise
in the LCLV (inhomogeneities or fluctuations). More-
over, in the vicinity of the bistability point, the slight
gradients provided by the Gaussian beam profile are
imposing the O(2) circular symmetry, leading to the

Fig. 11. Instantaneous snapshots of localized structuresfer
2/N + & with N = 6 ands = 0.1deg. The number of rings is in-
creasing during time: (&)= 0, (b)t = 5, (c)r = 10and (dy = 22s.

After their creation, the structures are characterized
by a complex spatio-temporal dynamics, developing
both along the radial and the azimuthal directions. The
spots rotates over the rings and the ring diameter also
changes during the time. Eventually, the radial motion
may lead to the collapse of two adjacent rings or to the
splitting of one ring into two neighboring ones. Near-
field snapshots showing this dynamical behaviour are
displayed in Fig. 11. It can be noticed that each ring
reflects the underlying hexagonal symmetry, so that the
number of spots is 6 on the inner ring and increases by
step of 6 over two adjacent ones. However, for the outer
rings, the number of spots is 17, 23, 29, that is, one
spot is missing with respect to the underlyiNg= 6
hexagonal symmetry. In a similar way, for other values
of N we find either an exceeding or a missing spot on

appearance of successive and concentric rings. We ex-the outer rings [16].

pect that other shapes of the beam profile or different
initial conditions would lead to different distributions
of localized structures, as shown numerically in [38].
Note that similar near-field patternékhseals have

In Fig. 12 azimuthal{ — ¢), spatio-temporal plots
are reported as an example of the rings dynamics.
Fig. 12a and b show, respectively, the rotation of the
localized structures over the 12 and 17 spot rings. Note

also been reported by the Akhmanov group [24]. Even that the two rings are counter-rotating with different
though not explained in terms of localized structures, speed of rotation. At longer times, eventually each ring
they are indeed observed in experimental conditions undergoes a radial instability, leading to creation and
similar to ours. annihilation of adjacent rings. An example is shown in
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Fig. 13. Radial{ — r) space-time plot showing the creation and an-
nihilation of ringS. e 0 5 10 15 20 25 30

Fig. 12c where, the fusion of two adjacent spots leads Fig. 14. Speed of rotation for increasing numbef localized struc-

to the transition from 12 to 6 localized structures. In tures along the successive rings.

the azimuthal plots the radial distance is normalized to

the instantaneous diameter of each ring. In Fig. 13 is to a value commensurate tor2In Fig. 15 we show

shown a radialf(— t), spatio-temporal plot (averaged  the instantaneous snapshots of dhe- 5 distributions

over §), where the ring creation-annihilation may be observed in the same experimental conditions as for

distinguished. Fig. 10f—g and by increasing the input light intensity
We show in Fig. 14 the measured speed of rotation to J;, = 0.95 mW/cnt. The observed dynamics consist

v, for increasing numben of spots along the succes-  of a periodic bouncing of two adjacent spots one over

sive rings. It must be recalled that the diameter of the the other.

rings is not constant during time, so that the number  The periodic behaviour can be extracted by plotting

nis only roughly related to the distance from center. g spatio-temporal plot along a line passing through the

The measured data suggest that the change of rotatiorcenters of two adjacent spots, as shown by the dashed

direction could be related to the existence of a critical Jine in Fig. 15a. The resulting diagram is displayed in

radius, above which an overall phase shift changes its Fig. 15e. By further increase &f, the oscillations in the

sign. Correspondingly, the number of spots along the structure positions become irregular in time. Similar

outer rings becomes “wrong”. dynamical behaviours can be observed for all the other
N-order distributions of localized structures.
8.2. Intrinsic dynamics of localized structures In order to single out the dynamics independently

of the symmetry imposed by the feedback rotation an-

As a consequence of the nonvariational character of gle A, we have carried out one-dimensional experi-

the LCLV experiment, we expect the localized struc- ments by fixingA = 0deg. In this case, the system
tures to exhibit an intrinsic and permanent dynamics becomes very sensitive to the influence of optical mis-
for some range of the control parameters. Indeed, asalignments, such as small drifts, inhomogeneities or
we slightly increase the input light intensity above the any other source of small gradients. We have selected
point of nascent bistability, we observe oscillations in the one-dimensional region on a central part of the

the positions of the localized structures, and this even LCLV, where illumination gradients and misalignment
though the feedback rotation angteis exactly fixed effects are negligible. A rectangular mask is introduced



Fig. 15. Instantaneous snapshots showing the oscillations of the localized structure positions. Times: (a) 0.0, (b) 2.6, (c) 5.0, (d) 8.2 €. The dashe
line in (a) marks the one-dimensional cut along which the spatio-temporal diagram has been recorded. (e€) Space (vertical)-time (horizontal)
diagram showing the periodic oscillations of the structure positions. The total elapsed time is 120s.

Fig. 18. Space (vertical)-time (horizontal) diagrams showing (a) two

(e) [
-
L]
-
stationary localized structures, (b) the periodic and (c) the aperiodic

Fig. 16. Instantaneous snapshots showing three bouncing localized ygijjations of the structure positions. The total elapsed time is 94s.
structures. Times: (a) 0.0, (b) 1.0, (c) 1.3, (d) 1.7, (e) 2.1, (f) 2.4 and

@ 28s. temporal diagram corresponding to the aperiodic os-
cillations in the positions of two adjacent localized
structure.
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in the optical feedback loop, just in contact to the en-
trance side of the fiber bundle. The widih of the
aperture is 0.50 mm whereas its lengith 20 mm. The
transverse aspectratizy A >~ 1is small enough for the , :
system to be considered as one-dimensional, whereas?r é:;,ﬁorz()del beyond the Feedericksz
the longitudinal aspect ratigA ~ 60 is large enough

for the system to be considered as a spatially extended . -
one. In Fig. 16 are shown the instantaneous snapshots When we move beyond the&adericksz transition,

of three adjacent localized structures, with two of them ?hgr:;iﬁgséigzlnn;i%iei)fc?ﬁebf ﬁg;ﬁesetgtgir;gk }‘cr)%m
bouncing periodically in time one over the other. The P b P

corresponding spatial profiles are plotted in Fig. 17 [12]. By taking into account both diffraction and polar-
whereas in Fig. 18b it is displayed the correspond- ization interference, the light intensify, reaching the

ing spatio-temporal plot. Besides, Fig. 18a represents photoconductor is given by
two stationary localized structures, whose position re-

_ 1 1 di(L/2K)3x —iB cog 6y,2
mains fixed during time and Fig. 18c is the spatio- Iy = 21'”|el( [20%(1+ TP o0
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0
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Fig. 17. Spatial profile of the localized structures. Times: (a) 0.0, (b) 1.3 and (c) 1.7 s. The horizontal scale is in pixel units.



wherex is the transverse direction of the liquid crystal
layer.

Letusintroduce the average director #lt= 6(x, 1),
of the directorg = 0 is the initial unperturbed planar
alignment whereag = n/2 is the homeotropic align-
ment corresponding to the saturation of the molecular
reorientation. The liquid crystal dynamics is described
by a local relaxation equation of the form

T Vrr
30 =129.0 -0+~ [1— | — T
o we =0+ 2( \/Wo+alw(9, ax)>

()

with V = I'Vo + al,(0, 39x) > VF1, Where Vet is the
Fréedericksz transition threshold voltage drid the

the reorientation takes place, thatdg,# 0, the sys-
tem loose the inversion symmetry around the equilib-
rium solutions. Moreover, the spatial dependencg,of

is nonlocal, hence the dynamics of the above model,
Eq. (7), is of nonvariational type, that is, the system
cannot be described by a Lyapunov functional.

Close to each point of nascent bistability (in Fig. 19
the points of hascent bistability are represented by the
bright circles), and neglecting the spatial derivatives,
we can develop = 6p + u + - - - and derive a normal

form equation
du =n+ pu —u +hot., (8)

wherey is the bifurcation parameter anéccounts for
the asymmetry between the two homogeneous states.

electric coherence length. The above model have beenThe higher order terms are ruled out by the scaling anal-
deduced by fitting the experimental data measured for ysis, sincet ~ u%2, 5 ~ u*2 andd, ~ pu, u <« 1. If

the open loop response of the LCLV [27,25] and it is
slightly different with respect to the one proposed in
Ref. [12].

The homogeneous equilibrium solutions &pe=
7/2(1— /Ver/V) whenV > Vet and 6y = 0 when
V < V7. The graph ofp(Vo, Iin) is shown in Fig. 19
for a value ofl;, close to the experimental conditions.

Several successive branches of bistability can be dis-

tinguished, corresponding to the critical points where
0o(Vo, Iin) is a multi-valued function. Note that once

li, (Mw/cm?)

Fig. 19. The multi-valued functioéy(Vo, I).

we now consider the spatial effects, due to the elastic-
ity of the liquid crystal and to the light diffraction, the
system exhibits a spatial instability as a function of the
diffraction length. The confluence of the nascent bista-
bility and the spatial bifurcation give rise to a multicrit-
ical point of codimension three. Close to this point, we
derive an amplitude equation, that we call the Lifshitz
normal form [28]

ou =n+ pu — ud 4+ VOyxlt — Oyxxxld + AUyt

+c(deu)?, 9)

whered, ~ ut4, v ~ 1172 accounts for the intrinsic
length of the systema, ~ O(1) andc ~ O(1). The term
dxexxtt 1S @ kind of super-diffusion, accounting for the
short distance repulsive interaction, whereas the terms
proportional tod andc are, respectively, the nonlinear
diffusion and convection. The full and lengthy expres-
sions of the coefficients for the LCLV will be reported
elsewhere [45].

The model shows bistability between a homoge-
neous and a spatially periodic solutions and therefore
it exhibits a family of localized structures. Depending
on the choice of the parameters, the localized struc-
tures may show periodic or aperiodic oscillations of
their position. Numerical simulations of Eq. (9) show
a qualitative agreement with the experimental observa-
tions [25]. Moreover, there is a quantitative agreement
between the location of the points of nascent bistability
predicted by the surface of equilibrium states and those
observed in the experiment.



10. Conclusions

In the LCLV experiment, we have singled out a

regime of parameters where the response of the LCLV

is closely similar to that of a binary phase slice work-
ing around a point of nascent bistability. In these con-

ditions, and by changing the feedback rotation angle

A =2n/N, we are able to control the appearance of
N-ordered configurations of localized structures, that

can be seen as the spectral components of a crystal

or a quasi-crystal structure functions. By introducing
a small nonlocal shift in the feedback loop, localized
structures display a dynamical motion over concentric
rings.
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