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Abstract. We prove global existence of nonnegative solutions to the singular
parabolic equation ut−∆u+χ{u>0}(−u−β +λf(u)) = 0 in a smooth bounded

domain Ω ⊂ R
N with zero Dirichlet boundary condition and initial condition

u0 ∈ C(Ω), u0 ≥ 0. In some cases we are also able to treat u0 ∈ L∞(Ω). Then
we show that if the stationary problem admits no solution which is positive
a.e., then the solutions of the parabolic problem must vanish in finite time, a
phenomenon called “quenching”. We also establish a converse of this fact and
study the solutions with a positive initial condition that leads to uniqueness
on an appropriate class of functions.

1. Introduction

In this paper we are concerned with nonnegative solutions to the singular para-
bolic problem

(P )


ut − ∆u+ χ{u>0}g(u) = 0 in Ω × (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω,

where 0 < T < ∞ or T = ∞ and Ω ⊂ R
N is a bounded smooth domain. The

nonlinearity g(u) is singular at u = 0 and is defined by

g(u) = u−β − f(u),

where 0 < β < 1 and f : [0,∞) → [0,∞) satisfies

(1) f ≥ 0 is C2 in [0,∞)

and

(2) f(u) ≤ C(1 + u) ∀u ≥ 0,

where C ≥ 0 is a constant. We denote the characteristic function of the set {x ∈
Ω | u(x) > 0} by χ{u>0} and we tacitly assume χ{u>0}g(u) = 0 whenever u = 0.

Equation (P ) is a limiting situation of models describing enzymatic kinetics
[B] and in the Langmuir-Hinshelwood model of heterogeneous chemical catalyst
kinetics [A]; see also [D]. It has been studied already in [DL, FLV, FH, FK, L,
P]. These authors have addressed questions about existence and the qualitative
behavior of these solutions. The most striking phenomenon that can occur under
some circumstances is that, even starting with a positive initial condition, a solution
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may vanish in finite time. This behavior is called “quenching” and was first observed
in the pioneering paper [K].

The main novelty is that our problem has zero Dirichlet boundary condition
which introduces new difficulties. We are concerned with the existence of a solution
and we study its regularity and asymptotics as t → ∞. Another difference with
the previous works is the nonlinearity f(u). In general the uniqueness of solutions
still remains open. However, we are able to obtain uniqueness in a particular class
of positive solutions.

We adopt the following definition of a solution to (P ). Let T > 0 and u0 ∈
L∞(Ω), u0 ≥ 0. By a solution of (P ) we mean a function u ∈ L∞(Ω × (0, T )),
u ≥ 0 such that

(3) χ{u>0}g(u) ∈ L1(Ω × (0, T ))

and

(4)
∫

Ω

u0ϕ(0) dx+
∫ T

0

∫
Ω

(ϕt + ∆ϕ)u − χ{u>0}g(u)ϕdxdt = 0

for every ϕ ∈ C2(Ω × [0, T ]) with ϕ = 0 on ∂Ω × (0, T ) and ϕ(T ) = 0 in Ω.
A global solution in (0,∞) is a function u ≥ 0 such that u ∈ L∞(Ω× (0, T )) for

all T > 0 and satisfies (3) and (4) for every T > 0.
We show that a solution to (P ) exists by considering the perturbed parabolic

problem (Pε):

(Pε)


uε

t − ∆uε + gε(uε) = 0 in Ω × (0, T ),

uε(x, t) = 0 on ∂Ω × (0, T ),

uε(x, 0) = u0(x) in Ω,

where, for ε > 0,

(5) gε(u) =
u

(u + ε)1+β
− f(u).

Standard results for semilinear parabolic equations guarantee that for any initial
condition u0 ∈ L∞(Ω), u0 ≥ 0 there is a unique solution uε ∈ L∞(Ω × (0, T )) of
(Pε); see [LSU]. Moreover, uε is C3 by [LSU] and positive in Ω×(0, T ). We manage
to pass the limit uε → u as ε → 0 and show that u is a genuine solution of (P );
this is the content of our main result.

Theorem 1.1. Let u0 ∈ L∞(Ω), u0 ≥ 0 and assume (1) and (2). Then the
solution uε of (Pε) converges uniformly on compact subsets of Ω × (0, T ] as ε→ 0
to a function

u = lim
ε→0

uε.

If, moreover, u0 ∈ C(Ω), then u ∈ C(Ω × [0, T ]) and u is a solution of the problem
(P ) in the sense of (3)–(4).

Remark 1.2. In Theorem 1.1 one can replace the assumption u0 ∈ C(Ω) by weaker
ones and still deduce that u = lim

ε→0
uε is a solution to (P ) in the sense of (3)–(4).

Here are two such conditions:
i) u0 satisfies u0 ≥ cδν for some c > 0 and 1 < ν < 2

1+β , where δ stands for
the distance function to the boundary

(6) δ(x) = dist(x, ∂Ω),
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or
ii) u0 can be approximated from below by nonnegative continuous functions,

that is, there exists a sequence (uj
0) in C(Ω) such that 0 ≤ uj

0 ≤ u0 and
uj

0 → u0 a.e.
If, merely, u0 ∈ L∞(Ω), u0 ≥ 0, we deduce that (3) still holds and that∫

Ω

u(τ)ϕ(τ) dx +
∫ T

τ

∫
Ω

(ϕt + ∆ϕ)u − χ{u>0}g(u)ϕdxdt = 0

for every τ > 0 and all ϕ ∈ C2(Ω × [0, T ]) with ϕ = 0 on ∂Ω × (0, T ) and ϕ(T ) =
0 in Ω. These statements are proved in Section 4. This means that u satisfies
ut − ∆u + χ{u>0}g(u) = 0 in Ω × (0, T ), and u = 0 in ∂Ω × (0, T ), but it remains
an open question whether it satisfies the initial condition.

The core idea to prove Theorem 1.1 is to obtain uniform estimates for uε which
are independent of ε. This approach was employed by Phillips [P] for a similar
parabolic problem posed in R

N with a compactly supported initial data or on a
bounded domain with positive boundary data. Our estimate in space is inspired
by the one in [P] but it is more involved because of the zero Dirichlet boundary
condition; see Section 2. The estimate in time is obtained using a scaling argument,
used in [DM1] also, which allows us to obtain optimal Hölder regularity in time.
This can be seen clearly in [FK2] where they treat a problem related to ours. As a
byproduct of these estimates we obtain

Theorem 1.3. Let u0 ∈ L∞(Ω), u0 ≥ 0 and assume (1) and (2). Then uε satisfies:
for any 0 < τ < T and Ω′ ⊂⊂ Ω there exists C such that

(7) |uε(x, t) − uε(x, s)| ≤ C|t− s|1/(1+β) ∀x ∈ Ω′, ∀t, s ∈ (τ, T )

and

(8) |∇uε(x, t) −∇uε(y, t)| ≤ C|x− y| 1−β
1+β ∀x, y ∈ Ω′, ∀t ∈ (τ, T ),

where C is independent of ε. If, moreover, u0 ∈ C2(Ω), then one can replace (τ, T )
with [0, T ) in the above estimates. The limit u = lim

ε→0
uε also satisfies estimates (7)

and (8).

Next we point out some connections of problem (P ) with its stationary version.
In dealing with the elliptic problem it is convenient to replace the nonlinearity f(u)
by λf(u) where λ > 0 is a parameter. Thus we consider

(E)


−∆u = χ{u>0}(−u−β + λf(u)) in Ω,

u ≥ 0 in Ω,
u = 0 on ∂Ω.

From now on we assume that f satisfies (1) and is

(9) concave, increasing and lim
u→∞

f(u)
u

= 0.

We say that a function u ∈ L∞(Ω), u ≥ 0 is a solution of (E) if χ{u>0}g(u) ∈ L1(Ω)
and ∫

Ω

u∆ϕ− χ{u>0}g(u)ϕ = 0

for all ϕ ∈ C2(Ω) with ϕ = 0 on ∂Ω.
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Under these hypotheses in [DM1] we proved the following result.

Theorem 1.4. Assume (1) and (9). Then for any λ > 0, problem (E) possesses
a unique maximal solution uλ. Moreover, there exists a dividing value λ∗ ∈ (0,∞)
such that for λ > λ∗ the maximal solution uλ is positive in Ω, while for 0 < λ < λ∗

the set {uλ = 0} has positive measure and thus uλ possesses a free boundary.

If λ > λ∗ one has in fact aδ ≤ uλ ≤ bδ in Ω where a, b are positive constants.
By a result in [GL] we conclude that uλ ∈ C1,1−β(Ω) for λ > λ∗. For 0 < λ ≤ λ∗

the maximal solution uλ has optimal regularity C1, 1−β
1+β (Ω) (see [DM1, Da]). We

also prove in [DM1] that for λ = λ∗ the maximal solution is positive a.e. and there
are examples in [DM2] showing that it can vanish at some points inside Ω. But for
0 ≤ λ < λ∗ all solutions of (E) must vanish on a set of positive measure.

Regarding the asymptotic behavior of solutions to (P ) we are motivated by a
result in [FLV] that says that every accumulation point of the orbit u(t) of a solution
to (P ) is a solution of the stationary problem. Although the result in [FLV] was
established for a problem with a positive boundary condition it still holds in our
context.

Proposition 1.5. Assume that f satisfies (1) and (9). Let u0 ∈ L∞(Ω), u0 ≥ 0,
and let u denote the solution of (P ) of Theorem 1.1. Then the orbits of u are
compact in C(Ω) (with respect to uniform convergence on compact sets) and any
limit point is a solution of the elliptic equation (E).

In view of Theorem 1.4 we reach the following conclusion: if λ < λ∗ and if u(tk)
converges for a sequence tk → ∞, then the limit u = lim

tk→∞u(tk) has to vanish

somewhere in Ω. Thus there exists a point x0 ∈ Ω such that u(tk, x0) → 0 as
tk → ∞. In other words, this means that “quenching” occurs at least in infinite
time. We strengthen this assertion, by proving that in fact “quenching” must
happen in finite time.

Theorem 1.6. Assume (1), (9) and that 0 ≤ λ < λ∗. Then every solution of
(P ) vanishes in finite time, in the sense that the measure of the vanishing set is
|{(x, t) ∈ Ω × (0,∞) |u(x, t) = 0}| > 0.

Actually, what we will prove is that if the parabolic problem (P ) has a solution
that is positive a.e., then the elliptic problem (E) has a solution which is positive
a.e. There is a sort of converse of this result.

Theorem 1.7. Assume (1), (9) and suppose that the elliptic problem (E) has a
solution w which is positive a.e. Assume that the initial data u0 ∈ L∞(Ω) satisfies
u0 ≥ w, u0 	≡ w. Then the solution u of Theorem 1.1 satisfies (P ) in the sense of
(3)–(4) and there exists a continuous function c : (0,∞) → (0,∞) such that

u(t) ≥ c(t)δ ∀t ∈ (0,∞).

Note that we assume only that the initial condition u0 ≥ w and u0 	≡ w, and the
theorem allows us to conclude that u = lim

ε→∞ uε satisfies (P ). This complements the
statement of Remark 1.2 and is especially interesting in the case when the solution
w of (E) vanishes at some points but is positive a.e. We already mentioned that
examples of this situation exist (see [DM2]). By comparison u(t) ≥ w, but this
inequality for itself does not prevent u(t) from “quenching” in finite time. The
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content of the previous theorem is precisely that u(t) does not vanish in finite time
(although it can “quench” in infinite time).

There is some parallel between Theorems 1.6 and 1.7 and the results of [BCMR],
in spite of the completely different kind of nonlinearities treated there. They con-
sider a semilinear parabolic equation with a smooth superlinear nonlinearity, and
study the relation between the existence of global solutions of the parabolic equation
and existence of “weak” solutions for the stationary problem.

So far we have always considered 0 < β < 1 but the techniques applied before
permit us to claim that Theorem 1.7 is sharp with respect to β.

Corollary 1.8. Assume (1) and (9). If β ≥ 1, there is no positive global classical
solution of (P ).

Finally, we mention some results concerning the case of an initial data u0 which
is positive in Ω, and in fact we shall assume a stronger condition, namely

(10) u0 ≥ cδν ,

where c > 0, 1 < ν < 2
1+β ; see Remark 1.2. Our interest in these initial conditions

is twofold. On one hand, we need to consider such u0 when studying the asymptotic
behavior of solutions of (P ). On the other hand, we do not know in general whether
the solution to (P ) is unique. However, uniqueness holds in a suitable class of
solutions which is related to condition (10).

We begin by observing that if u0 satisfies (10), then the solution u of Theorem 1.1
stays positive for some time.

Lemma 1.9. Assume (1) and (2). Let u0 ∈ L∞(Ω) be such that u0 ≥ cδν for
some c > 0 and 1 < ν < 2

1+β . Then the solution u of Theorem 1.1 of (P ) satisfies
u(t) ≥ c′δν in (0, T ) for some c′ > 0 and T , both of which depend on c and ν.

Solutions in an adequate class are unique.

Theorem 1.10. Assume (1), (2) and u0 ∈ L∞(Ω), and let u0 ≥ cδν for some
c > 0 and 1 < ν < 2

1+β . Then (P ) has at most one solution in the set

M =
{
u ∈ L∞(Ω × (0, T )) : ∀T ′ ∈ (0, T ) there exists c > 0

such that u(t) ≥ cδν for all t ∈ (0, T ′)
}
.

We obtain the above result as an immediate consequence of the following com-
parison principle stated in terms of the heat semigroup S(t) with zero Dirichlet
boundary condition.

Lemma 1.11. Under assumptions (1) and (2), let u, v ∈ L∞(Ω × (0, T )) be a
subsolution and a supersolution of (P ) respectively, in the sense that they satisfy
χ{u>0}g(u), χ{v>0}g(v) ∈ L1(Ω × (0, T )) and

u(t) ≤ S(t)u0 −
∫ t

0

S(t− s)
(
χ{u(s)>0}g(u(s))

)
ds t ∈ [0, T ],

v(t) ≥ S(t)v0 −
∫ t

0

S(t− s)
(
χ{v(s)>0}g(v(s))

)
ds t ∈ [0, T ].

Furthermore, assume that there exists c > 0 and 1 < ν < 2
1+β such that the

supersolution v satisfies

v(t) ≥ cδν for t ∈ (0, T ).
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Then, if u(0) ≤ v(0), we have

u(t) ≤ v(t) for t ∈ (0, T ).

The main ingredient in the proof of Lemma 1.11 is a version of the smoothing
effect for the heat semigroup S(t) with zero Dirichlet boundary condition, which
involves weights of the form δm.

Proposition 1.12. For any m ∈ [0, 1] and t > 0 the mapping from L2(Ω) → L2(Ω)
given by ϕ �→ S(t)(δ−mϕ) is continuous and, moreover,

(11) ‖S(t)
(
δ−mϕ

)‖L2(Ω) ≤ Ct−m/2‖ϕ‖L2(Ω)

for every ϕ ∈ L2(Ω), where C depends only on Ω and m.

Finally, we mention works dealing with other questions in similar problems. For
example the blow up of ut at the time of quenching has been considered in various
situations; see [AK, DL] and [CK] when β ≥ 1. There are results on the blow
up of ∆u in one dimension in [FKL] and in higher dimensions for radial solutions
[FK2]. There are also some works in which the profile of the vanishing solution is
studied in the case of dimension 1 and for radial solutions in higher dimensions; see
[Gu, FH, FHQ, FK2, FG].

The paper is organized as follows. In Sections 2 and 3 we obtain the necessary
estimates for the solution uε of (Pε), which we apply in Section 4 in the proof of
Theorem 1.1. That section contains also proofs for the statements of Remark 1.2
regarding a weakening of the hypothesis u0 ∈ C(Ω). Then, before going into the
proof of Theorems 1.6 and 1.7, in Section 5 we present proofs for the results con-
cerning the case of an initial condition u0 satisfying (10): Lemmas 1.9, 1.11 and
Proposition 1.12. In Section 6 we prove Theorems 1.6, 1.7 and Corollary 1.8.

2. Estimates in space for the approximate solution

Our first goal is to obtain a local estimate for our approximate solution uε. The
result below is a weighted estimate of the gradient of uε in Ω where the weight ψ
has the following properties:

(12) ψ ∈ C2(Ω), ψ > 0 in Ω, ψ = 0 on ∂Ω and
|∇ψ|2
ψ

is bounded in Ω.

Lemma 2.1. Let T > 0 and u0 ∈ C1(Ω) be such that u0 ≥ 0. Suppose that
uε ∈ C3(Ω × (0, T ]) ∩ C1(Ω × [0, T ]) satisfies

uε
t − ∆uε + gε(uε) = 0 in Ω × (0, T ),(13)

uε ≥ 0 in Ω × (0, T ),(14)

uε(x, 0) = u0(x) in Ω.(15)

Then there is a constant C1 > 0 independent of ε such that

(16)
ψ(x)|∇uε(x, t)|2

uε(x, t)1−β + uε(x, t)
≤ max

(
C1, sup

Ω

ψ|∇u0|2
u1−β

0 + u0

)
∀x ∈ Ω, t ∈ [0, T ].

C1 depends only on Ω, N , β, ψ, ‖uε‖L∞(Ω×(0,T )), f and f ′.

Remark 2.2. One can in fact choose C1 independently of ε; see Step 1 in Section 4.
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Proof. In the course of the proof we denote u = uε. Let

(17) Z(u) = u1−β + u

and consider the functions

(18) w =
|∇u|2
Z(u)

, v = wψ.

We will prove the estimate (16) by contradiction, so we assume that (16) fails, i.e.,
that

(19) sup
Ω×(0,T )

v > max

(
C1, sup

Ω

ψ|∇u0|2
u1−β

0 + u0

)
,

where C1 > 0 will be fixed later independently of ε.
Note that v is continuous in Ω × [0, T ], and therefore it attains its maximum at

some point (x0, t0) ∈ Ω × [0, T ]. Thus, by (19)

(20) v(x0, t0) > max

(
C1, sup

Ω

ψ|∇u0|2
u1−β

0 + u0

)
.

Then x0 ∈ Ω, because v = 0 on ∂Ω and t0 > 0 by (20). Hence

(21) ∇v(x0, t0) = 0

and

(22) ∆v(x0, t0) − vt(x0, t0) ≤ 0.

Our aim is to compute ∆v − vt and evaluate at (x0, t0). As we shall see this
leads to the absurd ∆v(x0, t0) − vt(x0, t0) > 0 if one fixes C1 large enough. Let us
proceed with the computations:

∆v − vt = ψ∆w + 2∇w∇ψ + w∆ψ − ψwt

= ψ(∆w − wt) + w∆ψ + 2∇w∇ψ.(23)

The derivatives of w are (where the convention of summation over repeated indices
is adopted)

∂iw =
2∂ju ∂ijuZ(u)− |∇u|2Z ′(u)∂iu

Z(u)2
,(24)

wt =
2∂ju ∂j(ut)Z(u) − |∇u|2Z ′(u)ut

Z(u)2

and

∆w = ∂iiw =
2(∂iju)2Z(u) + 2∂ju ∂j(∆u)Z(u) − |∇u|4Z ′′(u) − |∇u|2Z ′(u)∆u

Z(u)2

− 2
Z ′(u)
Z(u)

∂iu∂iw.
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Therefore,

∆w − wt

=
2(∂iju)2Z(u) + 2∂ju ∂j(∆u − ut)Z(u) − |∇u|4Z ′′(u) − |∇u|2Z ′(u)(∆u − ut)

Z(u)2

− 2
Z ′(u)
Z(u)

∂iu∂iw,

and using equation (13) we obtain

∆w − wt =
2(∂iju)2Z(u) + 2|∇u|2Z(u)g′ε(u) − |∇u|4Z ′′(u) − |∇u|2Z ′(u)gε(u)

Z(u)2

− 2
Z ′(u)
Z(u)

∂iu∂iw.

(25)

From now on all functions appearing in the expressions below are evaluated at
the point (x0, t0) or just x0 in the case of ψ. Relation (21) provides

ψ∇w + w∇ψ = 0

and hence

∇w∇ψ = −w |∇ψ|2
ψ

.

Substituting in (23),

(26) ∆v − vt = ψ(∆w − wt) + w
(
∆ψ − 2

|∇ψ|2
ψ

)
.

Inserting (25) in (26),

∆v − vt = ψ(∆w − wt) + w
(
∆ψ − 2

|∇ψ|2
ψ

)
= ψ

[2(∂iju)2Z(u) + 2|∇u|2g′ε(u)Z(u) − |∇u|4Z ′′(u) − |∇u|2Z ′(u)gε(u)
Z(u)2

− 2
Z ′(u)
Z(u)

∂iu∂iw
]

+ w
(
∆ψ − 2

|∇ψ|2
ψ

)
which is equivalent to

∆v − vt =
1

Z(u)

[
2ψ(∂iju)2 + 2ψZ(u)g′ε(u)w − ψZ(u)Z ′′(u)w2 − ψwgε(u)Z ′(u)

− 2ψZ ′(u)∂iu∂iw
]

+ w
(
∆ψ − 2

|∇ψ|2
ψ

)
.

(27)

Without loss of generality, we are going to assume that ∇u(x0, t0) is parallel to
the first coordinate axis. Then from (21) we have

(28) ∂1v(x0, t0) = 0.

By virtue of (24) we obtain the expression

∂11u =
1
2
w
(
Z ′(u) − ∂1ψ

ψ∂1u
Z(u)

)
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which, after substitution in (27), yields
(29)

∆v − vt ≥ 1
Z(u)

[1
2
ψw2

(
Z ′(u)2 +

(∂1ψ)2

ψ2(∂1u)2
Z(u)2 − 2Z(u)Z ′(u)

∂ψ

ψ∂1u

)
+ 2ψZ(u)g′ε(u)w − ψZ(u)Z ′′(u)w2 − ψwgε(u)Z ′(u)

− 2ψZ ′(u)∂1u∂1w
]

+ w
(
∆ψ − 2

|∇ψ|2
ψ

)
.

Let us estimate some of the terms appearing in the above expression. From (28)
and (18) we obtain the relation

ψ∂1w = −w∂1ψ

and therefore

2ψZ ′(u)∂1u∂1w = −2Z ′(u)|∇u|w∂1ψ

≤ 2Z ′(u)Z(u)1/2ψ1/2w3/2 sup
D

|∇ψ|
ψ1/2

.(30)

On the other hand,

1
2
w2 (∂1ψ)2

ψ(∂1u)2
Z(u)2 =

1
2

(∂1ψ)2

ψ
Z(u)w

≥ −1
2

(
sup
D

|∇ψ|2
ψ

)
Z(u)w.(31)

We also have

−w2Z(u)Z ′(u)
∂1ψ

∂1u
≥ −

(
sup
D

|∇ψ|
ψ1/2

)
Z ′(u)Z(u)1/2ψ1/2w3/2.(32)

The last term to estimate is

w
(
∆ψ − 2

|∇ψ|2
ψ

)
≥ −w sup

D

(
∆ψ − 2

|∇ψ|2
ψ

)
.(33)

Combining (29) with (30)–(33) we obtain at (x0, t0),

(34) ∆v − vt ≥ 1
Z(u)

[
ψw2

(1
2
Z ′(u)2 − Z(u)Z ′′(u)

)
+ w

(
2ψZ(u)g′ε(u) − ψgε(u)Z ′(u) −KZ(u)

)
−KZ ′(u)Z(u)1/2ψ1/2w3/2

]
,

where K > 0 is a constant.
As we said before, if v(x0, t0) is large enough, then the right-hand side of (34)

must be positive, which would contradict (22). For this purpose we need to establish
the following estimates uniformly for all 0 < ε < 1:

Z ′(u)Z(u)1/2 ≤ C(1
2Z

′(u)2 − Z ′′(u)Z(u)),(35)

Z(u)|g′ε(u)| ≤ C(1
2Z

′(u)2 − Z ′′(u)Z(u)),(36)

Z ′(u)gε(u) ≤ C(1
2Z

′(u)2 − Z ′′(u)Z(u)),(37)

Z(u) ≤ C(1
2Z

′(u)2 − Z ′′(u)Z(u)),(38)
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for all 0 ≤ u ≤M where
M = ‖uε‖L∞(Ω×(0,T )),

and C depends only on β, M , f and f ′.
Suppose for a moment that (35)–(38) have been proved. Then inequality (34)

implies that

∆v − vt ≥
1
2Z

′(u)2 − Z ′′(u)Z(u)
Z(u)

(
ψw2 − C(w + ψ1/2w3/2)

)
=

1
2Z

′(u)2 − Z ′′(u)Z(u)
Z(u)ψ

(
v2 − C(v + v3/2)

)
.

Thus if v(x0, t0) > C1 for some large C1 independent of ε, we obtain a contradiction
to (22).

We now turn to the proof of (35)–(38). First note that (17) furnishes

(39)

1
2
Z ′(u)2 − Z ′′(u)Z(u) =

1
2
((1 − β)u−β + 1)2 + β(1 − β)u−1−β(u1−β + u)

≥ 1
2
(1 − β)2(u−2β + 1).

To verify (35) observe that

Z ′(u)Z(u)1/2 ≤ C(u−β + 1)(u(1−β)/2 + u1/2)(40)

≤ C(u−2β + 1)

since the exponent −2β is smaller than all others appearing in (40).
Now we proceed with (36). Observe that

g′ε(u) =
ε− βu

(u+ ε)2+β
− f ′(u).

Let us first deal with the case u < ε
β . Then

|g′ε(u)| ≤ ε−1−β + ‖f ′‖L∞(0,M) = ε−1−β + C.

Therefore,

|g′ε(u)|Z(u) ≤ C(ε−1−β + C)
(
u1−β + u

)
≤ C(ε−2β + uε−1−β + u1−β + u)

≤ C(ε−2β + 1)

≤ C(u−2β + 1)

where C depends on β, M , f and f ′.
In the case u ≥ ε/β we have

|g′ε(u)|Z(u) =
∣∣∣∣( βu− ε

(u+ ε)2+β
+ f ′(u)

)
(u1−β + u)

∣∣∣∣
≤ C(u−1−β + ‖f ′‖L∞(0,M))(u1−β + u)

≤ C(u−2β + 1).

Inequality (37) is verified in the sequel

Z ′(u)gε(u) ≤ C(u−β + 1)u−β ≤ C(u−2β + 1).

Finally (38) follows easily from the definitions. �
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Next we present a version of the previous lemma that allows the initial condition
to be u0 ∈ L∞(Ω), u0 ≥ 0. First we need a technical result.

Lemma 2.3. Let ϕ ∈ C2(Ω) ∩ C(Ω), ϕ ≥ 0 with ϕ = 0 on ∂Ω. Then

|∇ϕ(x)|2 ≤ C
(
‖D2ϕ‖2

L∞(Ω) min
(
1, ‖Dϕ‖−1

L∞(Ω)

)
δ(x)

+ max
(
1, ‖Dϕ‖L∞(Ω)

)
δ(x)−1

)
ϕ(x) ∀x ∈ Ω,

where C ≥ 0 is a constant depending only on Ω and δ(x) is given by (6).

Proof. Pick a point x ∈ Ω and suppose ∇ϕ(x) 	= 0. Define the vector e =
∇ϕ(x)/|∇ϕ(x)|. Then for 0 < t < δ(x)/2 we have

0 ≤ ϕ(x− te) = ϕ(x) − t|∇ϕ(x)| + t2

2
D2ϕ(ξ)e · e,

where ξ lies in the segment from x to x− te. Therefore,

(41) |∇ϕ(x)| ≤ 1
t
ϕ(x) + t‖D2ϕ‖L∞(Ω).

We choose

(42) t = aδ(x)1/2ϕ(x)1/2 min
(
1, ‖Dϕ‖−1/2

L∞(Ω)

)
,

where a > 0 depends only on Ω to be fixed next. Observe that in general

sup
x∈Ω

ϕ(x)
δ(x)

≤ C‖Dϕ‖L∞(Ω)

for some constant C > 0 depending only on Ω. Thus one can choose a depending
only on Ω so that

a2 sup
Ω

ϕ

δ
min

(
1, ‖Dϕ‖−1

L∞(Ω)

)
<

1
4
,

which implies

t <
1
2
δ(x).

Our choice of a, (42) and (41) yield the desired result. �

Lemma 2.4. Let u0 ∈ L∞(Ω) with u0 ≥ 0. Let uε ∈ L∞(Ω × (0, T )) denote the
solution of (Pε). Then there exists C2 such that

(43) |∇uε(x, t)|2 ≤ C2ψ(x)−1
(
uε(x, t)1−β +

1
t
uε(x, t)

)
∀x ∈ Ω, t ∈ (0, T ),

where ψ is as in (12), and C2 depends only on T , Ω, N , β, ψ, ‖uε‖L∞(Ω×(0,T )), f ,
f ′.

Proof. For the sake of notation we write u = uε. First we consider the case u0 ∈
C2,µ(Ω), 0 < µ < 1, and u0 = 0 on ∂Ω. Define

Z(u, t) = u1−β +
1
t
u

and

w =
|∇u|2
Z(u, t)

, v = wψ.

The constant C2 will be fixed later. The function v is continuous in Ω × [0, T ]
and since u0 ∈ C2,µ(Ω) there is a constant C such that ‖u(·, t)‖C2,µ(Ω) ≤ C for
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0 ≤ t ≤ T ; see [LSU]. Notice that this constant may depend on ε and u0. Thus by
Lemma 2.3

v(x, t) ≤ tψ
|∇u|2
u

≤ tψ
C

δ
≤ C′t,

for some constant C′ > 0. Hence, for a sufficiently small t1 > 0 we obtain

(44) v(x, t) < C2 ∀x ∈ Ω, t ∈ (0, t1).

A contradiction is risen in the same manner as in Lemma 2.1, by assuming that

(45) sup
Ω×(0,T )

v > C2.

By (44) and since v is continuous on Ω × [0, T ], the supremum in (45) is attained
at some point (x0, t0) ∈ Ω × [t1, T ] and therefore ∇v(x0, t0) = 0 and ∆v(x0, t0) −
vt(x0, t0) ≤ 0.

We have the following expression for wt,

wt =
2∂ju ∂j(ut)Z(u) − |∇u|2Zu(u)ut − |∇u|2Zt(u)

Z(u)2
,

where Zu and Zt denote the partial derivatives of Z with respect to u and t. Thus,
at (x0, t0) obtain

(46) ∆v − vt ≥ 1
Z(u)

[
ψw2

(1
2
Zu(u)2 − Z(u)Zuu(u)

)
+ w

(
2ψZ(u)g′ε(u) − ψgε(u)Zu(u) −KZ(u)

)
−KZu(u)Z(u)1/2ψ1/2w3/2 + Ztψw

]
,

where K is a constant that depends only on ψ. We claim that the following in-
equalities hold

ZuZ
1/2 ≤ C(1

2Z
2
u − ZuuZ),

Z|g′ε| ≤ C(1
2Z

2
u − ZuuZ),

Zugε ≤ C(1
2Z

2
u − ZuuZ),

Z ≤ C(1
2Z

2
u − ZuuZ),

|Zt| ≤ C(1
2Z

2
u − ZuuZ),

uniformly for all 0 < t < T , 0 < ε < 1 and 0 < u ≤M , where M = ‖u‖L∞(Ω×(0,T ))

and C depends only on T , β, M , f , f ′. These inequalities together with (46)
produce the contradiction ∆v(x0, t0) − vt(x0, t0) > 0 if v(x0, t0) > C2.

For the case u0 ∈ L∞(Ω) we use an approximation scheme. Let uj
0 be a sequence

in C2,µ(Ω) of initial data with uj
0 = 0 on ∂Ω such that uj

0 ≥ 0, uj
0 → u0 a.e. and

lim sup
j→∞

‖uj
0‖L∞(Ω) ≤ ‖u0‖L∞(Ω).

Let uj be the solution of (Pε) corresponding to the initial condition uj
0. Then ob-

serve that (43) implies that for any t1 > 0 and Ω′ ⊂⊂ Ω each element uj(·, t)(1+β)/2

is uniformly Lipschitz in Ω′ for t ∈ (t1, T ). Thus for a subsequence jk ↗ ∞ the
sequence uj converges and the limit is u, the solution of (Pε). Passing to the limit
as j → ∞ in (43) we get the conclusion. �
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A direct consequence of the two previous lemmas is the following.

Corollary 2.5. Under the same hypotheses of Lemma 2.4 we have

|∇uε(x, t)|2 ≤ C3ψ(x)−1
(
uε(x, t)1−β +

1
min(t, 1)

uε(x, t)
)

∀x ∈ Ω, t ∈ (0, T ),

where C3 is a constant depending only on Ω, N , β, ψ, ‖uε‖L∞(Ω×(0,T )), f , f ′ but
is independent of T .

Proof. We first apply Lemma 2.4 and deduce that

|∇u(x, t)|2 ≤ C2ψ(x)−1
(
u(x, t)1−β +

1
t
u(x, t)

)
∀x ∈ Ω, t ∈ (0,min(1, T )).

To proceed further we assume that T > 1. The desired conclusion follows by
applying Lemma 2.1 with initial condition u(1). �

3. Estimates in time

In the sequel we establish regularity in time.

Lemma 3.1. Let u0 ∈ L∞(Ω), u0 ≥ 0 and let uε denote the solution of (Pε) with
initial condition u0. Then for any Ω′ ⊂⊂ Ω and any τ > 0 there exists C > 0 such
that

|uε
t (x, t)| ≤ Cuε(x, t)−β ∀x ∈ Ω′, ∀t ∈ (τ, T ),

where C depends only on τ , dist(Ω′, ∂Ω), ‖uε‖L∞(Ω×(0,T )), f , f ′, N , β.
If, moreover, u0 ∈ C2(Ω), u0 ≥ 0, then uε satisfies

(47) |uε
t (x, t)| ≤ Cuε(x, t)−β ∀x ∈ Ω′, ∀t ∈ (0, T ),

where Ω′ ⊂⊂ Ω.

Proof. We denote uε by u. We start with the interior estimate, assuming only that
u0 ∈ L∞(Ω). Fix

(48) r0 = min(1, dist(Ω′, ∂Ω),
√
τ ) > 0 and L = sup

Ω×[0,T ]

u.

Let x0 ∈ Ω′, t0 ∈ (τ, T ). We consider the rescaled and translated function, respec-
tively by r > 0 and x0, namely

(49) ũ(x, t) = r−αu(rx + x0, r
2t+ t0),

where α = 2
1+β and which satisfies

(50) ũt − ∆ũ+ r2−αgε(rαũ) = 0

in the corresponding translated and scaled domain.
We fix

(51) r =
1
2
r0

(u(0, 0)
L

)1/α

so that

(52) ũ(0, 0) = 2αr−α
0 L.

Observe that by the choice of r0, the function ũ is defined in B1 × [−1, 0], is C1

and satisfies (50) in B1 × (−1, 0).
Our goal is to prove that

|ũt(0, 0)| ≤ C1.
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We first observe that

(53) |∇ũ|2 ≤ Cũ1−β in B1 × (−1, 0).

In fact, by Corollary 2.5 we know that

|∇u|2 ≤ C(u1−β + u) in Br(x0) × (t0 − r2, t0),

so that

|∇ũ|2 = r2−2α|∇u|2 ≤ Cr2−2α(u1−β + u)

≤ C(ũ1−β + r2−αũ)

≤ Cũ1−β.

We also remark that from (53) we get

(54) |∇ũ(1+β)/2| ≤ C in B1 × (−1, 0).

Let ψ be a smooth function on B1 such that ψ > 0 in B1, ψ = 0 on ∂B1 and
|∇ψ|2/ψ is bounded in B1, thus ψ is the function defined in the beginning of this
section with B1 instead of D.

We multiply equation (50) by ũtψ and integrate over B1,∫
B1

(ũt)2ψ = −1
2
d

dt

∫
B1

|∇ũ|2ψ −
∫

B1

ũt∇ũ∇ψ − r2−2α d

dt

∫
B1

Gε(rαũ)ψ,

where

Gε(u) =
∫ u

0

gε(s) ds.

Hence∫
B1

(ũt)2ψ ≤ −1
2
d

dt

∫
B1

|∇ũ|2ψ +
1
2

∫
B1

(ũt)2ψ + C
(

sup
B1

|∇ψ|2
ψ

)∫
B1

|∇ũ|2

− r2−2α d

dt

∫
B1

Gε(rαũ)ψ,

and therefore
1
2

∫
B1

(ũt)2ψ ≤ −1
2
d

dt

∫
B1

|∇ũ|2ψ + C

∫
B1

|∇ũ|2 − r2−2α d

dt

∫
B1

Gε(rαũ)ψ.

Integrating from t1 ∈ (−1, 0) to 0 we obtain∫ 0

t1

∫
B1

(ũt)2ψ dxdt

≤
∫

B1

|∇ũ(t1)|2 − |∇ũ(0)|2 dx+ C

∫ 0

t1

∫
B1

|∇ũ|2 dx dt

+ 2r2−2α

∫
B1

Gε(rαũ(t1))ψ dx− 2r2−2α

∫
B1

Gε(rαũ(0))ψ dx.

(55)

Recall that
gε(u) =

u

(u+ ε)1+β
− f(u)

and f(u) ≥ 0 hence

−F (u) ≤ Gε(u) ≤ u1−β

1 − β
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where F (u) =
∫ u

0
f(s) ds. Since F (u) ≤ Cu(1+u) and r ≤ 1, we have for all ũ ≥ 0,

r2−2αF (rαũ) ≤ Cr2−αũ(1 + rαũ)

≤ C(1 + ũ2).

Consequently,

−C(1 + ũ2) ≤ r2−2αGε(rαũ) ≤ ũ1−β

1 − β
.

Using the above inequality together with (53) we deduce from (55) that
(56)∫ 0

t1

∫
B1

(ũt)2ψ ≤ C

[
1 +

∫
B1

ũ(t1)1−β dx+
∫ 0

t1

∫
B1

ũ1−β dx dt+
∫

B1

ũ(0)2 dx
]
.

Now we need an estimate for ũ in terms of the left-hand side of (56). Take
t ∈ (−1/2, 0). For x ∈ B1,

ũ(x, 0) − ũ(x, t) =
∫ 0

t

ũt(x, s) ds.

Integrating over Br1 , where r1 = |t|1/(3N), we have for some x̄ ∈ Br1

ũ(x̄, 0) − ũ(x̄, t) =
C

rN
1

∫ 0

t

∫
Br1

ũt

and by Schwarz’s inequality

(ũ(x̄, 0) − ũ(x̄, t))2 ≤ C|t|
rN
1

∫ 0

t

∫
Br1

(ũt)2,

taking r1 = |t|1/(3N) we obtain

(57) |ũ(x̄, t) − ũ(x̄, 0)| ≤ C|t|1/3
(∫ 0

t

∫
B1

(ũt)2ψ
)1/2

.

Here we have used that ψ has a positive lower bound on the ball Br1 for r1 ≤
(1/2)1/(3N) < 1.

On the other hand, by (54) for any y ∈ B1 and t ∈ (−1/2, 0),

ũ(y, t) ≤ C(|y − x̄|2/(1+β) + ũ(x̄, t)) ≤ C(1 + ũ(x̄, t)).

Hence, combining this with (57) we obtain

(58) ũ(y, t) ≤ C
(
1 + |t|1/3

( ∫ 0

t

∫
B1

(ũt)2ψ
)1/2)

, ∀y ∈ B1, t ∈ (−1/2, 0).

In inequality (56) we now take t1 ∈ (−1/2, 0) and use (58) to get∫ 0

t1

∫
B1

(ũt)2ψ ≤ C

[
1 + |t1|(1−β)/3

(∫ 0

t1

∫
B1

(ũt)2ψ
)(1−β)/2

+
∫ 0

t1

∫
B1

|t|(1−β)/3
(∫ 0

t

∫
B1

(ũt)2ψ
)(1−β)/2

dx dt

]
≤ C

[
1 + |t1|(1−β)/3

∫ 0

t1

∫
B1

(ũt)2ψ
]
,
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by Young’s inequality. By choosing σ > 0 small we see that for t1 ∈ (−σ, 0) there
is a constant C independent of t1 such that∫ 0

t1

∫
B1

(ũt)2ψ ≤ C.

Now, using (57) combined with (52) and (54) we conclude that there is ρ > 0 small
such that ũ(x, t) ∈ [C0/2, 2C0] where C0 = 2αr−α

0 L for all x ∈ Bρ and t ∈ (−ρ, 0).
Thus

|ũt − ∆ũ| ≤ C in Bρ × (−ρ, 0)
and

|ũ| ≤ C on Bρ × {−ρ} and ∂Bρ × (−ρ, 0)
together with standard parabolic estimates [LSU] imply that

(59) |ũt(0, 0)| ≤ C1.

It remains to treat the case u0 ∈ C2(Ω) and show that u satisfies (47). The
argument is similar to the above one, except for the fact that now we use

r0 = min(1, dist(Ω′, ∂Ω))/4 > 0

in our rescaling procedure. Let r be given by formula (51) with this new definition
of r0. Let x0 ∈ Ω′ and t0 > 0 and define ũ as in (49), which now satisfies the
rescaled equation (67) in B1 × (−t0/r2, 0).

Since u0 ∈ C2(Ω) applying Lemma 2.3 to u0 multiplied by a suitable cutoff
function we see that

sup
D

|∇u0|2
u0

<∞
for any D ⊂⊂ Ω.

Let D ⊂⊂ Ω be a smooth subdomain such that Br0(x0) ⊂ D. Then using
Lemma 2.1 in the domain D instead of Ω we conclude that

|∇u|2 ≤ Cu1−β in Br0(x0) × [0, T ].

This implies

(60) |∇ũ|2 ≤ Cũ1−β in B1 × (−t0/r2, 0).

The calculations we performed before still apply if we restrict t1. Thus, taking
t1 ∈ (−t0/r2, 0), there is ρ > 0 sufficiently small and independent of ε such that

|ũt − ∆ũ| ≤ C in Bρ × (−min(ρ, t0/r2), 0)

and
|ũ| ≤ C on ∂Bρ × (−min(ρ, t0/r2), 0).

We shall consider two cases: if ρ < t0/r
2, then arguing as above, with the aid of

(58), we deduce that |ũ(−ρ)| ≤ C in Bρ. By standard parabolic estimates [LSU],
we deduce (59), because ũ satisfies a parabolic equation where the initial condition
ũ(−ρ) is given at a fixed time separation from 0 and is bounded in Bρ. In the
second alternative, ρ ≥ t0/r

2, we see that we still obtain (59) since, even though
the initial condition ũ(−t0/r2) is specified at a time close to 0, we can estimate the
Hölder semi-norm

[ũ(−t0/r2)]C1,µ(Bρ) = sup
x,y∈Bρ

|ũ(x,−t0/r2) − ũ(y,−t0/r2)|
|x− y|µ ≤ C,



EXISTENCE FOR A SINGULAR PARABOLIC EQUATIO

where C is independent of r if µ ≥ α − 1 (note that 0 < α − 1 < 1). Since we
also know that |ũ(−t0/r2)| ≤ C in Bρ, by standard Hölder estimates for the heat
equation with initial condition in C1,µ(Bρ), α− 1 ≤ µ < 1, we deduce (59). �

Combining Corollary 2.5 and Lemma 3.1 we deduce

Corollary 3.2. If u0 ∈ L∞(Ω), u0 ≥ 0, then for any τ > 0 and Ω′ ⊂⊂ Ω there
exists C such that

|uε(x, t) − uε(x, s)| ≤ C|t− s|1/(1+β) ∀x ∈ Ω′, ∀t, s ∈ (τ, T )

and
|∇uε(x, t) −∇uε(y, t)| ≤ C|x− y| 1−β

1+β ∀x, y ∈ Ω′, ∀t ∈ (τ, T ).
If, moreover, u0 ∈ C2(Ω), then one can replace (τ, T ) with [0, T ) in the estimates
above. The constant C depends only on Ω, N , β, ‖uε‖L∞(Ω×(0,T )), f , f ′.

Proof. The Hölder estimate in time follows immediately from Lemma 3.1.
Let τ > 0 and Ω′ ⊂⊂ Ω and let u denote uε. Fix x0, y0 ∈ Ω′ and t0 > τ . We

consider now the following cases.

Case a) Suppose that

(61) |x0 − y0| ≤ θmax
(
u(x0, t0)1/α, u(y0, t0)1/α

)
,

where θ > 0 will be fixed independently of ε. Then, without loss of generality, we
assume that

(62) |x0 − y0| ≤ θu(x0, t0)1/α.

Define r0, r and ũ as in Lemma 3.1 (see (48), (49) and (51) ). It was shown in that
lemma that

|ũt − ∆ũ| ≤ C in Bρ × (−ρ, 0)
and

|ũ| ≤ C on Bρ × {−ρ} and ∂Bρ × (−ρ, 0),
where C and ρ > 0 are independent of ε. By parabolic estimates [LSU] we deduce
that ∇ũ is Cµ in the variable x for any 0 < µ < 1 in Bρ/2 × (−ρ/2, 0). Now we
fix θ = 1

4ρr0L
−1/α where L = supΩ×[0,T ] u. This ensures that if (62) holds, then

(y0 − x0)/r ∈ Bρ/2. Thus, using µ = 1−β
1+β we get

|∇ũ(0, 0) −∇ũ((y0 − x0)/r, 0)| ≤ C
(|y0 − x0|/r

)µ
,

and using the definition of ũ

r1−α|∇u(x0, t0) −∇u(y0, t0)| ≤ Cr−µ|y0 − x0|µ.
Recalling that α− 1 = 1−β

1+β = µ we obtain the estimate

|∇u(x0, t0) −∇u(y0, t0)| ≤ C|y0 − x0|
1−β
1+β .

Case b) If (61) fails, then

|∇u(x0, t0) −∇u(y0, t0)| ≤ |∇u(x0, t0)| + |∇u(y0, t0)|
≤ C(u(x0, t0)(1−β)/2 + u(y0, t0)(1−β)/2)

≤ C|x0 − y0|
1−β
1+β ,

where we have used the estimate |∇u| ≤ Cu(1−β)/2 which follows from Corollary 2.5.
�
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4. Existence of a solution

In this section we justify the passage to the limit uε → u as ε → 0, proving
Theorem 1.1. Throughout this section we assume that T is finite. The existence of
a solution defined for all t is obtained by applying Theorem 1.1 for all T > 0 and
then letting T → ∞.

We also provide arguments for the claims presented in Remark 1.2.

Step 1. First let us observe that to apply Corollary 3.2 and get estimates that are
independent of ε it is first necessary to show that

sup
ε>0

max
Ω×[0,T ]

uε <∞.

This follows by observing that the solution ū to
ūt − ∆ū = f(ū) in Ω × (0, T ),

ū = 0 on ∂Ω × (0, T ),

ū(x, 0) = u0(x) x ∈ Ω

is a supersolution of (Pε) for any ε > 0.
Therefore by Corollary 3.2 u = limε→0 u

ε exists and is C1/(1+β) in time and
C1, 1−β

1+β in space on any Ω′ × (τ, T ) such that Ω′ ⊂⊂ Ω and τ > 0.

Step 2. Let us show that

(63) χ{u>0}g(u) ∈ L1(Ω × [0, T ]).

Observe first that by the previous step f(uε) remains bounded in L∞(Ω × (0, T )),
thus it suffices to verify that

χ{u>0}u−β ∈ L1(Ω × [0, T ]).

Recall that uε satisfies

(64) uε
t − ∆uε + gε(uε) = 0 in Ω × (0, T ).

Integrating over Ω × (0, T ) and using the definition of gε (5) we see that

0 =
∫

Ω

uε(T ) − u0 +
∫ T

0

∫
∂Ω

∂uε

∂n
+
∫ T

0

∫
Ω

uε

(uε + ε)1+β
− f(uε)

where n is the unit exterior normal vector to the boundary. But ∂uε

∂n ≤ 0 and hence∫ T

0

∫
Ω

uε

(uε + ε)1+β
≤
∫

Ω

u0 +
∫ T

0

∫
Ω

f(uε) ≤ C

with C independent of ε. Using Fatou’s lemma we conclude that (63) holds.

Step 3. If u0 ∈ C(Ω), u0 ≥ 0, then u is continuous in Ω× [0, T ]. The proof of this
claim follows the same steps as in the proof of Theorem 1 in [P], approximating u0

from above and from below by initial conditions in C2(Ω).

Step 4. To show that u is a solution of (P ) in the sense of definition (3)–(4) it is
enough to verify that for all ϕ ∈ C∞

0 (Ω× [0, T )) (that is, ϕ is smooth and vanishes
away from T and away from ∂Ω) we have

(65) −
∫

Ω

u0ϕ+
∫ T

0

∫
Ω

∇u∇ϕ− uϕt + χ{u>0}g(u) = 0.
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For this observe that |∇u| ∈ L2(Ω × (0, T )). Indeed, multiplying equation (64)
by uε and integrating in Ω × (0, T ) we deduce that∫ T

0

∫
Ω

|∇uε|2 = −
∫ T

0

∫
Ω

gε(uε)uε +
1
2

∫
Ω

u2
0 − uε(T )2 ≤ C

with C independent of ε. Therefore (65) makes sense and clearly implies (4).

Step 5. If u0 ∈ C(Ω), u0 ≥ 0, then u is a solution of (P ). Let ϕ ∈ C∞
0 (Ω× [0, T ))

and let η : R → R be a smooth function such that 0 ≤ η(s) ≤ 1 for all s, η(s) = 0
for s ≤ 1/2 and η(s) = 1 for s ≥ 1. For m > 0 we multiply equation (64) by
ϕη(uε/m) and integrate on Ω × (τ, T ) where τ > 0,

(66)
∫ T

τ

∫
Ω

(uε
t − ∆uε + gε(uε))ϕη(uε/m) = 0.

Note that ∫ T

τ

∫
Ω

gε(uε)ϕη(uε/m) =
∫ T

τ

∫
Ω

χ{u>0}gε(uε)ϕη(uε/m)

if m > 0 is fixed and ε > 0 is small enough. Therefore, by Step 2 we can apply
dominated convergence and conclude that

lim
m→0

lim
ε↘0

∫ T

τ

∫
Ω

gε(uε)ϕη(uε/m) =
∫ T

τ

∫
Ω

χ{u>0}g(u)ϕ.

Let us consider the first term in (66)∫ T

τ

∫
Ω

uε
tϕη(u

ε/m) = −
∫

Ω

uε(τ)ϕ(τ)η(uε(τ)/m) −
∫ T

τ

∫
Ω

uεϕtη(uε/m)

− 1
m

∫ T

τ

∫
Ω

uεϕη′(uε/m)uε
t .

There is no problem in passing to the limit with the first two terms on the right-hand
side of the above inequality. On the other hand, we claim that

(67) lim
m→0

lim sup
ε→0

∣∣∣ 1
m

∫ T

τ

∫
Ω

uεϕη′(uε/m)uε
t

∣∣∣ = 0.

In fact, let Ω′ ⊂⊂ Ω be such that ϕ = 0 in Ω \ Ω′ × (0, T ). Then by Lemma 3.1

1
m

∣∣∣ ∫ T

τ

∫
Ω

uεϕη′(uε/m)uε
t

∣∣∣ ≤ C

m
sup |ϕ| sup |η′|

∫ T

τ

∫
Ω′
χ{0<uε≤m}uε|uε

t |

≤ C

m

∫ T

τ

∫
Ω′
χ{0<uε≤m}(uε)1−β .

Hence, letting ε→ 0,

lim sup
ε→0

1
m

∣∣∣ ∫ T

τ

∫
Ω

uεϕη′(uε/m)uε
t

∣∣∣ ≤ C

m

∫ T

τ

∫
Ω′
χ{0<u≤m}u1−β

≤ C

∫ T

τ

∫
Ω′
χ{0<u≤m}u−β.

Since u−β is integrable, by dominated convergence the right-hand side of the in-
equality above tends to zero as m→ 0.
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Next we consider the term

−
∫ T

τ

∫
Ω

∆uεϕη(uε/m) =
∫ T

τ

∫
Ω

η(uε/m)∇uε∇ϕ+
1
m

∫ T

τ

∫
Ω

ϕ|∇uε|2η′(uε/m).

Again, the first term on the right-hand side above behaves well as ε→ 0 and then
m→ 0, while for the second we claim that

(68) lim
m→0

lim sup
ε→0

∣∣∣ 1
m

∫ T

τ

∫
Ω

ϕ|∇uε|2η′(uε/m)
∣∣∣ = 0.

To prove this we apply Corollary 2.5

1
m

∣∣∣ ∫ T

τ

∫
Ω

ϕ|∇uε|2η′(uε/m)
∣∣∣ ≤ C

∫ T

τ

∫
Ω′
χ{0<uε≤m}(uε)1−β

and therefore

lim sup
ε→0

1
m

∣∣∣ ∫ T

τ

∫
Ω

ϕ|∇uε|2η′(uε/m)
∣∣∣ ≤ C

∫ T

τ

∫
Ω′
χ{0<u≤m}u−β ,

which again tends to zero when m→ 0.
Therefore, taking ε→ 0 and then m→ 0 in (66), and using (67) and (68) we get

(69) −
∫

Ω

u(τ)ϕ+
∫ T

τ

∫
Ω

∇u∇ϕ− uϕt + χ{u>0}g(u) = 0.

Finally we let τ → 0 and use dominated convergence (we know that χ{u>0}g(u) ∈
L1(Ω × (0, T ))) and the fact that u is continuous at t = 0 to prove that (65)
holds. �

Proof of Remark 1.2. We will finish this section by proving the claims made in
Remark 1.2, which we recall: if one of the following conditions hold,

i) u0 satisfies u0 ≥ cδν for some c > 0 and 1 < ν < 2
1+β , or

ii) there exists a sequence (uj
0) in C(Ω) such that 0 ≤ uj

0 ≤ u0 and uj
0 → u0

a.e.,
then the limit u = lim

ε→0
uε is a solution of (P ), that is, it satisfies (3)–(4).

In order to accomplish this we first observe that the proof of Step 5 above
immediately yields

(70)
∫

Ω

u(τ)ϕ(τ) dx +
∫ T

τ

∫
Ω

(ϕt + ∆ϕ)u − χ{u>0}g(u)ϕdxdt = 0

for every τ > 0 and all ϕ ∈ C2(Ω× [0, T ]) with ϕ = 0 on ∂Ω× (0, T ) and ϕ(T ) = 0
in Ω as claimed in Remark 1.2.

Let ϕ ∈ C∞
0 (Ω) and let 0 < τ < T . Then multiplying (P ) by ϕ and integrating

by parts we have

(71)
∫

Ω

u(τ)ϕdx =
∫

Ω

u(T )ϕdx−
∫ T

τ

∫
Ω

∆ϕu − χ{u>0}g(u)ϕdxdt.

Since χ{u>0}g(u) ∈ L1(Ω) we can take τ ↘ 0 above and we conclude that u(τ)
is weakly convergent in Lp(Ω) for any 1 < p < ∞ (recall that u(τ) is bounded in
L∞(Ω)). Let us write the weak limit as û0, that is, u(τ) ⇀ û0 weakly in Lp(Ω),
where û0 ∈ L∞(Ω), û0 ≥ 0.
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Now let ϕ ∈ C2(Ω × [0, T ]) with ϕ = 0 on ∂Ω × (0, T ) and ϕ(T ) = 0 in Ω, and
take τ ↘ 0 in (69). We conclude that∫

Ω

û0ϕ(0) dx +
∫ T

0

∫
Ω

(ϕt + ∆ϕ)u − χ{u>0}g(u)ϕdxdt = 0.

This shows that u satisfies a problem similar to (P ), where the only difference is
that the initial condition is now û0 instead of u0.

We claim that

(72) û0 ≤ u0 a.e. in Ω.

Indeed, let ϕ ∈ C∞
0 (Ω), ϕ ≥ 0. On one hand we have, by letting τ ↘ 0 in (71),

(73)
∫

Ω

û0ϕdx =
∫

Ω

u(T )ϕdx−
∫ T

0

∫
Ω

∆ϕu− χ{u>0}g(u)ϕdxdt.

On the other hand, multiplying (Pε) by ϕ and integrating over [0, T ] we get∫
Ω

u0ϕdx =
∫

Ω

uε(T )ϕdx−
∫ T

0

∫
Ω

∆ϕuε − gε(uε)ϕdxdt.

By Fatou’s lemma we deduce

(74)
∫

Ω

u0ϕdx ≥
∫

Ω

u(T )ϕdx−
∫ T

0

∫
Ω

∆ϕu− χ{u>0}g(u)ϕdxdt.

Combining (73) and (74) we conclude (72).
Let us proceed first assuming that i) holds. Then by Lemma 1.9 we see that

there are c′ > 0 and t̄ > 0 independent of ε such that

(75) uε(t) ≥ c′δν ∀t ∈ (0, t̄).

Let ϕ ∈ C∞(Ω × [0, T ]) with ϕ = 0 on Ω × {T } ∪ ∂Ω × [0, T ] and let 0 < τ < t̄.
Then integrating (Pε) in Ω × [0, τ ] we find∫

Ω

u0ϕ(0) dx +
∫ τ

0

∫
Ω

(ϕt + ∆ϕ)uε − gε(uε)ϕdxdt = 0.

Thanks to (75) we can pass to the limit as ε → 0 in the previous relation. This
shows that u0 = û0 in this case and therefore u is a solution of (P ).

Now suppose that ii) holds, that is, there is a sequence (uj
0) ⊂ C(Ω) such that

0 ≤ uj
0 ≤ u0 and uj

0 → u0 a.e.. We keep the notation uε for the solution of (Pε) with
initial condition u0, and let uε,j denote the solution of (Pε) with initial condition
uj

0. By comparison (which is possible because the nonlinearity in (Pε) is smooth)
uε,j(t) ≤ uε(t) for all t ≥ 0. First let ε → 0 and then j → ∞ to conclude that
u0 ≤ û0 a.e. in Ω, so that with (72) we get the equality û0 = u0 a.e. in Ω. �

5. Solutions with positive initial data

Proof of Lemma 1.9. We will find a positive subsolution u, more precisely, a func-
tion u satisfying 

ut − ∆u+
1
uβ

≤ 0 in Ω × (0, T ),

u(0) ≤ u0 in Ω,

u = 0 on ∂Ω × (0, T ),
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whenever the initial condition satisfies u0 ≥ cδν for some c > 0 and 1 < ν < 2
1+β .

Then u is also a subsolution of (Pε) for any ε > 0, and by comparison the solution
uε of (Pε) satisfies uε(t) ≥ u(t) for all t ∈ (0, T ). Thus, when we let ε → 0 we
discover u(t) ≥ u(t) for all t ∈ (0, T ).

We take u of the form u = εϕν
1e

−At and T = log 2
A , where ϕ1 is the first positive

eigenfunction of the Laplacian with Dirichlet boundary condition. We take ε > 0
small so that u(0) = εϕν

1 ≤ u0. The constant A will be chosen later. Since
eβT = 2

β
A , we get

ut−∆u+
1
uβ

=−Aεe−Atϕν
1 +εe−At(λ1νϕ

ν
1 − ν(ν − 1)ϕν−2

1 |∇ϕ1|2) + ε−βeAβtϕ−νβ
1

≤ −1
2
Aεϕν

1 + ελ1νϕ
ν
1 + ϕ−νβ

1 (ε−β2β − 1
2
εν(ν − 1)ϕν−2+νβ

1 |∇ϕ1|2)

≤
(
−1

2
A+ λ1ν

)
εϕν

1 + ϕ−νβ
1 (2ε−β − 1

2
εν(ν − 1)ϕν−2+νβ

1 |∇ϕ1|2).
Let Ωσ = {x ∈ Ω : dist(x, ∂Ω) < σ}. We can choose σ > 0 small enough so that

2ε−β − 1
2
εν(ν − 1)ϕν−2+νβ

1 |∇ϕ1|2 < 0 on Ωσ

because the exponent of ϕ1 is ν − 2 + νβ < 0 (since ν < 2
1+β ).

Then choose A large enough so that(
−1

2
A+ λ1ν

)
εϕν

1 + 2ϕ−νβ
1 ε−β ≤ 0 on Ω − Ωσ. �

Proof of Proposition 1.12. We just need to verify the property for smooth functions,
the conclusion follows by density. First let us recall Hardy’s inequality: there exists
C = C(Ω) such that

(76)
∫

Ω

ϕ2

δ2
dx ≤ C

∫
Ω

|∇ϕ|2 dx ∀ϕ ∈ C∞
0 (Ω).

For ψ, ϕ ∈ C∞
0 (Ω) we have∫

Ω

S(t)(δ−mψ)ϕ =
∫

Ω

ψδ−mS(t)ϕ

≤
(∫

Ω

δ−2m(S(t)ϕ)2
)1/2

‖ψ‖L2(Ω)

≤
(∫

Ω

δ−2(S(t)ϕ)2
)m/2

‖S(t)ϕ‖1−m
L2(Ω)‖ψ‖L2(Ω).

Observe now that S(t)ϕ ∈ H1
0 (Ω) and therefore we can apply (76):∫

Ω

S(t)(δ−mψ)ϕ ≤ C‖S(t)ϕ‖m
H1

0 (Ω)‖S(t)ϕ‖1−m
L2(Ω)‖ψ‖L2(Ω)

and by the smoothing effect of the heat semigroup S(t) from L2(Ω) to H1
0 (Ω) we

find that∫
Ω

S(t)(δ−mψ)ϕ ≤ C(t−1/2‖S(t)ϕ‖L2(Ω))m‖S(t)ϕ‖1−m
L2(Ω)‖ψ‖L2(Ω)

= Ct−m/2‖S(t)ϕ‖L2(Ω)‖ψ‖L2(Ω),

which yields the desired result. �
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The following singular version of the Gronwall inequality (see [BC]), will be used
in the proof of Lemma 1.11 and Theorem 1.6.

Lemma 5.1. Let T > 0, A ≥ 0, 0 ≤ a, b ≤ 1 and let f be a nonnegative function
with f ∈ Lp(0, T ) for some p > 1 such that p′ max(a, b) < 1, where 1 = 1

p + 1
p′ .

Consider a nonnegative function ϕ ∈ L∞(0, T ) such that

ϕ(t) ≤ At−a +
∫ t

0

(t− s)−bf(s)ϕ(s) ds, for almost all t ∈ [0, T ].

Then there exists C, depending only on T , a, b, p and ‖f‖Lp such that

ϕ(t) ≤ ACt−a

for almost all t ∈ [0, T ].

Proof of Lemma 1.11. Step 1. First let us prove that u(t) ≤ v(t) for t ∈ [0, T ]
under the additional assumption that u > 0 a.e. in Ω × (0, T ). Then

u(t) ≤ S(t)u0 −
∫ t

0

S(t− s)
(
g(u(s))

)
ds t ∈ [0, T ],

and

v(t) ≥ S(t)v0 −
∫ t

0

S(t− s)(g(v(s))) ds t ∈ [0, T ].

Let A > 0. Observe that the previous relations imply that

eAtu(t) ≤ S(t)u0 +
∫ t

0

S(t− s)(eAs(Au(s) − g(u(s))))ds

and

eAtv(t) ≤ S(t)v0 +
∫ t

0

S(t− s)(eAs(Av(s) − g(v(s))))ds.

Let w = u− v, so that w satisfies

(77) eAtw(t) ≤
∫ t

0

S(t− s)(eAs(Aw(s) + g(v(s)) − g(u(s)))ds.

By convexity of the function u �→ u−β we obtain the estimate

g(v) − g(u) = v−β − u−β − f(v) + f(u) ≤ βv−1−β(u− v) + k|u− v|
for a large constant k > 0.

Using the lower bound v(s) ≥ cδν we thus obtain

g(v(s)) − g(u(s)) ≤ Cδ−ν(1+β)w+(s) + k|w(s)|
so that

g(v(s)) − g(u(s)) +Aw(s) ≤ Cδ−ν(1+β)w+(s)

if one chooses A large enough. Combining with (77) we see that

eAtw(t) ≤ C

∫ t

0

S(t− s)(eAsδ−ν(1+β)w+(s))ds.

Since the right-hand side is a nonnegative function, we also obtain

eAtw+(t) ≤ c

∫ t

0

S(t− s)(eAsδ−ν(1+β)w+(s))ds.
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Let γ = ν(1 + β) − 1 so that 0 < γ < 1. Multiplying the previous relation by δ−γ

and computing the L2 norm of the resulting functions we get

(78) eAt‖δ−γw+(t)‖L2 ≤ C

∫ t

0

‖δ−γS(t− s)(δ−ν(1+β)w+(s))‖L2eAsds.

Let ψ = S(t− s)(δ−ν(1+β)w+(s)). By Hölder’s inequality

‖δ−γψ‖2
L2 =

∫
ψ2

δ−2γ
≤
(∫ ψ2

δ−2

)γ( ∫
ψ2
)1−γ

and by Hardy’s inequality (76)

‖δ−γψ‖L2 ≤ C‖∇ψ‖γ
L2‖ψ‖1−γ

L2 .

By the smoothing effect of the heat semigroup

‖∇ψ‖L2 = ‖∇S(t− s)(δ−ν(1+β)w+(s))‖L2

≤ C(t− s)−1/2‖S(
t− s

2
)(δ−ν(1+β)w+(s))‖L2

so that

‖δ−γS(t− s)(δ−ν(1+β)w+(s))‖L2 ≤ C(t− s)−γ/2‖S(
t− s

2
)(δ−ν(1+β)w+(s))‖L2 .

Substituting in (78) we find that

eAt‖δ−γw+(t)‖L2 ≤ C

∫ t

0

(t− s)−γ/2eAs‖S(
t− s

2
)(δ−1δ−γw+(s))‖L2 ds,

and by Lemma 1.12

eAt‖δ−γw+(t)‖L2 ≤ C

∫ t

0

(t− s)−γ/2−1/2eAs‖δ−γw+(s)‖L2 ds.

Observe that γ/2 + 1/2 < 1. By Lemma 5.1

eAt‖δ−γw+(t)‖L2 = 0 t ∈ [0, T ]

which is the desired conclusion.

Step 2. We proceed now with the general case. Let z be the solution to (P ) with
z(0) = v(0) ≥ cδν . By Lemma 1.9, there is a constant c′ > 0 and 0 < t1 ≤ T such
that z(t) ≥ c′δν for t ∈ [0, t1]. We claim that z(t) ≥ u(t) for t ∈ [0, T ]. In fact, let
zε be the solution of (Pε) with zε(0) = z(0) = v(0). Since u is the subsolution of
(P ), it is also a subsolution to (Pε). We obtain u(t) ≤ zε(t) for every t ∈ [0, T ],
since u(0) ≤ zε(0). Letting ε→ 0 we obtain u(t) ≤ z(t) for t ∈ [0, T ]. On the other
hand, Step 1 applied with z instead of u implies that z(t) ≤ v(t) for t ∈ [0, t1], since
v(0) = z(0). Therefore, u(t) ≤ v(t) for t ∈ [0, t1]. Repeating the previous reasoning
in [t, 2t] we obtain u(t) ≤ v(t) for every t ∈ [0, 2t1]. By induction we obtain the
conclusion. �

6. Asymptotic behavior: positive versus vanishing solutions

Proof of Theorem 1.6. We denote by (Eλ+ε) the problem (E) with parameter λ+ε
(instead of λ). We are going to prove that for every ε > 0 problem (Eλ+ε) has a
solution which is positive a.e.
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Suppose that (P ) has a solution u which is positive a.e. in Ω × (0,∞).

Step 1. We define by (P λ+ε) to be the parabolic problem (P ) with g(u) replaced
by −uβ +(λ+ε)f(u). The problem (Pλ+ε) has a global positive solution ũ(t) which
is nonincreasing in t.

Let ζ be the solution of
ζt − ∆ζ = f(u+ εζ) in Ω × (0,∞),

ζ = 0 on ∂Ω × (0,∞),

ζ(0) = 0 in Ω.

Then u+ εζ satisfies

(u+ εζ)t−∆(u+ εζ) = − 1
uβ

+λf(u)+ εf(u+ εζ) ≤ − 1
(u+ εζ)β

+(λ+ ε)f(u+ εζ)

and therefore it is a positive subsolution of

(79)


ut − ∆u = ḡ(u) in Ω × (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω,

where
ḡ(u) = −u−β + (λ+ ε)f(u).

Remark that ζ(t) ≥ c(t)δ (see [BCMR]), where c : (0,∞) → (0,∞) can be taken
to be continuous. By shifting time, we can assume that inft∈(0,T ) c(t) > 0 for any
T > 0.

Take ũ0 a supersolution of (Eλ+ε) (which is also a supersolution of (79)) such
that ũ0 ≥ u(0). Then the initial boundary value problem (79) has a global solution
ũ such that u(t) + εζ ≤ ũ(t) ≤ ũ0.

We prove now that ũ(t) is nonincreasing in t. Indeed, fix T > 0, let h > 0 and
set v(t) = ũ(t+ h) − ũ(t). Then v satisfies

v(t) = S(t)v(0) +
∫ t

0

S(t− s)
(
ḡ(ũ(s+ h)) − ḡ(ũ(s))

)
ds

≤
∫ t

0

S(t− s)
(
c(s)v(s)

)
ds

where

c(s) =
ḡ(ũ(s+ h)) − ḡ(ũ(s))
ũ(s+ h) − ũ(s)

≤ ḡ′(ũ(s)) ≤ Cδ−1−β

for some constant C > 0, because ũ(s) ≥ cδ for all s ∈ [0, T ]. Then, as in the proof
of Lemma 1.11, we get

‖δ−βv+(t)‖L2 ≤ C

∫ t

0

‖δ−βS(t− s)(δ−1−βv+(s))‖L2 ds

≤ C

∫ t

0

(t− s)−β/2‖S(
t− s

2
)(δ−1−βv+(s))‖L2 ds

≤ C

∫ t

0

(t− s)−(β+1)/2‖δ−βv+(s)‖L2 ds.

Since β+1
2 < 1 by the singular Gronwall Lemma 5.1, we conclude that v+(t) ≤ 0

for all t ∈ [0, T ]. But T > 0 was arbitrary so that v+(t) ≤ 0 for all t ≥ 0.
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Step 2. By the previous step the limit ũ(t) → w as t→ ∞ exists, we claim that w
is a solution of (Eλ+ε).

Integrating (79) on Ω × (t, t+ 1) we find∫
Ω

(ũ(t+ 1) − ũ(t))dx +
∫ t+1

t

∫
Ω

ũ(s)−β dx ds ≤ (λ+ ε)
∫ t+1

t

∫
Ω

f(ũ(s)) dx ds,

thus ∫
Ω

ũ(t)−β dx ≤ (λ+ ε)
∫ t+1

t

∫
Ω

f(ũ(s)) dx ds+
∫

Ω

ũ(t) dx ≤ C,

where C is independent of t. This shows that ũ(t)−β is bounded in L1(Ω), and
since it is monotone increasing, it converges to w−β as t→ ∞ and w−β ∈ L1(Ω).

Take ϕ ∈ C2(Ω) with ϕ = 0 on ∂Ω. Then integrating (79) on Ω × (t, t + 1) we
find∫

Ω

(
ũ(t+ 1) − ũ(t)

)
ϕ+

∫ t+1

t

∫
Ω

ũ(s)(−∆ϕ) dx ds =
∫ t+1

t

∫
Ω

ḡ(ũ(s))ϕdxds.

Letting t→ ∞ we deduce that w is a solution of (Eλ+ε). �

Proof of Theorem 1.7. Observe that w is a subsolution of (Pε) and therefore uε(t) ≥
w for all t ≥ 0. We will use this to show that u = limε→0 u

ε solves (P ) in the sense
of (3)–(4). The reason is that we have an upper bound on gε(uε) and we can use
dominated convergence to pass to the limit. In fact, let ϕ ∈ C2(Ω × [0, T ]) with
ϕ|∂Ω×(0,T ) = 0, ϕ|Ω×{T} = 0. Then∫

Ω

u0ϕ(0) dx+
∫ T

0

∫
Ω

(ϕt + ∆ϕ)uε − gε(uε)ϕdxdt = 0.

Since uε(t) ≥ w > 0 a.e., we have |gε(uε)| ≤ w−β + f(w) ∈ L1(Ω). So in fact we
can apply dominated convergence and deduce that∫

Ω

u0ϕ(0) dx+
∫ T

0

∫
Ω

(ϕt + ∆ϕ)u − g(u)ϕdxdt = 0.

The lower bound u(t) ≥ c(t)δ for all t > 0, where c : (0,∞) → (0,∞) is continuous
follows from the fact that v(t) = w + z(t) is a subsolution of (P ) where z =
S(t)(u0 − w), i.e. the solution of

zt = ∆z in Ω × (0,∞),

z = 0 on ∂Ω × (0,∞),

z(0) = u0 − w in Ω.

In fact,
vt − ∆v + g(v) = ∆w + g(w + z) = g(w + z) − g(w) ≤ 0,

because g is nonincreasing.
Finally, recall that since u0 	≡ w, we have z(t) ≥ c(t)δ (this is standard, see

[BCMR]). �

Proof of Corollary 1.8. Let β ≥ 1, and for the sake of contradiction assume that
there is a global positive solution u of (P ).

Let Y be the solution to {−∆Y = 1 in Ω,
Y = 0 on ∂Ω.
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Then observe that u(t) ≤ KY for some constant K independent of t, because for
large K, u = KY is a supersolution of (P ), and one can argue as in Lemma 1.11.

Set v(t) = u(t)/K, so that 0 < v(t) ≤ 1 and satisfies{
vt − ∆v +

1
K1+β

1
vβ

= λf̃(v) in Ω × (0,∞),
v = 0 on ∂Ω × (0,∞),

where f̃(v) = 1
K f(Kv). Therefore, for any 0 < β1 < 1 v is a positive global

subsolution of

(80)


ut − ∆u +

1
K1+β

1
uβ1

= λf̃(u) in Ω × (0,∞),

u = 0 on ∂Ω × (0,∞),

u(0) = Cδ in Ω,

where C > 0 is fixed large enough. Hence (80) has a global positive solution, and
by Theorem 1.6 the elliptic problem

(81)

{
−∆w +

1
K1+β

1
wβ1

= λf̃(w) in Ω,
w = 0 on ∂Ω

has a solution w which is positive a.e. and such that w ≤ Cδ with C independent
of β1. But this is impossible, because

(82)
∫

Ω

w−β1 ≤ λ

∫
Ω

f̃(w) ≤ C,

and C is independent of β1. This is obtained, formally, by integrating (81) over Ω,
but a rigorous argument can be found in [DM1]. Letting β1 ↗ 1 in (82) we reach
a contradiction. �
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