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Abstract This paper describes and discusses the main
characteristics and implementation issues of a 3D mixed
element mesh generator based on a generalization of the
modified octree approach. This mesh generator uses
primitive elements of different type as internal nodes, a
flexible refinement approach as refinement strategy
(primitive elements are not always bisected), and bricks,
pyramids, prisms and tetrahedra as final elements. The
mesh generation process is divided in several steps: the
generation of the initial mesh composed of primitive
elements, the refinement of primitive elements until the
point density requirements are fulfilled, the generation
of a graded mesh between dense and coarse regions, and
finally, the recognition of the final elements. The main
algorithms and data structures are described in detail for
each step of the mesh generation process. As result,
examples of meshes that satisfy the Delaunay condition
and that can be used with the control volume method
are shown.

Keywords Modified octree approach Æ Delaunay
meshes Æ Mixed-element meshes

1 Introduction

Since the last 20 years, modified octrees have been suc-
cessfully used in geometric modeling applications and, in
particular, for mesh generation [1–3]. The modified oc-
tree approach works as follows: the 3D domain is en-
closed in a cube, whose octants are repeatedly refined at
their edge midpoints until the boundary and internal

quantities are sufficiently approximated. In order to
generate a final mesh, elements with and without edge
midpoints are partitioned into tetrahedra by using
templates or ad-hoc algorithms. In case of mesh gener-
ation, the final elements have to fulfill the requirements
imposed by the underlying numerical method.

The use of a flexible refinement approach allows us to
select the best point at each refinement step. This kind of
refinement was originally called intersection based ap-
proach, because it was introduced to refine intersected
elements at the intersection points [4, 5].

This paper presents and discusses the main charac-
teristics and implementation issues of a mixed element
3D mesh generator based on an extension of the modi-
fied octree approach. The modified octree approach is
extended as follows: (1) The domain is enclosed using a
brick. A brick has rectangular faces. (2) The internal
elements (nodes) belong to a set of well-shaped elements,
such as pyramids, prisms and tetrahedra of rectangular
basis, and bricks. The set of elements that is called well-
shaped depends on the application. This set has to be
closed under the refinement operator, i.e., each element
can be refined in such a way that all newly generated
elements belong to this set. (3) The refinement is either
bisection or what we have called a flexible refinement
approach. Using the bisection approach, the refinement
is always made at the edge midpoints. Using flexible
refinement approach, the refinement is made at the most
convenient edge point. The best point, the one whose
associated refinement generates sons with the smallest
aspect ratio, is chosen from either the Steiner points
(points generated by the refinement of the edge neigh-
bors) or the intersection points (points generated by the
intersection between the object geometry and the target
element). (4) The number of the newly generated ele-
ments under the refinement operator depends on the
shape of the element and on the refinement direction.
For example, if a refinement is required along one, two,
or three coordinate axes, cubes, are subdivided into two
halves, four quadrants, and eight octants, respectively.
(5) The set of final elements is defined by the application.
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The final elements can be of the same type of the ones
used as internal elements, or of other type. What we kept
from the modified octree approach is that the refinement
is parallel to the axes of the coordinate system. The
previous ideas are applied first to the generation of 3D
Delaunay mixed element meshes and then, to the gen-
eration of a subset of Delaunay meshes, the ones re-
quired by control volume discretization method.

Preliminary work on this mesh generator has been
already published in [6–8]. In this paper, we discuss new
improvements, implementation issues, complexity and
the outreach of this mesh generator.

2 Characterization of well-shaped meshes based on
modified octrees

This section introduces the concept of well-shaped
mixed element meshes independent of the application.

2.1 Basic algorithm

Independent of the application, the generation of a well-
shaped mesh is done by following the next consecutive
steps:

1. Generate a macro-mesh that fits the geometry of the
modeled device exactly.

2. Refine the macro-mesh to fulfill the density require-
ments specified by the user.

3. Generate a proper mesh for the current application,

• – Make the mesh 1-irregular.
• – Look for proper tessellations.

4. Store the information required by the application.

2.2 Macro-elements

A macro-mesh is composed by macro-elements. Macro-
elements are used to fit the device geometry. The fol-
lowing theorem characterizes the set of macro-elements
used in the generation of well-shaped mixed element
meshes.

Theorem 1 Let P be a set of polyhedra. P leads to well-
shaped meshes if each polyhedron p 2 P

1. fulfills the restrictions imposed by the current applica-
tion, and

2. can be refined in such a way that all newly generated
polyhedra also belong to P (P is closed).

Proof: Condition (1) guarantees that the macro-ele-
ments fulfill the restrictions imposed by the current
application. Condition (2) guarantees that each element
generated through the refinement process fulfills condi-
tion (1).

2.3 Element refinement approaches

The most common way of refinement is bisecting an
element, i.e., each element edge is bisected. This method
is easy to analyze and implement, but it does not allow
flexibility in choosing the most appropriate refinement
point at each refinement step. That is why, our mesh
generator uses a flexible refinement approach.

2.4 Elements with Steiner points

Irregular macro-elements are elements with edges split at
least once. The point splitting an edge is called a Steiner
point. Irregular elements appear between coarse and fine
regions of the macro-mesh. In order to complete the
mesh using as few elements as possible, the tessellation
of irregular elements is necessary. A well-shaped irreg-
ular element is defined as follows:

Definition 1 Let p be an irregular polyhedron. The
tessellation t of p is well-shaped if and only if t satisfies
the conditions of the current application.

2.5 Final elements

Final elements are the elements that compose the final
mesh. In the current version of the algorithm, we are not
considering that final elements require further refine-
ment. That is why, the set of final elements can include
more basic elements than the ones included in the set of
macro-elements.

3 Generation of mixed-element Delaunay meshes

This section describes how the general concepts de-
scribed above in the Section Characterization of well-
shaped meshes based on modified octrees can be applied
in the generation of Delaunay meshes.

The concept of Delaunay triangulation can be ex-
tended to the mixed element meshes as follows:

Definition 2 A tessellation T of a set of points S is a
Delaunay tessellation if there exists a point-free cir-
cumsphere for each tessellation element.

We use the term Delaunay tessellation and not Dela-
unay triangulation because our meshes include other
element types than tetrahedra. Valid elements are con-
vex polyhedra whose points are co-spherical.

3.1 Macro-elements

The following theorem characterizes the set macro-ele-
ments used in the generation of Delaunay mixed element
meshes.

Theorem 2 Let P be a set of convex polyhedra. P leads
to Delaunay meshes if each polyhedron p 2 P



1. is defined by co-spherical points (the circumsphere of p
is point-free) and

2. can be refined in such a way that all newly generated
polyhedra also belong to P (P is closed).

Our set of macro-elements is composed of rectangu-
lar pyramids, rectangular prisms, bricks, rectangular
tetrahedron and its complement inside a brick (Fig. 1).
They are elements that satisfy Theorem 2 and can be
properly refined as it will be shown in the next section.

3.2 Flexible element refinement

Since the bisection-based approach is a particular case of
the flexible refinement approach, the current section
only shows the refinement for each macro-element under
flexible refinement. The refinement position of a target
element is determined from the location of its Steiner
points. As we have said before, we kept from the mod-

ified octree approach the refinement parallel to the main
axes.

3.2.1 Refinement of bricks

Bricks can be split into two halves, four quarters or eight
octants as before but edges are not necessary bisected.
Figure 2 shows the different ways to split a brick using
arbitrary refinement points. The only restriction is that
parallel edges have to be split at the same relative po-
sition from their endpoints in order to generate smaller
bricks and not hexahedra.

3.2.2 Refinement of prisms

Rectangular prisms can be partitioned in one, two, or
three directions to generate two prisms, one brick plus
two prisms, and two bricks plus four prisms, respec-
tively, as shown in Fig. 3.

3.2.3 Refinement of the pyramid, the tetrahedron
and its complement

The refinement of a rectangular pyramid, a tetrahedron
and its complement must always be simultaneously in
the three axes in order that the newly generated elements
belong to the set of well-shaped macro-elements. As
shown in Fig. 4, the refinement of the pyramid generates
one brick, two prisms and two pyramids (left), the
rectangular tetrahedron is refined into three similar ele-
ments and a rectangular tetrahedron complement
(middle), and the rectangular tetrahedron complement is
refined into three similar elements, four bricks and one
rectangular tetrahedron (right).

3.3 1-irregular elements

1-irregular macro-elements are the elements with at most
one Steiner point on each edge. These elements are

Fig. 1 Set of elements used to fit the device geometry

Fig. 2 Brick refinement

Fig. 3 Prism refinement



generated in order to get a smooth transition between
coarse and fine regions of the modeled object.

The next definition characterizes a well-shaped 1-
irregular element for the generation of a mixed-element
Delaunay mesh.

Definition 3 Let l be a 1-irregular macro-element. l is
well-shaped if no Voronoi point of l lies outside its
convex hull (outside the macro-element itself).

The mesh generation algorithm proposed below in
Section The algorithm inserts points into appropriate
edges in case an 1-irregular element is not well-shaped.
In order to know if an 1-irregular element is well-shaped
or not, the algorithm checks the condition formulated in
the next theorem.

Theorem 3 Let S � R3 be a set of points, C the convex
hull of S, and T a Delaunay tessellation of S. Then no
Voronoi point of S lies outside C if and only if for each
face f of T on the surface of C, the circumsphere of f with
the center in the middle of f is point-free.

The detailed proof of this theorem can be found in
[9]. Theorem 3 guarantees that the whole mesh satisfies
the Delaunay condition because (1) the local tessellation
of each 1-irregular element must be Delaunay and (2)
the smallest circumsphere of each face on the surface of
a 1-irregular element is point-free. Condition 2 implies
that elements sharing internal faces are also Delaunay.
Figure 5a shows the Delaunay tessellation a well-shaped
1-irregular element and Fig. 5b shows its Voronoi dia-
gram.

Note that the elements without Steiner points also
fulfill the Delaunay condition, because (1) they belong to
the set of well-shaped macro-elements and (2) the reg-
ular point distribution generated by our refinement
strategy.

3.4 Final elements

During the tessellation of well-shaped 1-irregular ele-
ments, several co-spherical point configurations whose
circumsphere is point free are candidates to define a
valid final element. In order to avoid the handling of a
high number of final elements, our application recog-
nizes as final element the point configurations that fulfill
the following restrictions: (1) their convex hull is defined
by triangular and/or quadrilateral faces and (2) it is not
possible to tessellate the interior of their convex hull into
simpler final elements without the insertion of diagonals

on the convex hull surface. The current set of final ele-
ments is shown in Fig. 6. This set of elements solves the
most used 1-irregular configurations of bricks [10]. In
case a well-shaped 1-irregular element cannot be tessel-

Fig. 5 Well-shaped 1-irregular brick (a) Delaunay tessellation (b)
Voronoi diagram

Fig. 4 Refinement of the
pyramid, tetrahedron and its
complement



lated into this set of elements it is handled as a non well-
shaped 1-irregular element. This means, points are in-
serted into appropriate edges until this element can be
tessellated.

It is worth to point out that the final elements shown
in Fig. 6 labeled from (a) to (e) are already used in the
simulation of semiconductor devices with the control
volume method. The two last elements have not been
incoporated yet, because they do not appear very fre-
quently.

3.5 The algorithm

The Delaunay mesh generator begins the fitting of the
geometry by enclosing the domain with its smallest
brick. Brick edges are refined along one, two or three
coordinate axes at the most convenient edge point se-
lected from the intersection points between the input
geometry and a target element. The intersection points
can be located in the interior of the element or on the
element edges or faces. In our implementation, each
brick contains information about the polygons by which
it is intersected. The intersection points are the points
that define each one of these polygons. When an inter-
sected brick is refined, the coordinates of the intersection
points are stored into three ordered lists: one for the x-
coordinates, one for the y-coordinates and one for the z-
coordinates. For each nonempty list, the coordinate
closest to the respective coordinate of the brick center is
selected as candidate to define the refinement point. The
candidate that generates the brick sons with better as-
pect ratio defines the refinement direction and the

refinement point. For example, if the candidate is d in
the direction x, all brick edges parallel x are divided into
two edges by inserting a point whose x-coordinate is d.
Once the two brick sons are generated, the polygons that
intersect the target brick are cut in order to assign to
each brick son only the part of the geometry by which it
is intersected. Figure 7 shows a 2D example illustrating
the process: the geometry is shown in Fig. 7a, the initial
smallest rectangle surrounding the geometry and the first
refinement at point p7 is shown in Fig. 7b. Note that p7
was selected from all the geometry points that are in the
interior of the initial rectangle or are located on one of
its edges. The geometry is cut through the line l so that
each new rectangle only knows the part of the geometry
that intersects it. Figure 7c shows a probably next
refinement of the right son, where p5 was selected to
locate the refinement line. This process finishes when all
the intersected rectangles can be divided into two tri-
angles or a fractal configuration is recognized. Figure 7d
shows a macro-mesh composed of triangles and rect-
angles, where the triangles/rectangles outside the
geometry have been eliminated. Note that the initial
macro-mesh is usually not conforming.

Figure 9a shows a 3D macro-mesh composed of
bricks, prisms and rectangular pyramids. In a similar
way to the 2D case, a brick is refined at the most con-
venient point selected from the intersection points be-
tween the object geometry and the brick itself. The
process finishes when all the intersected bricks have the
intersection points at the brick corners or a fractal
configuration is recognized. If all the intersection points
are at brick corners, the brick is exactly fitted using
prisms and pyramids of rectangular basis, and rectan-
gular tetrahedra (well-shaped macro-elements). The
tessellation of these intersected bricks is done template-
based. The simplest intersected bricks are shown in
Fig. 8. The detection of fractal configurations is dis-
cussed in Section Recognition of macro-elements and
fractal configurations. If a fractal configuration is found,
the brick is not further refined and in the next steps, it is
handled as a cut brick.

After the fitting of the device geometry, each element
is refined along the required axis until the point density
specified by the user is obtained. Element edges are
normally bisected except when their edges already con-
tain Steiner points. From the available Steiner points,
the one whose associated refinement generates sons with
smallest aspect ratio is chosen. Figure 9b shows the
bipolar transistor with the required point density speci-
fied by the user.Fig. 6 Set of final elements

Fig. 7 Fitting a 2D device
geometry using the flexible
refinement approach. (a) The
geometry, (b), and (c) the first
steps to fit the device geometry
(d) initial macro-mesh



Subsequently, the mesh is done 1-irregular in order to
obtain a graded mesh between coarse and fine regions
and to generate well-shaped 1-irregular elements (1-
irregular elements that satisfy Definition 3). Bad 1-
irregular elements are improved by either inserting
proper points on specific edges or refining the element in
an adequate direction so that the depth of the tree is
never incremented. Figure 10a shows a 1-irregular mesh
for the bipolar transistor.

Once all 1-irregular elements are well-shaped, each
local tessellation is computed either template-based or
using an ad-hoc algorithm. A co-spherical set of points,
whose circumsphere is point-free, is accepted as final
element if its tessellation into (simpler) basic elements
requires the addition of new edges (diagonals) or vertices
on its surface. A final mesh is shown in Fig. 10b.

3.6 Restrictions for the control volume method

The control volume method is widely used in semicon-
ductor device simulations [11, 12]. It has been proven that
a subset of the Delaunay meshes provides a good dis-
cretization for this numerical method. Both the Delaunay
mesh and its dual the Voronoi diagram are required in
the numerical computations. In particular, the Voronoi
regions are used as the control volumes to approximate
the numerical integration associated to a mesh point. In
order to get good simulation results, it is required that
internal mesh points are surrounded by a region of only
one material [12–14]. This restriction imposes the fol-
lowing condition to boundary/interface elements:

Definition 4 A Delaunay tessellation of a set of points
S is adequate for the control volume discretization
method if each Voronoi point (circumcenter) of a
boundary element is inside of it or is inside a neigh-
boring element through internal faces.

The mesh generator described in the previous section
generates Delaunay tessellations. In order to fulfill
Definition 4, both macro-elements used to fit the object
geometry and boundary/interface elements generated in
the tessellation of 1-irregular elements must have their
Voronoi point in their interior or inside a neighboring
element through internal faces. The elements of the 1-
irregular tessellations satisfy Definition 4 because they
fulfill Theorem 2. However, not all the macro-elements
satisfy it. The macro-elements that satisfy the previous
definition without the insertion of new points are the
rectangular prism, rectangular pyramid and brick. The
brick contains the center of its circumsphere in its inte-
rior, and the rectangular prism and pyramid on their
surface. (Fig. 11 shows the Voronoi diagram inside each
one of these macro-elements.) Then we use only these
macro-elements to fit the object geometry. Since the
whole mesh fulfills the Delaunay condition, the existence
of the Voronoi diagram is guaranteed.

3.7 Comments on the complexity of the algorithm

In the following, we discuss how good and efficient is the
previous algorithm in generating a mesh in the context
of algorithms based on octrees.

The algorithms to fit the device geometry and to fulfill
the density requirements are very efficient. The strategy
to fit the object geometry allows that at each refinement
step, each new element contains a simpler geometry than
its father except when the intersection is a fractal con-
figuration. Then, this process converges and generates a
number of elements that depends on the number of
points of the input geometry and on the number of
geometry edges (faces) that generate new intersection
points on edges or faces of the new bricks. Note that the
first element refinements produce more new intersection
points between the input geometry and the brick edges
and faces than the later ones, because the first bricks
contain a larger part of the geometry. Each new gener-

Fig. 8 Intersected bricks



ated element is visited once. The same occurs in the next
step where the density requirements are fulfilled dividing
each element into smaller ones. Each element is visited
once for each density parameter.

The number of elements generated in the process to
get a 1-irregular mesh is also efficient, because each
element is refined in a certain direction only if in this
direction one of its edges has more than one Steiner
point. However, the process to generate a well-shaped
1-irregular mesh still introduces too many points and
elements because of: (1) our improvement strategy uses
only local information to decide the refinement of a bad
1-irregular element. Thus, the new elements are closer to
be well-shaped elements, but the ones of the neighbor-
hood might be deteriorated, (2) Definition 3 is more
restrictive than it is necessary in order to decide locally if
an 1-irregular element is well-shaped.

Once all the 1-irregular elements are well-shaped, the
number of generated elements is optimal because the
tessellation algorithm usually does not divide co-spher-

ical point configuration into smaller elements. If meshes
for the control volume method are required, the com-
putation of the Voronoi diagram is linear on the number
of edges. This is done by traversing once the leaves of the
mixed element tree after the final mesh was generated.

4 Implementation issues

This section describes key aspects in the design and
implementation of the algorithm described in the pre-
vious section.

4.1 Recognition of macro-elements
and fractal configurations

This section describes the conditions used during the
generation of the initial mesh to detect fractal configu-
rations and to detect intersected bricks that can be tes-

Fig. 9 (a) Fitting the device
geometry for the bipolar
transistor: 554 points and (b)
getting the desired mesh
density: 3,030 points



sellated into macro-elements. We first describe the con-
ditions used for the generation of 2D initial meshes,
because it simplifies the description of the conditions
used in 3D.

A fractal configuration is defined as follows:
Definition 5 Let C0 be a rectangle in 2D or a brick in

3D and G0 the object geometry intersecting C0. The pair
(C0, G0) is a fractal configuration if after i refinements of
C0, a new pair (Ci, Gi) can be transformed to (C0, G0)
using scale or mirroring transformations.

4.1.1 2D fractal configurations

Let C0=(xc, yc, dx, dy) be a rectangle defined by the
bottom left corner (xc, yc) and the top right corner
(xc+dx, yc+dy). Let S={e0,..., en-1}, n > 0 be a set of
segments of the geometry G0 that intersects C0.

Definition 6 The rectangle C0 is tessellated into mac-
ro-elements if and only if the endpoints of each segment
ei is located at a corner of the rectangle C0.

Figure 12 shows the two kinds of intersected rectan-
gles: the rectangle at the left of the figure is completely
inside or outside the object geometry and the rectangle
at the right is cut by a segment. The right rectangle is
divided into two triangles. The segments that coincide
with some rectangle edges are used to find the region to
which a macro-element belongs.

It is known that the pair (C0,G0) that has a fractal
behavior in 2D is the one shown in Fig. 13a. The fractal
behavior can be observed after the orthogonal refine-
ment at the intersection point P0. This refinement
introduces a new intersection point P1 as shown in
Fig. 13b. Thus, the lowest rectangle C1 in Fig. 13c is
intersected by a mirroring configuration of the geometry
shown in Fig. 13a.

Theorem 4 A 2D geometric configuration is a 2D
fractal configuration if and only if:

1. All the segments of G0 that intersect the interior of C0

share an endpoint.

Fig. 10 (a) Making the mesh
density 1-irregular: 6,230 points
and (b) final mesh: 11,403
points



2. Let p0 be the shared endpoint and let us assume that
p0 coincides with the bottom left corner (xc, yc) of C0.
The endpoints p1 and p2 of the segments e1=(p0, p1)
and e2=(p0, p2) must be located on the edges of C0

whose endpoints do not include (xc, yc). This condition
can be formulated as follows: (p1�p0)t
(p1�p0)=dx

2+d1
2 where 0 < d1 £ dy, and (p2�p0)t

(p2�p0)=d2
2+dy

2 and 0 < d2 £ dx. (p1 can replace p2
and vice versa).

This condition guarantees that the endpoints p1 and
p2 are located on different edges of the rectangle. The
endpoints can only be on the same edge if one of them is
located at the corner (xc+dx,yc+dy).

4.1.2 3D fractal configurations

The conditions formulated to detect if an intersected
rectangle can be tessellated into macro-elements and if
an intersected rectangle contains a fractal configuration
can be extended to 3D.

Let C0=(xc, yc, zc, dx, dy, dz) be a brick with bottom
left front corner (xc, yc, zc) and top right back corner
(xc+dx, yc+dy, zc+dz). Let PL=P0,...,Pn-1 be the list of
polygons that intersects C0 . Each Pi is defined by an
ordered list of segments eio,...,eik.

Definition 8 An intersected brick will be tessellated
into macro-elements if each endpoint of the polygon
segments is located at one of the brick corners.Fig. 11 Macro-elements and their Voronoi regions

Fig. 12 Tessellations of a cut rectangle into 2D macro-elements



The Fig. 8 of the Section The algorithm shows some
examples of intersected bricks and their tessellations.
The recognition of which macro-element fits a specific
intersected brick is done template-based.

Before we specify the geometric conditions that ap-
pear in a 3D fractal configuration, let us use Fig. 14 to
illustrate some examples of 3D fractal configurations.
Figure 14a shows an intersected brick where two of its
faces contain a 2D fractal configuration. Figure 14b
shows a brick intersected by a geometry whose orthog-
onal projection on four of the six brick faces is a 2D
fractal configuration.

The next theorem describes the condition to recognize
a fractal configuration in 3D.

Theorem 5 A 3D geometric configuration is a 3D
fractal configuration if and only if:

1. At least two segments e1 and e2 of G0 that intersect the
interior of C0 share an endpoint.

2. Let p0 be the shared endpoint and let us assume that p0
coincides with the bottom left front corner (xc, yc, zc) of
C0. The endpoints p1 and p2 of the segments e1 =(p0,
p1) and e2=(p0, p2) must be located on the edges of C0

that do not contain (xc, yc, zc) as endpoint. This con-
dition can be formulated as follows: (pi�p0)=(xi, yi,
zi), i=1,2 where at least two of the coordinates of (xi,
yi, zi) must be greater than 0. Furthermore, p1 and p2
must be located on different edges of the brick. This
implies that (x1, y1, z1) � (x2, y2 z2) must have two or
more coordinates not equal to 0 except when p1 or p2 is
located at a brick corner.

The condition formulated in this Theorem is only
checked after all segments endpoints that intersect a
brick are located on boundary edges or corners of the
brick. In case there exist endpoints in the interior of a

brick or in the interior of a brick face, the brick is refined
as it was explained in the Section Algorithm.

4.2 Basic algorithms and data structures

This section describes the data structures and algorithms
designed to implement the mixed element trees and to
handle the flexible refinement approach in a efficient
way.

4.2.1 Mixed element trees

The mesh elements are stored in a mixed element tree. A
mixed element tree is defined as follows:

Definition 6 Let T be a tree. T is a mixed element tree if

1. each node (internal or leaf) is a macro-element
2. each internal node is labeled with the axes across which

the node is refined.

The root of the tree is the smallest brick that sur-
rounds the object geometry. The number of sons of each
internal node (macro-element) depends on the axes the
node was refined and on the macro-element type. For
example, a brick refined through the x-axis has two sons;
a brick refined through the x- and y-axes has four sons,
and a refined pyramid has always five sons.

Theorem 6 Let T be a mixed element tree. T leads to
well-shaped meshes by construction if and only if

1. each internal node is one of the macro-elements de-
scribed in the Section Macro-elements

2. each leaf is an 1-irregular macro-element satisfying
Definition 3 or a macro-element without Steiner points
and

Fig. 14 (a) The 2D fractal
configuration observed in two
brick faces and (b) a 3D fractal
configuration

Fig. 13 (a) 2D fractal
configuration, (b) (C0,G0) and
(c) (C1,G1)



3. each 1-irregular leaf can be tessellated into the final
elements.

This representation allows the generation of well-
shaped meshes by construction because it permits the
implementation of the concepts introduced in the pre-
vious sections in a natural way.

4.2.2 Refinement algorithm

Our mesh refinement strategy has the following char-
acteristics: (1) It is depth first, i.e., the last generated
element is refined first. Then, after some refinements
elements that were originally face neighbors can lie at
very different tree depth. (2) Neighboring elements
might not be refined at the same location. An element
can have several Steiner points on its edges because of
the previous refinement of its neighbors. The decision of
which plane will be used to cut an element depends on
(1) the part of the geometry that intersects the element,
(2) the Steiner points already available, and (3) the as-
pect ratio of the possible sons. Let us use a 2D example
to illustrate the previous ideas. The case (1) is illustrated
in Fig. 15. The rectangle A is refined into two smaller
rectangles B and C. The rectangle B is refined again into
D and E, and the rectangle E is refined in F and G. The
rectangles D, F and G are elements in the neighborhood
of the rectangle C and F and G are located two levels
deeper than C.

Figure 16 illustrates the case (2). First, the rectangle
A is refined into two smaller rectangles B and C. B and C

share edge (p4, p5). Then, the refinement of the rectangle
B generates the point p6 on edge (p4, p5) and the
refinement of rectangle C generates the point p7 on the
same edge. In order to be able to refine these new ele-
ments further, edge (p4, p7) must have access to p6 and
edge (p6, p5) must have access to p7.

3D elements are refined by inserting simultaneously
three or four points on their edges. These points define a
plane whose normal is always one of the main axes.

Faces are shared at most by two elements but edges can
be shared by several ones. The refinement of an element
is done by the refinement of its edges and faces. Each
edge is refined by inserting a point between its endpoints
and faces by inserting an edge parallel to one or two face
edges.

In order to implement our mesh generation strategy,
the algorithm needs to know all the points previously
inserted on its edges. The edge data structure designed to
efficiently and consistently handle this information is the
following: for each edge (v1, v2) only one inserted point p
is stored explicitly between its endpoints. The rest of the
points must be visible from (v1, p) and (p,v2). The next
inserted points are stored in one of the descendants of
(v1, v2). The algorithm is illustrated in Fig. 17. Fig-
ure 17a shows the case when a point p is inserted on an
edge (v1, v2) without Steiner points. Two new edges are
generated (v1, p) and (p, v2) and p is stored as the first
point of edge (v1, v2). Figure 17b shows the case where
edge (v1, v2) has already stored a Steiner point gp and the
point p to be inserted lies between gp and v2. The point p
is inserted recursively between gp and v2. Note that if
edge (gp, v2) has no Steiner point, p is inserted here.
Otherwise, the point p is passed through its edge
descendants until one of them has no Steiner point on it.
When the recursive call finishes, a new edge is created
with endpoints (v1, p) and first Steiner point gp. The edge

Fig. 15 Neighboring elements.
Refinement of a rectangle and
the associated tree structure

Fig. 16 Refinement of a rectangle



(v1, p) must be created because it belongs to one of the
sons of the refined element. The insertion of gp on (v1, p)
guarantees that the sons of the refined element that share
(v1, p) would have access to all the points already in-
serted between their endpoints. Figure 16b has a sym-
metrical case when the point p is inserted between edge
(v1, gp).

Note that behind the edge data structure, there is an
implicitly binary search tree. In order to look if a Steiner
point p is already inserted between v1 and v2, p is com-
pared with gp. If p is equal to gp, the search finishes. If p is
between (v1, gp), the search is continued inside (v1, gp).
Otherwise, the search is done inside (gp, v2). Then, the
search or insertion of a point p is done O(ln(n)), in aver-
age, where n is the number of Steiner points of the edge.

A similar data structure and algorithms were de-
signed and implemented for inserting an edge on a ele-
ment face [6].

4.3 Recognizing final primitive elements

Final elements are recognized using the two common
strategies adapted to the recognition of several element
types: (1) template-based, i.e, a tessellation is obtained
from a table of pre-computed tessellations of the most
generated 1-irregular elements. This technique is applied
to 1-irregular configurations, whose Steiner points are
edge midpoints, and (2) the use of an ad-hoc algorithm
to compute the local tessellations. This algorithm is used
for the well-shaped 1-irregular macro elements that are
not solved using a template-based approach.

The template-based strategy uses the fact that several
1-irregular configurations (patterns) are permutations of
the same topology. The patterns have been then classi-
fied into equivalence classes or pattern types. Patterns
and pattern types are stored in tables. Each pattern is
associated with a pattern type and a permutation of its
corners in order to be mapped to the pattern type. A
pattern type is associated with its Delaunay tessellation
and the required eccentricity condition where this
tessellation is valid. The number of possible patterns
generated by using only edge midpoints is 2 number-
of-edges. For example, in case of a brick, there are 212 1-
irregular configurations. An integer code obtained from

the split edges of a 1-irregular element is used to index
the pattern table and so to obtain the pattern type and
the corner permutation. Then, the pattern type is used to
index the pattern type table and to obtain by using the
corner permutation information the corresponding tes-
sellation. Currently, the pattern type table contains 25
equivalence classes. The total number of equivalence
classes for 1-irregular configurations defined by edge
midpoints is 144 [8]. Then, it is possible to handle all of
them in a table. A lower bound for the number of
equivalence classes for 1-irregular configurations with
Steiner points at any position is 34,058. The total
number of 1-irregular configurations is 1873 [8]. Note
that it is not possible to have a template based approach
in this case. The advantage of a template-based ap-
proach over an ad-hoc algorithm is that it is more effi-
cient (tessellation in constant time) and robust.

The ad-hoc algorithm computes the Delaunay tes-
sellation with the lowest number of elements under the
following conditions: (1) it never divides quadrilateral
faces into triangles, (2) it obtains all the co-spherical
points (whose circumsphere is point-free) before an ele-
ment is built.

The algorithm can be summarized in the following
steps: (1) each 1-irregular face on the surface of a 1-
irregular element is divided into triangles and/or rect-
angles. (2) Final elements with a face on the surface of
the 1-irregular element are recognized first. (3) A final
element is built from a target face whose vertices and
some other vertices of the 1-irregular element define a
point-free circumsphere (Delaunay condition). (4)
Depending on the type of the target face (triangle or
quadrilateral) and the selected number of vertices, one of
the final elements is recognized. For example: a trian-
gular target face and one vertex form a tetrahedron, a
rectangular target face and one vertex form a pyramid, a
rectangular target face and two vertices can form a
rectangular prism or a deformed prism.

5 Examples

In order to illustrate which kind of meshes can be gen-
erated using the approach described in this paper,
Fig. 18 shows a mixed element mesh for two known
semiconductor devices: the ecl bipolar transistor and the
locos. In addition, Table 1 shows the number of mesh
elements of each type shown in Fig. 6.

6 Conclusions

The mixed element mesh generator described in this
paper can be used in several geometric modeling appli-
cations, in particular in applications that require a
Delaunay mesh. Mixed element meshes reduce strongly
the number of element and edges in comparison with
meshes that only use tetrahedra.

Fig. 17 Algorithm to insert a point on an edge



The current implementation can generate Delaunay
meshes for any geometry that can be represented using
bricks, pyramids, prisms, tetrahedra and complement of

tetrahedra. In addition, it can generate control volumes
meshes for any geometry that can be represented using
bricks, prisms and pyramids.

The flexible refinement approach allows to represent
the geometry exactly and with fewer macro-elements
than a bisecting approach, but it requires more sophis-
ticated data structures and algorithms to obtain an
efficient and robust implementation.

Currently, we are working on (1) the design of
strategies to generate local Delaunay meshes inside

Table 1 Number of elements of each type in the final meshes

Brick Prism Pyramid Tetrahedron Tetrahedron
complement

Total

ecl 1,418 2,029 7,880 4,612 570 16,509
Locos 701 1,089 3,471 1,912 187 7,630

Fig. 18 (a) Locos: 4,939 points
(b) ecl bipolar transistor: 11,403
points



fractal configurations that satisfies the control volume
method restrictions, (2) a generalization of the algorithm
that generates well-shaped 1-irregular elements. The
tessellation of internal 1-irregular elements must only
fulfill the Delaunay condition and does not require the
additional restriction that the Voronoi points must be
inside 1-irregular element itself. This algorithm should
strongly reduce the number of points generated in the
step 1-irregular elements are done well-shaped.
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