Transposition invariant string matchifg

Veli M&kinen®!, Gonzalo Navarré*2, Esko Ukkoner?

a Department of Computer Science, PO Box 26 (Teollisuuskatu 23), FIN-00014, University of Helsinki, Finland
b Center for Web Research, Department of Computer Science, University of Chile,
Blanco Encalada 2120, Santiago, Chile

Abstract

Given stringsA = ajas...a;,; and B = b1bo...b, over an alphabel’ C U, whereU is some
numerical universe closed under addition and subtraction, and a distance futh¢tioB) that
gives the score of the best (partial) matching4otnd B, the transposition invariant distances
min,cpy{d(A + ¢, B)}, whereA +t = (a1 + t)(ap + 1) ... (am + t). We study the problem of com-
puting the transposition invariant distance for various distance (and similarity) fungtiomduding
Hamming distancelongest common subsequer&€s), Levenshtein distancend their versions
where the exact matching condition is replaced by an approximate one. For all these problems we
give algorithms whose time complexities are close to the known upper bounds without transposition
invariance, and for some we achieve these upper bounds. In particular, we show how sparse dynamic
programming can be used to solve transposition invariant problems, and its connection with multidi-
mensional range-minimum search. As a byproduct, we give improved sparse dynamic programming
algorithms to compute LCS and Levenshtein distance.

Y Preliminary version appeared as [V. Makinen, G. Navarro, E. Ukkonen, Algorithms for transposition invariant
string matching (extended abstract), in: Proc. 20th International Symposium on Theoretical Aspects of Computer
Science (STACS 2003), in: Lecture Notes in Comput. Sci., vol. 2607, Springer-Verlag, 2003, pp. 191-202].

- Corresponding author.

E-mail addressesrmakinen@cs.helsinki.fi (V. Mé&kinen), gnavarro@dcc.uchile.cl (G. Navarro),
ukkonen@cs.helsinki.fi (E. Ukkonen).

1 sSupported by the Academy of Finland under grant 22584.

2 Supported by Millenium Nucleus Center for Web Research, Grant P01-029-F, Mideplan, Chile.

V. Mékinenetal.

Keywords:Edit distance; Music sequence comparison; Transposition invariance; Sparse dynamic programming;
Range-minimum searching

1. Introduction

Transposition invariant string matching is the problem of matching two strings when all
the characters of either of them can be “shifted” by some amoyt “shifting” we mean
that the strings are sequences of numbers and we add or sulfi@ut each character of
one string.

Interest in transposition invariant string matching problems has recently arisen in the
field of music information retrieval (MIR) [11,30,31]. In music analysis and retrieval, one
often wants to compare two music pieces to test how similar they are. One way to do this
is to define a distance measure between the corresponding note sequences. Transposition
invariance is one of the properties that such a distance measure should fulfill to reflect a hu-
man sense of similarity. There are other application areas where transposition invariance is
useful, like time series comparison [5], image comparison [21], and others (see Section 3).

In this paper we study how transposition invariance can be achieved when evaluating
some of the classical distance measures for strings. We focus on measures that have been
used in practice and have applications in MIR. We are interested in the intrinsic difficulty
of the problem, focusing on the essential aspects and in worst case complexities. Our aim
is to build a foundation on top of which one can develop practical improvements such as
good average cases, threshold-sensitive computation, bit-parallel simulation, four-Russians
techniques, filtering approaches, and so on.

We show that several transposition invariant string matching problems can be reduced
to sparse dynamic programming, and demonstrate the connection between the latter and
multidimensional range-minimum searching. In some cases our new sparse dynamic pro-
gramming techniques are inferior compared to the best existing solutions, but in other cases
we give improved solutions to well known problems such as sparse computation of longest
common subsequences and Levenshtein distance. Moreover, our techniques are flexible
and can be successfully extended to cases of interest that cannot be handled by the best
current algorithms, for example to distances where matching characters cannot be too far
apart. As a result, we show that all the distance measures studied allow including trans-
position invariance without a significant increase in the asymptotic running times (in most
cases we pay polylogarithmic penalty factors).

The paper is organized as follows. In Section 2 we give the main definitions we use,
including the string similarity measures we focus on. In Section 3 we cover related work
and give at the same time motivations for some of the string matching problems addressed.
In Section 4 we summarize our main results. Section 5 is devoted to the so-called “edit
distances” (where characters in both strings can be ignored) and Section 6 to the simpler
distances where all characters must be aligned one by one. Finally, Section 7 gives our
conclusions and future work directions.

V. M&kinenetal.

2. Definitions

Let X be a numerical alphabet, which is a subset of some totally ordered univénsg
is closed under addition and subtraction. Uet a1az...a,, andB = b1b> ... b, be two
stringsin X*, thatis,a;, b; € X forall 1 <i <m, 1< j <n. We will assume w.l.0.g. that
m < n, since the distance measures we study are symnieftiing A’ is asubstringof A
if A"=A; j=a;...a;forsome 1<i < j <m. StringA” is asubsequencef A, denoted
by A"E A,if A" =aya;, .. i, for some indexes X i1 <iz <--- <ijar <m.

The following measures can be defined between two stiihgad B. These measures
can be found in any standard text book of string algorithms, see for example [17,25]. The
length of thelongest common subsequert€S of A and B is IcS(A, B) = max{|S| |
SC A, SC B}. The dual problem of computing LCS is to compute distatge which
is the minimum number of character insertions and deletions necessary to cénaest
B (or vice versa). The duality is clear sindg (A, B) =m +n — 2-Ics(A, B). For con-
venience, we will mainly use the minimization problefp (not Ics) in the sequel. If we
permit character substitutions in addition to insertions and deletions, the result is the unit
costLevenshtein distana# [32]. This is a particular case of more complex distances that
assign a different cost to each operation and minimize the total cost of operations [36,40].
Finally, if only deletions of characters & are allowed, we get distanag. We calldp,

d_ anddp collectively “edit distances.”

Whenm = n, the following distances can also be defined. Hamming distancey
between stringst and B is dy(A, B) = |{i | a; # b;, 1 < i < m}|. Thesum of absolute
differences distancésap betweem andB isdsap(A, B) = Y1 la; —b;|. Themaximum
absolute difference distandgap betweenA andB is dyap (A, B) = maxX{|a; — b;| | 1 <
i < m}. Note thatdsap is in fact the Manhattan metrié¢;(horm) andiiyap is the maximum
metric (-, norm) when we interpred andB as points inn-dimensional Euclidean space.

String A is atransposed copygf B (denoted byA =! B) if

B=A+t=(a1+t)(a2+1t)---(an +1)

for somer € U. The transposition invariant versions of the above distance meagures
wherex € {ID, L, D, H, SAD, MAD} can now be stated as

d' (A, B) =mind,(A +1, B).
teU

So far our definitions allow either only exact (transposition invariant) matches be-
tween some charactersly. d| , df,. d\,), or approximate matches between all characters
(d5ap: diap)- To relax these conditions, we introduce a constant0. We writea =° b
when|a — b| <8, a,b € ¥. By replacing the equalities = b with a =% b, we get more
error-tolerant versions of the distance measutfs:d\”’, d5’, andd’;’. Similarly, by intro-
ducing another constart> 0, we can define distancej, dyap Such that the: largest
differencega; — b;| are discarded.

We can also define-limited versions of the edit distance measures, where the dis-
tance (gap) between any two consecutive matching characteromB is limited by a

3 Except fordp, but in this case it is necessary that n.

V. Mékinenetal.

constante > 0. That is, if in order to obtain/(A, B) charactersy;, , a;,, ..., a; match
bj,bj,,...,bj , while the others are inserted, deleted or substituted (depending on the
distanceg, thety —ip_1 —1<aandj, — ji—1— 1< aforall1<¢<r. We getdistances
A3, db*, andds>.

The approximate string matching problerbased on the above distance functions, is
to find the minimum distance betweenhand any substring oB. In this case we call
the patternand denote itP1._,, = p1p2--- pm, and callB thetextand denote il , =
1tz - - - 1, and usually assume that <« n. A closely related problem is thiaresholded
search problenwhere, givenP, T, and a threshold value > 0, one wants to find all the
text positionsj, such that/(P, T}, ;) < k for somej;. We will refer collectively to these
two closely related problems as thearch problem

In particular, if distancep is used in approximate string matching, we obtain a problem
known asepisode matchinffl8,33], which can also be stated as follows: Find the shortest
substring of the text that contains the pattern as a subsequence. Another search problem
related todsap and duwap is called (8, y)-matching” [7], where one wants to find all
occurrenceg, such thatimap (P, Tj,—m+1...j,) <8 anddsap(P, Tj,—m+1..j,) < VY-

Our complexity results will vary depending on the form of the alphabetVe will dis-
tinguish two cases. Aimtegeralphabet is any finite alphab&t C Z. For integer alphabets,
| | will denote maxX') — min(X) + 1. A generalalphabet will be any otheF, finite or
not, and we will omit any reference {&’|. We will only assume thakt is totally ordered
and closed under addition and subtraction (a good example to fix idéas-iR). On the
other hand, for any string = a1 ...a,,, we will call ¥4 = {a; | 1 <i < m} the alphabet
of A. Inthese cases we will u$&' 4| = max(X'4) —min(X4) +1< | ¥ | whenX, is taken
as an integer alphabet. On general alphabétg| < m will denote the cardinality of the
setXy.

3. Related work and motivation

We start by noticing that the problem ekacttransposition invariant string matching
is extremely easy to solve. For the comparison problem, the only possible transposition
is t = b1 — aj1. For the search problem, one can use the relative encoding of both the
pattern ¢y = p2 — p1, p, = p3 — p2,...) and the textfg =1, — 11,1, =13 —12,...), and
use the whole arsenal of methods developed for exact string matching. Unfortunately, this
relative encoding seems to be of no use when the exact string comparison is replaced by
an approximate one.

Transposition invariance, as far as we know, was introduced in the string matching con-
text in the work of Lemstréom and Ukkonen [31]. They proposed, among other measures,
transposition invariant longest common subsequence (LCTS) as a measure of similarity
between two music (pitch) sequences. They gave a descriptive nickname for the measure:
“Longest Common Hidden Melody.” As the alphabet of pitches is some limited integer
alphabetX c Z, the transpositions that have to be consideredlate{b —a | a,b € X}.

This gives a brute force algorithm for computing the length of the LCTS [31]: Compute
Ics(A +t, B) usingO (mn) dynamic programming for eacte T. The running time of this
algorithm isO (| X¥'|mn), where typically| ¥'| = 128. In the general case, whelecan be

V. Makinenetal.

unlimited, one could instead use the set of transpositibns (b —a |a € X4, b € Xp}.

This is because some characters must match in any meaningful transposition. Th&size of
could bemn, which giveso (m2n?) worst case time for general alphabets. Thus itis of both
practical and theoretical interest to improve this algorithm. In a recent work by Lemstrém
et al. [29], a backtracking algorithm to solve the LCTS problem was proposed. Its worst
case is as bad a3(| X' |(mn + log|X|)), but its best case i© (log| X' |(mn + loglog| X)).

The Levenshtein distance allows substituting a note by some other note. A natural exten-
sion would be to make the cost of a substitution operation depend on the distance between
the notes. This is however problematic since there is no natural way of defining costs of
insertions and deletions in this setting. We have chosen an alternative approach: A toler-
ances > 0 is allowed for matching pitch levels. This can be used to allow matches between
pitch levels that are relatively close. In practice, one could use different valiseseach
pitch level to better reflect musical closeness.

While the LCS and the edit distance in general are useful tools for comparing two se-
guences that represent whole musical pieces, simpler measures could be used in the search
problem. An especially suitable relaxation of the LCS is episode matching [18,33]. Assume
that the pattern is (a discretized version of a signal) given by humming. The goal is to search
for the matching musical pieces in a large music database. The pattern obtained by hum-
ming would usually contain the melody in its simplest form, but the searched occurrences
in the music database might additionally contain some “decorative” notes, which were for-
gotten by the person humming the piece. Episode matching would find the occurrences
that contain the fewest decorative notes. This is a good objective, since an occurrence with
a large number of additional notes would not be recognized as the same piece of music.
A version of episode matching has been proposed in the context of MIR [13,19], where the
number of these additional notes between two matching pitches is limited by a constant.
This variant, as well as the original problem, can be solved using dynamic programming in
O (mn) time. Including transposition invariance has not been considered. We will study this
problem and “matching witk-limited gaps” in general, where an additional restriction to
thedp, d. anddp distances is that the gap between two consecutive matching characters
is limited by an intege& > 0. This aims at avoiding seriously distorted occurrences where,
although the total number of extra notes is a small fraction of the whole string, they are
all concentrated in the same place, so that a human would not recognize both strings as
variants of the same melody. Moreover, such restrictions become necessary in other types
of edit distances, see for example the edit distances for point-patterns developed in [35].
Here we will only concentrate on thelimitation on well-known distance measures, since
this is enough to demonstrate the key techniques.

Even simpler measures have been proposed for the search problem. These include vari-
ants ofd,‘il, dsap anddwap, such as thgs, y)-matching problem [7,12,15,16], where
occurrences should have limitéghap anddsap distances to the pattern, simultaneously.
Algorithms for exact string matching can be generalized to this special case, and bit-
parallel algorithms can be applied [7,16]. These algorithms are fast in the average case and
in practice, but their worst case is stdl(mn). In fact, for§ = oo the problem is known
as the weighted-mismatches problem [34], for which it has long been an open question
whether the quadratic bound can be improved. We will not answer that here, but we will

V. Mékinenetal.

show that within the same bounds one can solve the harder problem where transposition
invariance is included.

So far we have discussed problems for monophonic musical sequences. Polyphonic mu-
sic is much more challenging. Usually one would be interested in finding occurrences of a
monophonic pattern in a polyphonic music. The basic approach would be to separate poly-
phonic music into parallel monophonic pitch sequences (each instrument separately). This
case can be handled easily by applying algorithms for monophonic music. This would how-
ever lose the melodies that “jump” between instruments. To find these melodies one should
represent the polyphonic music as a sequence of subsets of pitch levels. The exact matching
is in this case called subset matching, for which novel (but impractical) algorithms have
been developed [8-10]. To allow transposition invariance, one could simulate these algo-
rithms with each possible transposition. The time complexity would then®= |s log? s)

[10], wheres is the sum of the subset sizes. A practical approach has been taken by
Lemstrom and Tarhio [30], who developed a fast filter for the problem with transposition
invariance, as well as a simple verification algorithm that has running@e |n + sm).
Lemstrom and Navarro [28] presented bit-parallel algorithms for this problem, considering
several distance measures. We note that the edit distance problems can easily be adapted to
the case in which the text consists of subsets. A more robust extension of episode matching
for polyphonic music, where the number of jumps is controlled, was also studied [27].

Other applications for transposition invariance can be found, for example, in image
processing and time series comparison. In image comparison, one could for example use
the sum of absolute differences to find approximate occurrences of a template pattern in-
side a larger image. This measure is used, for instance, by Fredriksson in his study of
rotation invariant template matching [21]. Transposition invariance would mean “lighting
invariance” in this context. As images usually contain a lot of noise, the measure where
largest differences can be discarded could be useful. We study the combination of rotation
and lighting invariances in a subsequent paper [22].

In time series comparison, many of the measures mentioned can be used. In fact, episode
matching was first introduced in this context [33]. Recently, a problem closely related
to transposition invariant LCS was studied by Bollobas et al. [5]. They studied a more
difficult problem where not only transposition (translation), but also scaling was allowed.
They also allowed a tolerance between matched values, but did not consider transpositions
alone. Our algorithms could be useful to improve these results, as dynamic programming
algorithms are used as a black box in their techniques, and we give improved (sparse)
dynamic programming algorithms.

4. Summary of results

Our results are two-fold. For evaluating the easier distance meag{jfeg s, dyrap
we achieve almost the same bounds that are known without transposition invariance. These
results are achieved by noticing that the optimum transposition can be found without eval-
uating the distances for each possible transposition.

For the more difficult measures[¢™*, />, andd}>*) we still need to compute the
distances for each possible transposition. This would be costly if the standard dynamic

V. Makinenetal.

programming algorithms for these problems were used. However, we shogptraedy-
namic programming algorithms can be used to obtain much better worst case bounds. Then
we show the connection between the resulting sparse dynamic programming problems and
multidimensional range-minimum queries. We obtain simple yet efficient algorithms for
these distances.

For LCS (and thus fodp) there already exists Hunt-Szymanski [26] type (sparse dy-
namic programming) algorithms whose time complexities depend on the numbfer
matching character pairs between the compared strings. The complexity of the Hunt-

Table 1

Upper bounds for string matching without transposition invariance
Distance Distance evaluation Searching
exact O(m) O(m +n)

dy o(m) O(ny/mlogm) [1]
dj, O(m) O (mn)
dsap O(m) O(mn)
dmAD O (m) O (mn)

(8, y)-matching O (m) O (mn)
dip,dL O (mn/logm) O(mn/logm) [14]
i 0 (mn) O(mn) [35]
dﬁ’a O (amn) O (amn) [35]
dp O (mn/logm) O(mn/logm) [18]
az” O (mn) 0 Gnn) [13]

We omit bounds that depend on the threshoid the search problems.

Table 2

Our upper bounds for transposition invariant string matching

Distance Distance evaluation Searching
exact O (m) O(m +n)
a OGmlogm) O (mnlogm)
dgho O(m + k logi) O((m + « logic)n)
dlt\}ll,(’-\D O(m + klogk) O((m + «logk)n)
(8, y)-matching O(m) O (mn)

dltt;s O (dmnloglogm) O (8mn loglogm)
dltg'a O (8mnlogm) O (8mnlogm)
dr O(8mnloglogm) O (mnloglogm)
dtL'B’a O(anlogzm) O(Smnlogzm)
ag’ O (8mn) O (8mn)

On an integer alphabet, termlogm in d,t_'l‘S can be replaced by¥'| + m, and
klogk by | X| + k. We have not added, for clarity, the preprocessing time of
Theorem 2 for the edit distance measures. Findllghould be understood as
(26 + 1)/, where v is the minimum difference between any two different
a; —bj values fu = 1 on integer alphabets).

V. Mékinenetal.

Szymanski algorithm i®) (» logn) once the matching pairs are given in correct order. As
the sum of values over all different transpositions isn, we get the bound (mn logn)

for the transposition invariant case. Later improvements [2,20] permit reducing this com-
plexity to O(mnloglogn) time (see Section 5.2). We improve this é(mn loglogm)

by giving a newO (r log logmin(m, r)) sparse dynamic programming algorithm for LCS.
This algorithm can also be generalized to the case where gaps are limited by a censtant
giving O (mnlogm) time for evaluatingiltb“ (A, B).

Eppstein et al. [20] have proposed sparse dynamic programming algorithms for more
complex distance computations such as the Wilbur—Lipman fragment alignment problem
[41,42]. The unit cost Levenshtein distance can also be solved using these techniques [24].
Using this algorithm, the transposition invariant case can be solve@(itn loglogn)
time. However, the algorithm does not generalize to the caseliofited gaps, and thus
we develop an alternative solution that is based on two-dimensional semi-static range min-
imum queries. This gives u8 (mnlog?m) time for evaluatingdt""(A, B). However, we
develop in passing an improveél(r log logm) sparse dynamic programming algorithm for
Levenshtein distance, which permits computﬂﬁgn O (mn loglogm) time. Also, we note
that our algorithm to computqt_""(A, B) can be applied to the case without transpositions,
where it is still O (imn log? m), and hence better than the existi@gamn) time algorithm
[35] for « = Q2(log? m).

Finally, we give a newO (r) time sparse dynamic programming algorithm for episode
matching. This gives u@ (mn) time for transposition invariant episode matching.

The search problems on the edit distances can be solved in general within the same time
bounds of the distance computation problems. For the simpler distances, on the other hand,
our only solution is to evaluate them at every text position.

Table 1 gives a simplified list of upper bounds that are known for these problems without
transposition invariance. Table 2 gives the achieved upper bounds for the transposition
invariant versions of these problems.

We start by describing our solutions to the edit distances, since they are the main empha-
sis of this paper. Then we briefly give the other results for Hamming distance and related
measures.

5. Transposition invariant edit distances

Let us first review how the edit distances can be computed using dynamic programming
[32,36,40]. LetA = ajaz---a,, andB = b1b - - - b,. FOrdip, evaluate amm +1) x (n+1)
matrix (d;;), 0<i <m, 0< j <n, using the recurrence
dij= min((if aj=bj then di—1,j-1 else 00), di—1j+1, dij_1+ 1), ()

with initializationd; o =i for 0 <i <m anddp ; = j for 0< j < n.
The matrix(d;;) can be evaluated (in some suitable order, like row-by-row or column-
by-column) inO (mn) time, and the valud,,,, equalsdip (A, B).
A similar method can be used to calculate distahoed, B). Now, the recurrence is
dij= min((di_l_j_l +ifa; = bj thenOesel), di—1,j+1, dij_1+ 1), (2)

with initializationd; o =i for 0<i <m anddp j = j for 0< j < n.

V. Makinenetal.

The recurrence for distanelp (A, B), which is used in episode matching, is
d[,j =if g =bj then diflyjfl elsedi,j,1+1, (3)

with initializationd; o = oo for 0<i <m anddp ; = j for 1 < j <n.

The corresponding search problems can be solved by assigning zero to the values in the
first row, do, ; = O (recall that we identify patter® = A and textT = B). To find the best
approximate match, we take rgin; <, dn,, ;. For thresholded searching, we report the end
positions of the occurrences, that is, thgsehered,, ; <k.

A useful alternative formulation of these distance computation problems is to see them
as a shortest path problem on a graph. The graph contains one node for each matrix cell. For
dip(A, B), there are (horizontal) edges of cost 1 that connect everyicgl- 1) to (i, j),
as well as (vertical) edges of cost 1 that connect every(telll, j) to (i, j). Whenever
a; = bj, there is also a (diagonal) zero-cost cell that conngctsl, j — 1) to (i, j). Itis
not hard to see that,, ,, is the minimum path cost that connects c@ll0) to cell (m, n).

Ford, this graph has also diagonal edges of cost 1 from everyicelll, j — 1) to (i, j).
Fordp, the graph contains only the horizontal edges and the zero-cost diagonal edges. For
searching, we add zero-cost edges connecting — 1) to (0,) for everyj.

To solve our transposition invariant problems, we compute the distanedséguired
transpositions, but we use algorithms that are more efficient than the above basic dynamic
programming solutions, such that the overall complexity does not exceed by much the
worst case complexities of computing the distances for a single transposition.

Let M be the set of matching characters (also called match set) between gtiangis,
that is, M = M(A, B) ={(i, j) | a; = bj, 1<i <m, 1< j<n}. The match set corre-
sponding to a transpositiarwill be calledM; = M(A +t, B) ={(i, j) |a; +t =b;}. Let
r=r(A, B)=|M(A, B)|. Let us defin€l to be the set of those transpositions that make
some characters match betwegrand B, that isT = {b; —a; | 1 <i <m, 1< j <n}.

One could compute the above edit distances and solve the search problems by running the
above recurrences over all pais ¢, B), wherer € T. In an integer alphabet this takes
O(1X|mn) time, andO (| X4 || Xg|mn) = O(m?n?) time in a general alphabet. This kind

of procedure can be significantly sped up if the basic dynamic programming algorithms
are replaced by suitable “sparse dynamic programming” algorithms.

Moreover, we are actually interested in computing the edit distances allowing approxi-
mate matches between the characters (recall the versions with paréjnétetake these
approximate matches into account, let us redefine our matciMsets Mf ={@,j) |
b — (a; +1)| < 5).

We note that, ifs = 0, then the sum of the sizes of all the match setasis that is,
>, IM;| = mn. However, if§ > 0 then each cell may participate in more than one relevant
transposition, and the total size of the match s§tj§,|M;3|, may perfectly exceedhn.

On an integer alphabet, each cell can participate at moss i 2 match sets, so the
overall size isy , |M;3| < (256 + Hmn. On a general alphabet, this is not enough. Let us
call u the smallest difference between two different relevant transpositions, then it holds
> |M,5| < (26 + D)mn/ne. Note thatu = 1 on an integer alphabet.

Lemma 1. If distanced(A, B) can be computed i (g(r(A, B)) f (m, n)) time, where
¢() is a concave increasing function, then the transposition invariant distdheg B) =

V. Mékinenetal.

min,er d(A + t, B) can be computed i@ (g(mn) f (m, n)) time. Thes-tolerant distance
d“*(A, B) = min,er d°(A +t, B) can be computed i@ (g3, |M?|) f (m, n)) time.

Proof. Foré =0, letr, = |[M;| = r(A + ¢, B) be the number of matching character pairs
betweenA + ¢ andB. Then

Zg(r»f(m,n)=f<m,n>2g<2|{j |a; +1=b;, 1<J<n}|)

teT teT i=1

<f<m,n>g<ZZ\{j|a,-+t=b,», 1<j<n}|>

i=11teT

= f(m, n)g(Zn) = g(mn) f(m,n).
i=1
The casel > 0 is similar (change the order of the summations in the second line above,
and)", . M? shows up). O

The rest of the section is devoted to developing algorithms that depend-owever,
we start by considering how to obtain the skéts= M (A + ¢, B).

5.1. Preprocessing

As a first step, we need a way of constructing the match\getorted in some order
that enables sparse evaluation of magdx).

We must be careful in constructing these match sets for all transpositions so that the
overall preprocessing time does not exceed the time needed for the actual distance compu-
tations. For example, one could easily construct a match set by consideringat thars
(i, j) in any desired order and adding each aitj) to My, _,,, first initializing it if the
transposition = b; — a; did not previously exist. This method gives Qg| X' | 4 mn) time
on an integer alphabet and(mnlog(|X4||Xg|)) = O(mnlogn) on a general alphabet
(by using a balanced tree of existing transpositions).

Let us now consider the cade- 0. Now each paifa;, b;) defines aangeof relevant
transpositions[b; — a; — 8, b; — a; + 5. However, only at the extremes of those ranges
the setsM? can change, so it is enough to consider two transpositions, a; — § and
b;j —a; + 6, for each paila;, b;). Moreover, ift’ = t + € such that a range finishes between
t and:” and all the rest stays the same, thigh < M?, and because of the definitions of edit
distancesd(A + ¢, B) < d(A +¢, B) for any edit distance. This shows that it is enough to
consider only the places where ranges start (or, symmetrically, all the places where ranges
finish, but not both). Hence, we will compuaé? for t {bj —a; — 8}

Theorem 2. The match setst ={(, j) | |b; — (a; +)| < 8}, each sorted in a de-
sired cell order, for all relevant transpositionse T={b —a — 8 |a € X4, b € X},
can be constructed in tim@ (| X| + (26 + 1)mn) on an integer alphabet, and in time
O(mlog| X4 +nlog| Zp|+ | XAl Zp|log(min(| Z4l. |1 Z5])) + Y_,cr |M}]) on a general
alphabet.

V. Makinenetal.

Proof. On an integer alphabet we can proceed naively to ol®irX’| + mn) time using
array lookup to get the transpositidn — a; where each paiti, j) has to be added. For
8 > 0 each pair(, j) is added to entries from; —a; — 8 t0 b; —a; + 6, In O(| 2| +
(28 + 1)mn) time.

The case of general alphabets is solved as follows.

(i) Start by obtaining the sets of different charactersAirand B. Create a balanced
binary search tre&, where every character= a; of A is inserted, maintaining for each
sucha € ¥4 alist £, of the positions of A, in increasing order, such that=a;. Do the
same forB and7p. This costsO (mlog| X 4| +nlog|Xp|).

(ii) Then, obtain a sorted list of all the relevant transpositions, with duplicates. Let us
assumg X4 | < | X'p| (otherwise do it the symmetric way). For eacle T4, traverse all
b in 7 in order and generate a list of increasing transpositions and their corresponding
position lists(b — a — 8, L4, Lp). Then merge th¢X'4 | lists into a unique ordered list of
relevant transpositions and positions, where there are possible duplicate$in the §
values (but these are all contiguous). Since we choose the smaller alphabet to traverse the
larger, this part cost® (| X4 || Xg|log(min(| X4], | X'5]))) time.

(iii) Now, create listT of relevant transpositions and associate the set of positiffhs
to eachr € T. We will need to fill simultaneously a matrik of m rows andn columns,
such that each cell’; ; points to the proper noda/? in T. Traverse the sorted list of
transpositions and remove duplicate transpositions, appending a newsadde a — § at
the end ofT, whereM? is stored, initially empty. At the same time, each time a list entry
(b—a—86,L,, L) is processed, assign a pointerMﬁ at each cell; ; for everyi € £,
andj € L. This costsO (mn) since every cell of” will be visited exactly once.

(iv) Finally, fill the M? sets. Traverse matri€ in any desired order, and for each
processed entryi, j), add (i, j) to the set pointed to by; ; (that is,M;j/_ai_a). This
costsO (mn). If § > 0 add entry(i, j) not only toC; ;, but also move forward in the sorted
list T, adding entry(, j) to next transpositions’ — a’ while (b’ —a’) — (b — a) < 25. This
costs) ,r IMY|. O

In the rest of this section, we will only consider explicitly the cdse 0 and develop
algorithms that compute a distané€A, B) using a match se¥,. However, all algorithms
can be used for computing the corresponding error tolerant distdiger 7, B) in a given
transposition by running them ord/? instead of on\. All the complexities fo = 0 will
include a term of the fornmn, which has to be replaced By, . |Mf| <25+ Dmn/u
if § > 0. Note that a simple upper bound on the preprocessing time for general alphabets is
O (mnlogm + nlogn) for § =0 andO (mn(logm + (25 + 1)/u)) in general.

5.2. Computing the longest common subsequence

For LCS (and thus fod|p) there exist algorithms that dependmarnThe classical Hunt—
Szymanski [26] algorithm has running tin@(r logn) if the set of matched/ is already
given in the proper order. Using Lemma 1 we can conclude that there is an algorithm for
transposition invariant LCS that has time complexitymn logn). There are even faster
algorithms for LCS: Eppstein et al. [20] improved an algorithm of Apostolico and Guerra
[2] achieving running timeO (D loglog min(D, mn/ D)), whereD < r is the number of

V. Mékinenetal.

dominant matches (see, for example, [2] for a definition). Using this algorithm, we have
the boundO (mnloglogn) for the transposition invariant case (note that this is a tight
estimate, since it can be achieved whegs= ® (mn /D) at each transposition).

The existing sparse dynamic programming algorithms for LCS, however, do not extend
to the case o#&-limited gaps. We will give a simple but efficient algorithm for LCS that
generalizes to this case. We will also use the same technique when developing an efficient
algorithm for the Levenshtein distance widhlimited gaps. Moreover, by replacing the
data structure used in the algorithm by a more efficient one described in Lemma 8, we
can achieve) (r loglogm) complexity, which givesD (mn loglogm) for the transposition
invariant LCS (this is better than the previous bound, sincg n).

Recall the set of matching character paws= {(i, j) | a; = b;}. Let M=MU
{(0,0), m + 1,n + 1)}. We have the following sparsity property faéi .

Lemma 3. Distancedp (A, B) can be computed by evaluatiag; for (i, j) € M using
the recurrence

dijj=min{dy j+i—i'+j—j =210 jHheM, i'<ij <j}, (4)

with initialization dg o = 0. Valued,,, +1.,+1 equalsdip (A, B).

Proof. Letusregard again the computation of mattias a shortest path computation on a
graph. Every path from ce{D, 0) to a cell(i, j) that is the target of a zero-cost edge can be
divided into two parts: from cel0, 0) until a cell (i’, j’) that is the target of the last zero-
cost edge traversed before reaching), and from cell(i’, ;') until cell (i, j). The path
from (i, j/) to (i, j) moves first to(i — 1, j — 1) traversing only horizontal and vertical
cost-1 edges, and then moves for free from- 1, j — 1) to (i, j). Overall, (i — 1) — i’
vertical and(j — 1) — j’ horizontal edges are traversed, for a total costef’ + j — j' — 2.
Hence the cost of this particular pathds j; +i — i’ + j — j’ — 2. M contains all the cells
that are targets of zero-cost edges, and therefore minimizing over all(cel}$) € M
yields the optimal cost, except for the possibility that the optimal path does not use any
zero-cost edge beforg, j). This last possibility is covered by adding céll, 0) to M,
with dp o = 0 (which is also a way to state that our paths must start a{@ed). Finally,

as we wish to obtain valué, ,,, we could have added cehz, n) to M, but our reasoning
applies only to cells that are target of zero-cost edges. Hence, we adekcell, n + 1)

as such a target, sb, , = d,+1.n+1 IS correctly computed. O

The obvious strategy to use the above lemma is to keep the already computed values
dy_j» in a data structure such that their minimum can be retrieved efficiently when comput-
ing the value of the next; ;. One difficulty here is that the values stored are not comparable
as such since we want the minimum only after i’ + j — j/ — 2 is added. This can be
solved by storing thpath-invariantvaluesd;: ; —i’ — j" instead. Then, after retrieving the
minimum value, one can add}- j — 2 to get the correct value faf ;. To get the minimum
valued; j —i'— j’ fromrange(i’, j') € [-00,i) x [—00, j), we need a data structure sup-
porting dynamic one-dimensional range minimum queries. To see that it is enough to use
query rangg—oo, i), notice that if we compute poin{g, j) column-by-column (that is,
for increasingj), each column from bottom to up (that is, for decreaginghen the query

V. Makinenetal.

points that are in the range-oo, i) are also those in the range oo, j). We call this
order thereverse column-by-column ordei’, j') precedeqi, j) if j/ < j, orif j/' = j
andi’ > i.

Hence we need an efficient data structure where we can store the row numasrs
the sort keys, and valuagi’) = d(i’, j') — i’ — j’ associated to them, and query it by
minimum values over a range of keys. Furthermore, we will need later to remove points
from this data structure, so we want it to be dynamic. The following well-known lemma
establishes the existence of such a data structure. Lacking any reference, we prove it.

Lemma 4. There is a data structur@ supporting the following operations i@ (logn)
time, where: is the amount of elements currently in the structure

T .Insert(k, v): Inserts valuev into the structure with ke¥. If key k already exists, the
value of the element is updatedudf v is smaller than the current value.

T .Deletgk): Deletes the element with kiy

v="7.Minimum(7): Returns the minimum of values whose keys are in the one-dimen-
sional rangel = [¢, r].

Proof. A modified balanced binary search tree (AVL, for example) organized by keys
and storing associated value&) is a suitable data structure. Let us speak indistinctly of
nodes and keys, and denote left and right children of a &dolek.left andk.right. This

tree is augmented with a field mi@) stored at each node, where the minimum of values
in the subtree rooted &tis maintained. The tree is easily updated when a newkkisy
inserted, as the only additional operation is to update the value(djiref any traversed
internal nodet’ to min(minv(k"), v). Once a nodé is deleted, values mir¥") in the path
from the root to the parent df need to be recomputed (if the deleted node is internal and
hence replaced by a leaf, this update is done from the parent of the removed leaf). This
updating is easy since mit) = min(v(k), minv(k.left), minv(k.right)) is recomputed in
constant time per node. For the same reason, thinvalues are also easily recomputed
when the tree is rebalanced by rotations.

Minimum over ranges of key, r] are obtained as follows. The tree is searched for
andr simultaneously until node€* is reached where the search path splits. Fsbreft the
search is continued with and at every node where the search path éfgoes left, value
minv(s.right) is compared to the minimum value obtained so far. Similarly, the search is
continued with- ats*.right, and at every nodewhere the search path ofjoes right, value
minv(s.left) is considered for updating the computed minimum. Also,utie values of
nodesk visited are included in the minimization whenevex k < r. A not so infrequent
special case occurs when the search path splits before the root node, and hence node
does not exist. In this case, both searched fandr start at the root node.o

We are ready to give the algorithm now. Initialize the ttEeof Lemma 4 by adding
the value ofdgo — i — j =0 with keyi = 0: 7 .Insert(0, 0). Proceed with the match set
M \ {(0,0)} that is sorted in reverse column-by-column order and make the following op-
erations at each such pair j):

V. Mékinenetal.

(1) Take the minimum value froi whose key is smaller than the current row number
d =T .Minimum([—o0,i)). Addi + j — 2 to this valued <~ d +i + j — 2.

(2) Add the current valug minus current row and column numbe# j, into 7, with the
current row number as its ke¥:.Insert(i, d —i — j).

Finally, after cellm + 1, n + 1) has been processed, we have thatA, B) =d.

The above algorithm works correctly: The reverse column-by-column evaluation and
the range query restricted by the row numbeffirguarantee that condition$ < i and
j' < j hold. The only point where the work on tréedeviates from what Lemma 3 requires
is that new keys overwrite equal old keys. That is, if a new @elf) is inserted, an old cell
(i, j/) is virtually removed if it existed. It is easy to see that the old cell is of no use once
the new cell is inserted. Say that cél] j’) obtained its value from cellig, jo), so that
d; jr =djy jo +1i —io+ j — jo— 2. Hence cellio, jo) is also a candidate) ; < d;,, j, +
i—io+j—jo—2,80d; j <dj j+j—j. Now, assume a later c&ll’, j”) uses celli, j"),
so thatd;» j» =d; j +i" —i + j” — j' — 2. But then it can also use céfl, /) to obtain a
smaller or equal value usinly j» =d; j+i" —i+j" —j=2<dy jy+i"—i+j" —j' =2.

Note that this is simply a consequence of the fact that(¢efl) dominated, j') [2].

Clearly, the time complexity of the algorithm @& (r logm), wherer = |M|, since we
can only haven + 1 different row numbers stored ih at any moment. Figure 1 gives an
example.

The algorithm also generalizes easily to the search problem: The 0 values in the first
row can be added implicitly by usingg<— min(i,d + i + j — 2) in step (1) above. Also,
every valued; ; =d computed in step (2) above induces a valjg s <d + (m —i) +s
in the last row, which can be used either to keep the minimdym value (in which case
we consider only case= 0), or to report all values,, ; < k in thresholded searching. In

9 202326 3639 48 N

81214

.
~
’ ~
’ ~
. N
4 N
.

e 22

,
’
’
’

T 0000(0) 13[-41(-4) | 26[-4] (-4}
I

~
.
.

Fig. 1. Example of computation afip on a sparse matrix. Black circles represent the matching paiys.

Each such matrix position has an influence area represented by a gray rectangle (darker grays represent larger
differences from the standard valiie- j). Next to each position we represent the matrix valye we compute.

The value of interest is the lowest rightmost position. In particular, we depict the computation of tt21c84),

for which we have to consider all the positions included in the dashed rectangle. On the right we show our tree
data structure. Each node corresponds to a(tell and is represented agv] {minv}, wherei is the tree key,

v is the value (meaning that the real cell valudiis- j) + v), andminvis the minimumv value in the subtree.

The search for cell (24,39) includes all the nodes below the dashed line, and it takes the mihowenall the
underlined values. Its new valueds, 39 = d + 24+ 39— 2 =57, so we will insert a new node with key 24 and

value 57— 24— 39= —6 in the tree.

V. Makinenetal.

order to report occurrences only once and in order, two as&ys..n) andE(1...n) of
counters are maintained: The counters are initialized to zero, and at each pai M
such thatd; ; + (m — i) < k we setS(j) =S(j)+1andE(j +s)=E(+s) +1
for the maximums such thatd + (m — i) + s < k. This marks the start and end points
of the occurrences. Then it is easy to collect all the occurrence3(in) time by us-
ing SO and E() to keep track on how many ranges are active at any posjtioh the
text.

The querie§—o0, i) we use are semi-infinite. We will show in Lemma 8 (Section 5.3)
that the balanced binary search tree can be replaced by a more advanced data structure
in this case. That is, semi-infinite queries for minimum and insertions can be supported
in amortizedO (loglogu) time, where[1, u] is the integer range of keys that are inserted
into the structure. In our case= m, which gives usO (loglogm) query time. The next
theorem follows immediately.

Theorem 5. Given two stringsA =a1...a, and B = b1...b,, m < n, and ther cells
(i, j) such thats; = b; in reverse column-by-column order, then the LCS betweamnd
B can be computed in tim@ (r log log min(r, m)).

Let us now consider the case wighlimited gaps. The only change we need in our
algorithm is to make sure that, in order to compdtg, we only take into account the
matches that are in the ran@®, ;) € [i —a — 1,i) x [j —a — 1, j). What we need to
do is to change the search rangeoco, i) into [i —« — 1,i) in 7, as well as to delete
any elements in colump — o — 1 after processing elements in columinThe former is
easily accomplished by using quefyMinimum([i —a — 1, i)) at step (1) of the algorithm.
The latter needs that we delete nodes frdmvhen their columns become too old. More
specifically, we maintain a pointer to the oldest (that is, smallest column) eleméntiiat
is still stored in7. When we finish processing columin we check whether the pointed
cell is of the form(i’, j — o — 1) for somei’. If it is, we remove key’ using7 .Deletei")
and advance the pointer until the pointed cell belongs to a later column. Since the tracking
takes constant time per cell 81, its effect in the complexity is negligible.

Note that it might be that key in 7 actually corresponds to a later column that has
overwritten cell(i’, j —a — 1). In this case we must advance the pointer but not delete the
key. In order to check this, we also storeZinnodes the current’ value corresponding to
each key’.

Notice that we cannot obtai@ (log logm) query time anymore, since the query ranges
are no longer semi-infinite. On the other hand, we could have used two-dimensional
queries instead of deleting points frofh but, as shown in Lemma 8, the complexity
would be worse. An illustration of the algorithm for LCS withlimited gaps is given
in Fig. 2.

By using Lemma 1 and the above algorithms, we get the following result.

Theorem 6. The transposition invariant distanoﬂ‘D(A, B) (or, equivalently, LCBcan
be computed irO (mn loglogm) time. The corresponding search problem can be solved
within the same time bound. For the distaratﬁ§(A, B) the time bounds ar® (mn logm)

V. Mékinenetal.

0 9 2023 26 3639 48
0®
3|0 ()
37
8
26

13 r

| 3[-2]1{-2}

|
22 o
24 29 ®
26) 61

45
32
®

Fig. 2. Example ofx-gapped computation efip on a sparse matrix, far = 10. The same conventions of Fig. 1

apply. The difference is that now the influence areas are restricted to width and &eihtve delete values

which correspond to column numbers which are small enough to have become irrelevant and perform a two-sided
range search over the tree, so only its middle part qualifies. In this example, the tree has only one element when
computing cell(24, 39), and it is outside the search range. In this case the value of the cell js— 2=61.

for distance computation and for searching. The preprocessing cost of Th@arerst be
added to these bounds.

The algorithms us@® (mn) space, since the overall size of the sets for different trans-
positions ismn (note that the algorithm itself needs ondy(m) space). This might be
problematic especially for the search problem, when the two strings are of very different
size.

We can achieve space complexiy(m?) in the search problem as follows. Divide the
text into O (n/m) segments of the forry._ 2., Tru+1...3m» T2m+1...4m,» @and so on. Run the
whole algorithm (including generating the sets of transpositions) separately over those
O (n/m) text segments, one after the other. When processing text sedment . i+2),
report the matches found in the ar@a;11)+1..mi+2)-. This way, each text position is
processed twice and hence the complexity remains the same. The space, however, is that
to process one text segmeiit(m?). With respect to correctness, we remark that, given
that celld; ; receives valug from cell (O, j), no column beforej — m can influence
it (indeed, no column beforg — i). Hence, in order to report correctly the matches in
areaTy,i+1)+1..mi+2 We only need to startn positions behind, thus processing area
Twi+1..m@i+2)- This technique is rather general and can be applied to other edit distances
as well.

In particular, in the case af-limited gaps we can use the same technique both for
distance computation and for searching, since only thedlasiumns processed can affect
current values. Hence we can compdl‘{é(A, B) using O (am) space.

We recall that, whei > 0 and we consider distancé’ andd/>“, all termsmn are
replaced by, .t |M?| in the time and space complexities.

5.3. Computing the Levenshtein distance

For the Levenshtein distance, there exist®anloglog min(r, mn/r)) sparse dynamic
programming algorithm [20,24]. Using this algorithm, the transposition invariant case can

V. Makinenetal.

be solved inO (mn loglogn) time. As with the LCS, this algorithm does not generalize to
the case of-limited gaps. We develop an alternative solution for the Levenshtein distance
by generalizing our LCS range query approach. This new algorithm can be further gener-
alized to solve the problem of-limited gaps. On the other hand, we show that the sparse
computation can be done B (r loglogm) time.

The Levenshtein distane®g has a sparsity property similar to the one givendgy in
Lemma 3. Recall thal = M U {(0, 0), (m + 1,n + 1)}, whereM is the set of matching
character pairs.

Lemma 7. Distanced, (A, B) can be computed by evaluatidg; for (i, j) € M using the
recurrence

{dvy+j—Jj =110, jHreM, i'<i, j—i <j—i},

di,j =min . o =
{dpj+i—=i"=1|G",jhYeM, j'<j, j—i">j—i},

(5)
with initialization dp o = 0. Valued,,,+1.,+1 equalsd, (A, B).

Proof. Following the proof of Lemma 3 it is enough to show that the minimum path cost
to reach celli — 1, j — 1) from match pointi’, j) is (i) j — j' — 1 when;’ —i’ < j —1i,

and (ii))i — i’ — 1 otherwise. The reason is that, in both cases, we use as many diagonal
edges as possible and the rest are horizontal or vertical edges, depending on theicase.

The recurrence relation is now more complex than the ongforin the case offi|p we
could store values; ; in a comparable format (by storinfy j; — i’ — j’ instead) so that
the minimumd;, ; —i’ — j’ of (i’, j') € [—00, i) x [—0o0, j) could be retrieved efficiently.
For d.. there does not seem to be such a comparable format, since the path length from
@i’, j/) to (i, j) may be eithef —i" —1orj — j/ — 1.

Figure 3 illustrates the geometric setting implicit in (5). The lower region (below diago-
nal j — i) contains match points such that their extension by match willadd j — j' — 1
to the score, and the upper region (above diagonal) contains match points such that their
extension by matclki, j) will add i — i’ — 1 to the score. The score of the new match
is computed as the minimum between the lowest possible score obtained by extending a
match from the lower region and from the upper region. Therefore, each match will have
its scores maintained in two structures, one structure representing scores to be extended as
“lower region” scores, and other for “upper region” extensions.

Let £ denote the data structure for the lower region&ritle data structure for the upper
region. If we store valued; ; — j’ in £, we can take the minimum over those values plus
j — 1 to get the value ofi; ;. However, we want this minimum over a subset of values
stored inZ, that is, over thosé;: ;» — j’ whose coordinates satisfy< i, j' —i' < j —i.
Similarly, if we store valued;/ ;s —i’ in U/, we can take minimum over those values whose
coordinates satisfy’ < j, j' —i’ > j — i, plusi — 1 to get the value of; ;. The actual
minimum is then the minimum of upper region and lower region minima.

What is left to be explained is how the minima of subset£ @ndi{ can be obtained.
For the upper region, we can use the same structure agfolf we keep values;s j; —i’
in a balanced binary search triewith key ;' — i/, we can make one-dimensional range
search to locate the minimum of valugs ;; — i’ whose coordinates satisfy—i’ > j —i.

V. Mékinenetal.

9 20 2326 3639 48

(0,0) [0]
(8,12) [-1]
13,13) [-2]

(3,33) [-1]

(22,-13) [12]

(26,-3) [1]

query: min([-inf,24) x [-inf,15))+39-1 = -2+39-1 = 36

[J
45

Fig. 3. Example of computation @f on a sparse matrix. The same conventions of Fig. 1 apply. We distinguish
in the matrix the lower and upper regions considered to solvg24IB9). Since the upper region is handled just
like for d|p, we show on the right only the data structure of the lower region. It supports minimum operations
over two dimensional ranges. Each relevant matrix positioy) is represented in the range search structure at
position (i, j — i). The value in brackets iy — j], wherey is the value of celli, j). To solve cell(24, 39)

we take the minimum in the rande-oco, 24) x [—o0, 39— 24) (inside the dashed rectangle on the right), which
returns—2, and addi — 1 to it to obtain 36. After this, point24, 15) will be updated to value 36 39= —3.

The reverse column-by-column traversal guaranteedtaatly contains values; ;; — i’
whose coordinates satisfy < j. Thus, the upper region can be handled efficiently.

The problem is the lower region. We could use row-by-row traversal to handle this
case efficiently, but then we would have the symmetric problem with the upper region.
No traversal order seems to allow us to limit to one-dimensional range searches in both
regions simultaneously; we will need two-dimensional range searching in one of them.
Let us consider the two-dimensional range search for the lower region. We would need
a query that retrieves the minimum of valugs;; — j’ whose coordinates satisf{/ < i,

Jj —1i’ < j—i.We make a coordinate transformation to turn this triangle region into a
rectangle: We map each valdg ; — j’ into anxy-plane at coordinaté’, ;' — i’). In

this plane we perform a rectangle quéryoco, i) x [—oo, j — i). The following lemma,
adapted from Gabow, Bentley and Tarjan [23], provides the required data structure for the
lower region. We summarize some other related results in the same lemma that we will
soon use in the-limited case (we already referred to the one-dimensional result in the
algorithm ford)p).

Lemma 8 (Gabow, Bentley, Tarjan [23])There is a data structur® that stores a two-
dimensional point-sef with a value associated to each point, and supports the following
operations in amortized (logn loglogn) time afterO (nlogn) time preprocessing oS,
wheren = |§|:

R.Updatex, y, v): Update value of point = (x, y) € S to v, under the conditiorix) that
the current value of is larger thanv.

v ="R.Minimum(/): Retrieve the minimum value from a rangef S, wherel is semi-
infinite at least in one fixed coordinate.

V. Makinenetal.

There is another structur® that supports the same operationsdr{log?») time, where
condition(x) does not need to hold, and search rarigeeeds not be semi-infinite in either
coordinate.

Semi-infinite queries can be supportedidog logr) time in the one-dimensional case,
if the point coordinates € S are integers in the rangg, n]. In this case conditiol) must
hold.

Proof. We will review the proof of theD (logn loglogr) bound [23] in order to cover the
one-dimensional case and the closed range case.

The basic structure supporting operations in timéog?n) is a range tree (see, for
example, [3, Section 5]), where the secondary structures are replaced by the ones given
in Lemma 4. The structure is a balanced (primary) search tree for-tteordinate range
searches, where each nodestores another (secondary) balanced treeyfopordinate
searches among the points that are stored in the subtieénahe primary tree. As shown
in Lemma 4, the secondary trees support minimum queries and unrestricted updates of
values. To update a value, its node in the primary tree is found and then it is necessary to
update the corresponding nodes in all thdogn) secondary trees stored at the ancestors
of the primary tree node. For range searching, we fin@ {fogn) time theO (logn) nodes
of the primary tree whose subtrees cover theoordinate range, and then paylogn)
time in each such node to find the minimum of points in $heoordinate range. Hence,
updating and searching can be don®ifiog® n) time. Note that it is costly to maintain the
invariants of the secondary trees contents upon rebalancing the primary tree, so insertions
and deletions of points are not supported. Rather, the trees are built in a preprocessing stage
in perfectly balanced form and stay with that shape. Preprocessing cost is proportional to
the space needed by the data structure, whigh(islogn).

Let us then review hovo (log logn) time can be achieved in the one-dimensional case
for integer point sets. As our query is w.l.0.g. fifs) | s € [—o0, r)}, where v(s) gives
the value ofs, it is enough to choose the minimum among those paimthose value (s)
is the minimum in the range-oo, s1; these are callelgft-to-right minima It is easy to see
that other values(s) can never be the minimum in any rangeoco, r). Note that left-to-
right minima form a decreasing sequence. The data structure of van Emde Boas [38,39],
which we will denoteQ, supports operationg.insert(s) (insertss into Q), 9.deletds)
(deletess from Q), Q.successap) (returns the largest point stored ¢ smaller thary),
andQ.predecessds) (returns the smallest point storedghlarger thars) in O (loglogn)
time, wheres is an integer in the randd, n]. We will store only left-to-right minima from
S in Q. When inserting a new point with value v = v(s) into Q, we first check that
v(Q.predecessds)) > v(s), otherwise we do not insest If s is inserted, we repeat oper-
ation Q.delet& Q.successap)) until v(Q.successap)) < v(s). These operations guaran-
tee thatv(Q.predecessdr)) is the answer to our quely-oo, r). Note that it is possible
to replace the value of an already inserted point by a smaller value, by a process similar
to insertion, but we cannot changdo a larger value.

The O(logn loglogn) bound for the semi-infinite two-dimensional queries then follows
easily by replacing the secondary trees of the range tree with data strugtutessider a
query[l, r] x [—oo, t]. We build the primary tree on the-coordinates and the secondary
trees on they-coordinates. Instead of adding thecoordinates as such, we use the rank

V. Mékinenetal.

of each point in the sorted order of the points whereoordinate is used as the primary
key andx-coordinate as the secondary key. To answer the query, we find theorahk

(t, 00) (place where it would be inserted) in the sorted set of points by binary search in
time O (logn), then query each of th@ (logn) secondary structuragd found by thex-co-
ordinate range search with= Q.predecessdp), and select the minimum(s). O

We are now ready to give a sparse dynamic programming algorithm for the Levenshtein
distance. Initialize a balanced binary ti@efor the upper region by adding the value of

doo — i = 0 with key i = 0: U.Insert0, 0). Initialize a data structuré for the lower
region (R of Lemma 8) with the triplesi, j — i, oo) such that(i, j) € M. Update value
of dp,0 — j = 0 with keysi =0 andj — i = 0: £.Updatg0, 0, 0). Proceed with the match

setM \ {(0,0)} that is sorted in reverse column-by-column order and make the following
operations at each pa(if, j):

(1) Take the minimum value frorl¥ whose key is larger than or equal to the current
diagonalj —i: d' = U .Minimum([j — i, oc]). Add i — 1 to this valued’ < d’' +i — 1.

(2) Take the minimum value fromt inside the rectanglg—oco,i) x [—o00, j —i): d" =
L.Minimum([—o0, i) x [—o0, j —i)). Add j — 1 to this valued” <—d” + j — 1.

(38) Choose the minimum af’ andd” as the current valué = d; ;.

(4) Add the current valug minusi into I/ with key j —i: U.Insert(j —i,d —i).

(5) Add the currentvalué minus; into £ with keysi andj —i: £.Updatei, j —i,d — j).

Finally, after cellm + 1, n + 1) has been processed, we have thatd, B) =d.

The correctness of the algorithm should be clear from the above discussion. The time
complexity isO(r logr loglogr) (r = |[M| elements are inserted and updated in the lower
region structure, and times it is queried). The space usage&ié logr). Figure 3 gives
an example.

Actually, we can switch the roles afandy in £, so that the secondary structures are
searched for values. As explained in Section 5.2, we do not need to store different points
with the same coordinate in the secondary structures; it is enough to retain the last point
inserted with coordinaté since it dominates previous ones (that is, the new value we are
inserting is never larger than the existing points with coordinatds we have shown in
the proof of Lemma 8, the structure permits us replacing the value of a point with a new,
smaller, one. Hence we can in fact store only unigque coordinates in the range, @ach
associated to the last (that is, smallest) valu@ inserted so far. The advantage is that the
time complexity become® (r logr loglog min(r, m)). Moreover, we do not need to rank
the points, but can directly search thealues.

The algorithm can be modified for the search problem similarlygs by implic-
itly adding values 0 in the first row of the current column and considering the effect of
each computed; ; value in the last row of the matrix. Now cell, j) induces values
dm, j1+s < di j +max(im — i, s). Applying the same text segmenting technique used for dis-
tanced|p yields O(r logm loglogm) time, slightly better for our purposes than distance
computation.

We show now a general technique to make distance computatipitogm log logm)
time as well. Segment the text int@(r/m) regions, such that each text region contains

V. Makinenetal.

betweenn and 2n cells in M (we must be flexible because there may be several cells in
a column). Run the algorithm for each region separately, one after the other. At the end of
each region, insert cells ¥ so thatM covers all the cells of the last column of the region.
Use those last values to initialize the data structure for the next region (via cell updates).
This ensures continuity in the computation across regions. Overall we process atrmost 3
cells, and each region contaitngm) cells, so the search time @&(r logm loglogm). We
observe that the same time complexity would be obtained if we used regiaf&nT)
entries, for any constait

Using this algorithm, the transposition invariant Levenshtein distance computation, as
well as the search problem, can be solve®i@nn logm loglogm) time andO (mn logn)
space. Note that in this case the space complexity is dominated by the data sttlicture
Removing unnecessary elements (those that cannot give minima for the current column) is
no longer possible, since the structure for the lower region is semi-static.

With the techniques used for splitting the text into regions, however, the data strdcture
needs onlyO (m?logm) space. Distance computation still needénn) additional space
to store the transpositions. We cannot, as in the text segmenting approach used for search-
ing, process the transpositions region by region to obtxim?) space, because this time
region limits are different for each transposition and we need to remember the state of the
computation for every different transposition.

We recall that the sparse dynamic programming algorithm by Eppstein et al. [20] is
better than oursQ (r loglogr). Our text regions approach, however, permits improving
Eppstein’s algorithm. We can use the latter as a black box and apply it over text regions as
with our algorithm. The result is given in the next theorem.

Theorem 9. Given two stringsA = a1...a, and B = b1...b,, m < n, and ther cells
(i, j) such thata; = b; in reverse column-by-column order, then the Levenshtein distance
betweemA and B can be computed in timé@ (r log logm).

Using this new theorem, the time complexity for transposition invariant Levenshtein
distance computation decreasesxtonn loglogm).

Our range query approach, although slower, has the advantage of letting us easily solve
the case of-limited gaps. First consider the easier upper region. We need the minimum
over the values whose coordinatés ;') satisfyi’ € [i —a—1,i), j' € [j —a—1, j), and
j' =i’ > j—i. These can be simplified t§ < j (which comes for free with the reverse
column-by-column order)) >i —« — 1 and;’ — i’ > j — i. We can use structurg of
Lemma 8 to support minimum queries in the rafge o — 1, co] x [j — i, oo]. The lower
region is more complicated. Its limiting conditionsc [i —a —1,i), j' € [j —a — 1, j),
andj’ —i’ < j —i, can be simplifiedt¢’ <i, ;' > j—a—1and;' —i’ < j —i. Instead
of resorting to three-dimensional searching, which would ¢bgg? 1 loglogn) [23], we
use structuré® of Lemma 8, which supports unlimited updates of values. Once moving
from columnj to j + 1, we update each value in the secondary structures at column
j—a—1tooo. As in thex-limited case ofi|p, we keep a pointer to the last active column
in the match seM to determine which cell§’, j —a — 1) have to be virtually deleted using
P.Updatgi’, j —a —1—i’, 00). If we do this, conditiory’ > j —a — 1 can be ignored, and
‘P is built over the other two conditions and queried with rafigeo, i) x [—oo, j —i).

V. Mékinenetal.

J-i

U (0,0) [0]
S [11] (3,33) [32]
0 9 202326 3639 48 ’
0@ i a3y
0
3) 22,-13) [-1 '
e () [-1] :
8 Y (26,-3) [-1] |
19 T ________—_
13 = query: min([13,inf] x [15,inf]), empty
|
| J—i
22 R N b el
24 21 ® L ‘
26 o 38 [(0,0) [inf] ‘
25 ! 1 (3,33) [-1]
» l (8,12) [inf] !
® (13,13) [inf] !
@3
(26,~3) [inf]

query: min([-inf,24) x [-inf,15)) = inf (empty)

Fig. 4. Example of computation of-gappedd, on a sparse matrix. The same conventions of Fig. 3 apply. On
the right we show now both two-dimensional range search structrasd £. To solve cell(24, 39), we take

the minimum in the rangg24, oo] x [15, co] onlf and[—o0, 24) x [—o0, 15) on L. The area i/ is empty, and
that in £ is virtually empty because we have set old column cell values to

Again, text segmenting techniques can be used to maintain time complexity in
O (rlog? m). An illustration of the algorithm for Levenshtein distance withimited gaps
is given in Fig. 4.

Combining Lemma 1 with the above results, we obtain the following bounds for the
transposition invariant case.

Theorem 10. Transposition invariant Levenshtein distandLb(A, B) can be computed

in O(mnloglogm) time. The corresponding search problem can be solved within the
same time bounds. For the caseogfimited gaps,dlt_"’(A, B), the time requirements are

O (mnlog? m), both for distance computation and for searching. The preprocessing cost of
Theoren? must be added to these bounds.

As before, the space complexity #(m?logm) plus that of storing the setd;, that
is, O (mn) for distance computation an@(m?) for searching. Also, the-limited version
can be solved usin@ (am) space. In casé > 0, themn in the complexities becomes

Yrer 1M
5.4. Episode matching

To conclude the edit distance section we look at the episode matching probledfy and
distance, which have a simple sparse dynamic programming solution. Recalll that
M U{(0,0), m+1,n+ 1)}, whereM is the set of matching character pairs. The following
lemma fordp is easy to prove using similar arguments as in Lemma 3, since the last zero-
cost edge in a path t@, j) must be inrow — 1.

V. Makinenetal.

Lemma 11. Distancedp(A, B) can be computed by evaluatiag; for (i, j) € M using
the recurrence

dij=min{d;_1 y+j—j —11j <j, (-1 j)eM], (6)

with initialization dp o = 0. Valued,,, 1 ,+1 equalsdp (A, B).

Consider an algorithm that traverses the matchMein reverse column-by-column
order. We maintain for each roi a valued(i’) that gives the minimurg;, ;; — j’ value
seen so far in that row among paiis, j') € M. First, initialized(0) = 0 andd (i) = co
for 1<i <m. Let (i, j) € M be the current pair whose value we need to evaluate. Then
d = d; ; can simply be computed ab= j — 14+ d(i — 1), sincej —1+d@{i - 1) =
j—1+min{di_1;—j'|j <j. (i —1, j") € M} (conditionj’ < j holds becausé, ;)
precedegi — 1, j) in reverse column-by-column order). Aftér= d; ; is computed, we
can safely update the row minimuiii) = min(d (i), d — j). The algorithm takes overall
O(IM]) = O(r) time.

The above algorithm generalizes to the search problem (that is, to episode matching) by
implicitly considering all valueg ; as zero for allj. That is,d(0) is assumed to bg — 1
if a cell dy ; is being processed. The problemosfimited gaps can also be handled easily.
Letc(i —1) give the last column’ whered (i — 1) has been updated (even if its value stayed
the same). One easily notices that— 1) is always the last matcti — 1, j’) seen so far in
that row. Therefore, we simply avoid updatid@) as defined whefi —c(i — 1) — 1> a.

In this case we sel(i) = co. Using Lemma 1 we get the following result.

Theorem 12. The transposition invariant computation of distantng, B), as well as
transposition invariant episode matching, can be solve® {mn) time. The same bound
applies in the case af-limited gaps. The preprocessing cost of Theogemust be added
to these bounds.

Note again that the algorithm needs oiilym) space, but the overall spaced@gmn),
because of the need to store the transpositions. It is interesting that in this case we cannot
reduce the space t@(m?) for the search problem, as itis not true anymore that the previous
m columns define the matrix contents. On the other hand, in the casérofted gaps we
still can useO (am) space.

6. Transposition invariant Hamming distance and variants

So far we have seen that sparse dynamic programming is the key in solving transpo-
sition invariant distance computation problems. It could be used to solve other simpler
distances such as Hamming distance. However, for such simpler distance measures, it is
possible to find the optimal transposition directly, and do the distance computation only
for that transposition. To demonstrate this, we consider in this section the computation of
some error tolerant versions of Hamming, SAD and MAD distances, where the strings are
aligned position-wised; with b;) and hence have the same length.

V. Mékinenetal.

For this section, let us redefifie= {r; = b; —a; | 1 < i < m} as the set of transpositions
that make some charactersandb; match. Note that the optimal transposition does not
need, in principle, to be included if, but we will show that this is the case fd[:, and
déZD. Note also thatT| = O (] ¥'|) on an integer alphabet afi@l| = O (m) in any case.

6.1. Hamming distance

LetA=ay...a, andB =b;...b,,, Whereq;, b; € X for 1 <i < m. We consider the
computation of transposition invariant Hamming distadhé(A, B). That is, we search
for a transpositiom maximizing the size of sdt | |b; — (a; +1)| <3, 1<i < m}.

Theorem 13. Given two numeric stringgl and B, both of lengthm, there is an algo-
rithm for computing distancé,t_"‘s(A, B) in O(|¥| +m) time on an integer alphabet, or in
O (mlogm) time on a general alphabet.

Proof. It is clear that the Hamming distance is minimized for the transpositidh tinat
makes the maximum number of characters match. What follows is a simple voting scheme,
where the most voted transposition wins. Since we allow a tolerarinethe matched
valuesy; votes for rangdr; — 3, t; + 8]. Construct set§ = {(; — §, “open”) | L <i < m}

andE = {(t; + 8, “close”) | 1 <i < m}. SortS U E into a list] using order

', y) <M, y) if ¥’ <xor(x =xandy <y),

where “open’< “close.” Initialize variablecount= 0. Do fori =1 to |I| if 1(i) =

(x, “open”) thencount= count+ 1 elsecount= count— 1. Let maxcountbe the largest
value ofcountin the above algorithm. Then cIear&fg(A, B) = m — maxcountand the
optimal transposition is any value in the range, x;+1], wherel (i) = (x;, %), for any

i where maxcountis reached. The complexity of the algorithm ds(m logm). Sorting
can be replaced by array lookup whehis an integer alphabet, which gives the bound
O(|X| + m) for that case. O

6.2. Sum of absolute differences distance

We shall first look at the basic case where- 0. That is, we search for a transposition
¢ minimizingdsap(A +t, B) = Y 7" 4 |bj — (a; +1)|.

Theorem 14. Given two numeric stringd and B, both of lengthn, there is an algorithm
for computing distancdtSAD(A, B) in O(m) time on both integer and general alphabets.

Proof. Let us considefl as a multiset, where the same element can repeat multiple times.
Then|T| = m, since there is one elementhfor eachb; — a;, where 1< i < m. Sorting

T in ascending order gives a sequenges 1;, < - - - < 1;,, . Letzop be the optimal transpo-
sition. We will prove by induction thatp that is, the optimal transposition is
the median transposition [H.

= ti lm/2]+11

V. Makinenetal.

To start the induction we claim that < fopt < #;,,. TO see this, notice thatsap(A +
(tiy —€), B) =dsap(A + ti,, B) + me, anddsap(A + (ti,, + €), B) =dsap(A + t;,,, B) +
me, for anye > 0.

Our induction assumption is that < fopt < t;,,_,,, for somek. We may assume that
ti1 < ti,_» Since otherwise the result follows anyway. First notice that, independently of
the value ofp in the above interval, the coSt}_; b, — (ai, + fopd)| + Dokt 1bi) —

(a;, + topt)| Will be the same. Then notice that

m—k m—k
Z |b,‘1 — (a,‘l =+ Live1 — €)| = Z |bil — (a,'] + t,‘k+1)| + (m — 2k)e, and
I1=k+1 I=k+1

m—k m—k
Z ’bil —(a,+t, , -|-6)| = Z |bi1 — (a;, + tim,k)| + (m — 2k)e.
I=k+1 I=k+1
This completes the induction, since we showed that < topt < ti,,_, -

The consequence is that < fopt < t;,,_,,, for maximalk such that;, <1, _,.,, that
is, k = [m/2]. Whenm is odd, it holdsm — k + 1 = k and there is only one optimal
transpositions;;,, ,, . Whenm is even, one easily notices that all transpositips f,, , <
fopt < 1i,, 41, Ar€ equally good. Finally, the median can be found in linear time [4].

To get a fast algorithm fodgf\D whenk > 0 largest differences can be discarded, we

need a lemma that shows that the distance computation can be incrementalized from one
transposition to another. Let, #,. ..., #;, be the sorted sequence®f

Lemma 15. Once valuesS; and L; are computed so thatsap(A + #;,, B) = S; + L,
j—1

S; = ijzlfi,-_— fis (_emd L;= ZT/:HM_V — 1;; then the values of;+1 and L ;1 can

be computed ir0 (1) time.

Proof. ValueS; ;1 can be written as

J J
Sj+1= Z tijgg —liy = Z lijyg —ti; Tty =iy = j (i —ti;) + 5.
/'/:l '/:1
Similar rearranging gives

m
Lj1= Z tiy —tij = (m—j); —tij,) +Lj.
j'=j+2
Thus both values can be computed in constant time given the valugsafd L ; (and
tij+l)' O

Theorem 16. Given two numeric stringd and B both of lengthm, there is an algorithm
for computing distancdg’};D(A, B) in O(m + klogk) time on both integer and general
alphabets. On integer alphabets, tiro&| X'| + m + «) can also be obtained.

V. Mékinenetal.

Proof. Consider the sorted sequenget,,, ..., t;, asin the proof of Theorem 14. Clearly
the candidates for the outliers (largest differences) aM(k’, k") = {t;y, ..., t;,, tiv rins
..., tj, } for somek’ + k” = k. The naive algorithm is then to compute the distance in all
thesec + 1 cases: Compute the mediard{ M (', k") for eachk’ +k” = k and choose the
minimum distance induced by these medians. Thes& medians can be found as follows:

First select values ;1 andt,,—, using the linear time selection algorithm [4]. Then collect
and sort all values smaller thap, 1 or larger thar,,_.. After selecting the mediamg

of T\ M(0, x) andm, o of T\ M (x, 0), one can collect all mediams; ;» of T\ M (k', k")

for k' + k" =k, since themy y» values are those betweewy , andm,o. Thex + 1
medians can thus be collected and sorte@ {m: + « log«) time, and the additional time to
compute the distances for all of these- 1 medians i («m). However, the computation

of distances given by consecutive transpositions can be incrementalized using Lemma 15.
First one has to compute the distance for the medidl oM (O, «), dsap(A + mo ., B),

and then continue incrementally frofaap(A + my g7, B) 10 dsap(A + my/y1.47-1, B),

until we reach the median df \ M(k, 0), dsap(A + m,. o, B) (this is where we need

the medians sorted). Since the set of outliers changes when moving from one median to
another, one has to add valyg — #;,, to S,, and value;,, —t;,, to L,,, wheres,, andL,,

are the values given by Lemma 15 (here we need the outliers sorted). The time complexity
of the whole algorithm i2) (m + « logx). On an integer alphabet, sorting can be replaced

by array lookup to yieldD (| X| +m +«). O

6.3. Maximum absolute difference distance

We consider now how,t\;l"AD can be computed. In cagse= 0, we search for a transposi-
tion s minimizingdwap (A +¢, B) = max” , |b; — (a; +1)|. In casec > 0, we are allowed
to discard the largest differencef; — (a; +1)|.

Theorem 17. Given two numeric stringd and B both of lengthm, there is an algorithm
for computing distancd,t\;l"AD (A, B) in O(m + «logx) time on both integer and general
alphabets. On integer alphabets, tiro&| X'| + m + «) can also be obtained.

Proof. Whenk = 0 the distance is cIearly‘MAD (A, B) = (max {f;} —min;{t;})/2, and the
transposition giving this distance {max {#;} + min;{z;})/2. Whenx > 0, consider again
the sorted sequeneg, f;,, ..., t;, as in the proof of Theorem 14. Again tkeoutliers are
M, k") for somek’ + k" = « in the optimal transposition. The optimal transposition
is then the valués; _,, +1,,,,)/2 that minimizest; , — ti,,,)/2, wherek’ + k" = k.
The minimum value can be computeddrx) time, once the + 1 smallest and largest
values are sorted. These values can be select@dir) time and then sorted i@ (x log«)
time, orO (| X| + «) on integer alphabets.O

6.4. Searching

Up to now we have considered distance computation. Any algorithm to compute the
distance betweeA and B can be trivially converted into a search algorithm foin T by

V. Makinenetal.

comparingP against every text window of the fory_,,11...;. Actually, we do not have
any search algorithm better than this.

Lemma 18. For distancesd;;’, dgkp, and dyjap, if the distance can be evaluated in
O (f(m)) time, then the corresponding search problem can be solved if{m)n) time.

On the other hand, it is not immediate how to perform transposition invagamt)-
matching. We show how the above results can be applied to this case.

Note that one can find all the occurren¢g¢ssuch thati,tleD (P, Tj_m+1..j) <dandall
the occurrenceg;’} wheredgAD(P, Tj_my1.j) <y in O(mn) time. The(s, y)-matches
constitute a subset ¢fi} N {;j’}, but identity does not necessarily hold. This is because the
optimal transposition can be different fdf;,p, andds,p.

What we need to do is to verify this set of possible occurrergeés) {;’}. This
can be done as follows. For each possible mattk {j} N {;’} one can compute lim-
its s and ! such thatdwap (P + ¢, Tjr_u41.j») < 8 for all s <t < I: If the distance
d = dwap (P + topt, Tj7—m+1...j7) iS given, thers = topt — (8 — d) andl = topt+ (8 — d).
On the other hand, note thdgap(P + ¢, T~ j»+m—1), @s a function of, is decreasing
until r reaches the median of the transpositions, and then increasing. Thus, depending on
the relative order of the median of the transpositions with respecatw!/, we only need
to compute distancésap(P + 1, Tjv 41 j») inone of them{=s,t =1, Ort =ty /2).
This gives the minimum value fafsap in the rang€s, []. If this value is< y, we have
found a match.

One can see that using the results of Theorems 14 and 1% wtl, the above proce-
dures can be implemented so that odlym) time at each possible occurrence is needed.
There are at most occurrences to test.

Theorem 19. Given two numeric string® (pattern) andT (tex?) of lengthsn andn, there
is an algorithm for finding all the transposition invariaft, y)-occurrences of? in T in
O (mn) time on both integer and general alphabets.

7. Conclusions and futurework

We have studied two techniques for solving transposition invariant string matching
problems. The first technique, applicable to several “edit distance” measures, considered
all the possible transpositions. However, since most transpositions produce sparse instances
of the edit distance matrix, specialized algorithms could be used to solve these sparse in-
stances efficiently. These kind of algorithms already existed in the literature. We devised
improved sparse dynamic programming algorithms in those cases (for example LCS and
Levenshtein distance), as well as new ones when they did not exist (for example episode
matching and-limited gaps in all the distances). The problem of matching wihmited
gaps most clearly demonstrated the connection between sparse dynamic programming and
range-minimum searching.

The second technique was to directly identify the optimal transposition and compute the
distance in that transposition. This identification was shown to be efficiently computable

V. Mékinenetal.

for several distance measures wheretheharacter of one string is compared only against
theith character of the other.

In general, we found that including transposition invariance in the studied distances
increases the time complexity only slightly, usually by a polylogarithmic factor.

To demonstrate the practicality of the developed methods, we implemented the trans-
position invariant LCS algorithm. This implementation is now included in therowBvs
music retrieval engine [6].

An interesting remaining question is whether the log factors could be avoided to achieve
O (mn) for transposition invariant edit distances. For episode matching we achieved the
O (mn) bound, except that the preprocessing can (in very uncommon situations on general
alphabets) taked (mnlogm + nlogn) time. Independently, it would be nice to reduce
preprocessing time t@ (mn), so that it can never affect the real dynamic program-
ming complexities. The bottleneck is in sortimg: values of the formb; — a;, once
the {4;} and the{b;} sequences, of length andm, have been sorted. We could do it
in O(mnlogmin(m, n)) time, but maybe it can be done better. Also, the space needed to
arrange the transpositions for distance computatiah(isn). We have been able to reduce
all the other space complexities to small polynomials:irso it would be interesting to do
the same with the transpositions. We tried, with no result, to mix generation and processing
of the cells. The problem is that there may be too many active transpositions at any time.

Also, we are confident that the search times for the easier measures that we studied can
be improved at least in the average case. For the edit distance measures, algorithms that
depend on the minimum (transposition invariant) distance can be derived. For example, an
algorithm that processes only diagonal areas of the dynamic programming matrix [37] can
be generalized to give time bounds likg|T|dn), whereT is the set of transpositions and
d =dl(A, B). This can be combined with the sparse evaluation to get an algorithm that is
fast both in practice and in the worst cagkdn loglogm). The challenge is to derive a
similar bound for the search problem.

Finally, a more ambitious goal is to handle more general distance functions, such as edit
distances with substitution costs of the fofbn — g;|. Other related models are discussed
in [35].

Acknowledgments

We thank the anonymous referees for their useful suggestions to improve this work.

References

[1] K. Abrahamson, Generalized string matching, SIAM J. Comput. 16 (6) (1987) 1039-1051.

[2] A. Apostolico, C. Guerra, The longest common subsequence problems revisited, Algorithmica 2 (1987)
315-336.

[3] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational Geometry: Algorithms and
Applications, second rev. ed., Springer-Verlag, 2000.

[4] M. Blum, R. Floyd, V. Pratt, R. Rivest, R. Tarjan, Time bounds for selection, J. Comput. System Sci. 7
(1972) 448-461.

V. Makinenetal.

[5] B. Bollobas, G. Das, D. Gunopulos, H. Mannila, Time-series similarity problems and well-separated geo-
metric sets, Nordic J. Comput. 8 (4) (2001) 409-423.

[6] C-BRAHMS, http://www.cs.helsinki.fi/group/cbrahms/demoengine/.

[7] E. Cambouropoulos, M. Crochemore, C.S. lliopoulos, L. Mouchard, Algorithms for computing approximate
repetitions in musical sequences, in: R. Raman, J. Simpson (Eds.), Proc. 10th Australian Workshop on
Combinatorial Algorithms, AWOCA'99, Curtin University of Technology, Perth, Western Australia, 1999,
pp. 129-144.

[8] R. Cole, R. Hariharan, Tree pattern matching and subset matching in randommmg3m) time, in: Proc.
29th Annual Symposium on the Theory of Computing (STOC’'97), 1997, pp. 66-75.

[9] R. Cole, R. Hariharan, P. Indyk, Tree pattern matching and subset matching in deterngristig m)
time, in: Proc. 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'99), 1999, pp. 245—
254,

[10] R. Cole, R. Hariharan, Verifying candidate matches in sparse and wildcard matching, in: Proc. 34th Annual
Symposium on the Theory of Computing (STOC'02), 2002, pp. 596-601.

[11] T. Crawford, C.S. lliopoulos, R. Raman, String matching techniques for musical similarity and melodic
recognition, Comput. Musicol. 11 (1998) 71-100.

[12] M. Crochemore, C.S. lliopoulos, T. Lecrog, Y.J. Pinzon, Approximate string matching in musical sequences,
in: M. Baliik, M. Simanek (Eds.), Proc. Prague Stringology Club (PSC 2001), Czech Technical University
of Prague, DC-2001-06, 2001, pp. 26-36.

[13] M. Crochemore, C. lliopoulos, C. Makris, W. Rytter, A. Tsakalidis, K. Tsichlas, Approximate string match-
ing with gaps, Nordic J. Comput. 9 (1) (2002) 54-65.

[14] M. Crochemore, G. Landau, M. Ziv-Ukelson, A sub-quadratic sequence alignment algorithm for unrestricted
cost matrices, in: Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (SODA'02), 2002, pp. 679—
688.

[15] M. Crochemore, C.S. lliopoulos, T. Lecroq, W. Plandowski, W. Rytter, Three heuristicsfaatching:

§-BM algorithms, in: Proc. 13th Annual Symposium on Combinatorial Pattern Matching (CPM'02), in:
Lecture Notes in Comput. Sci., vol. 2373, Springer-Verlag, 2002, pp. 178-189.

[16] M. Crochemore, C. lliopoulos, G. Navarro, Y. Pinzon, A bit-parallel suffix automaton approach, for-
matching in music retrieval, in: Proc. 10th International Symposium on String Processing and Information
Retrieval (SPIRE’03), in: Lecture Notes in Comput. Sci., vol. 2857, Springer-Verlag, 2003, pp. 211-223.

[17] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, 1984.

[18] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, J. Karkkainen, Episode matching, in: Proc. 8th Sympo-
sium on Combinatorial Pattern Matching (CPM’97), in: Lecture Notes in Comput. Sci., vol. 1264, Springer-
Verlag, 1997, pp. 12-27.

[19] M.J. Dovey, A technique for “regular expression” style searching in polyphonic music, in: Proc. 2nd Annual
International Symposium on Music Information Retrieval (ISMIR 2001), 2001, pp. 179-185.

[20] D. Eppstein, Z. Galil, R. Giancarlo, G.F. Italiano, Sparse dynamic programming I: linear cost functions,
J. ACM 39 (3) (1992) 519-545.

[21] K. Fredriksson, Rotation invariant template matching, PhD Thesis, A-2001-3, Department of Computer
Science, University of Helsinki, 2001, p. 139.

[22] K. Fredriksson, V. Mékinen, G. Navarro, Rotation and lighting invariant template matching, in: Proc. 6th
Latin American Symposium on Theoretical Informatics (LATIN'04), in: Lecture Notes in Comput. Sci.,
vol. 2976, Springer-Verlag, 2004, pp. 39-48.

[23] H.N. Gabow, J.L. Bentley, R.E. Tarjan, Scaling and related techniques for geometry problems, in: Proc. 16th
ACM Symposium on Theory of Computing (STOC'84), 1984, pp. 135-143.

[24] z. Galil, K. Park, Dynamic programming with convexity, concavity and sparsity, Theoret. Comput. Sci. 92
(1992) 49-76.

[25] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology,
Cambridge University Press, 1997.

[26] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing longest common subsequences, Comm.
ACM 20 (5) (1977) 350-353.

[27] K. Lemstrém, V. Makinen, On minimizing pattern splitting in multi-track string matching, in: Proc. 14th
Annual Symposium on Combinatorial Pattern Matching (CPM’03), in: Lecture Notes in Comput. Sci.,
vol. 2676, Springer-Verlag, 2003, pp. 237-253.

V. Mékinenetal.

[28] K. Lemstrém, G. Navarro, Flexible and efficient bit-parallel techniques for transposition invariant ap-
proximate matching in music retrieval, in: Proc. 10th International Symposium on String Processing and
Information Retrieval (SPIRE’'03), in: Lecture Notes in Comput. Sci., vol. 2857, Springer-Verlag, 2003,
pp. 224-237. Extended version: J. Discrete Algorithms, in press.

[29] K. Lemstrdm, G. Navarro, Y. Pinzon, Bit-parallel branch & bound algorithm for transposition invariant
LCS, in: Proc. 11th International Symposium on String Processing and Information Retrieval (SPIRE’04),
in: Lecture Notes in Comput. Sci., Springer-Verlag, 2004. Extended version: J. Discrete Algorithms, in press.

[30] K. Lemstrém, J. Tarhio, Searching monophonic patterns within polyphonic sources, in: Proc. Content-Based
Multimedia Information Access (RIAO 2000), vol. 2, Paris, France, 2000, pp. 1261-1279.

[31] K. Lemstrdm, E. Ukkonen, Including interval encoding into edit distance based music comparison and re-
trieval, in: Proc. Symposium on Creative & Cultural Aspects and Applications of Al & Cognitive Science
(AISB 2000), Birmingham, United Kingdom, 2000, pp. 53-60.

[32] V. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals, Sov. Phys. Dokl. 6
(1966) 707-710.

[33] H. Mannila, H. Toivonen, A.l. Verkamo, Discovering frequent episodes in sequences, in: Proc. 1st Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD’95), AAAI Press, 1995, pp. 210-215.

[34] S. Muthukrishnan, New results and open problems related to non-standard stringology, in: Proc. 6th Annual
Symposium on Combinatorial Pattern Matching (CPM’95), in: Lecture Notes in Comput. Sci., vol. 937,
Springer-Verlag, 1995, pp. 298-317.

[35] V. Mékinen, Parameterized approximate string matching and local-similarity-based point-pattern matching,
PhD thesis manuscript, Report A-2003-6, Department of Computer Science, University of Helsinki, August
2003.

[36] P. Sellers, The theory and computation of evolutionary distances: Pattern recognition, J. Algorithms 1 (4)
(1980) 359-373.

[37] E. Ukkonen, Algorithms for approximate string matching, Inform. and Control 64 (1-3) (1985) 100-118.

[38] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of an efficient priority queue, Math.
Systems Theory 10 (1977) 99-127.

[39] P.van Emde Boas, Preserving order in a forest in less than logarithmic time and linear space, Inform. Process.
Lett. 6 (3) (1977) 80-82.

[40] R. Wagner, M. Fisher, The string-to-string correction problem, J. ACM 21 (1) (1974) 168-173.

[41] W.J. Wilbur, D.J. Lipman, Rapid similarity searches of nucleic acid and protein data banks, Proc. Natl. Acad.
Sci. USA 80 (1983) 726-730.

[42] W.J. Wilbur, D.J. Lipman, The context-dependent comparison of biological sequence, SIAM J. Appl.
Math. 44 (3) (1984) 557-567.

