
inland

-

ms we
osition
dynamic
ultidi-
mming

ariant
mputer
].
Transposition invariant string matching✩

Veli Mäkinena,1, Gonzalo Navarrob,∗,2, Esko Ukkonena,1

a Department of Computer Science, PO Box 26 (Teollisuuskatu 23), FIN-00014, University of Helsinki, F
b Center for Web Research, Department of Computer Science, University of Chile,

Blanco Encalada 2120, Santiago, Chile

Abstract

Given stringsA = a1a2 . . . am andB = b1b2 . . . bn over an alphabetΣ ⊆ U, whereU is some
numerical universe closed under addition and subtraction, and a distance functiond(A,B) that
gives the score of the best (partial) matching ofA andB, the transposition invariant distanceis
mint∈U{d(A + t,B)}, whereA + t = (a1 + t)(a2 + t) . . . (am + t). We study the problem of com
puting the transposition invariant distance for various distance (and similarity) functionsd, including
Hamming distance, longest common subsequence(LCS), Levenshtein distance, and their versions
where the exact matching condition is replaced by an approximate one. For all these proble
give algorithms whose time complexities are close to the known upper bounds without transp
invariance, and for some we achieve these upper bounds. In particular, we show how sparse
programming can be used to solve transposition invariant problems, and its connection with m
mensional range-minimum search. As a byproduct, we give improved sparse dynamic progra
algorithms to compute LCS and Levenshtein distance.

✩ Preliminary version appeared as [V. Mäkinen, G. Navarro, E. Ukkonen, Algorithms for transposition inv
string matching (extended abstract), in: Proc. 20th International Symposium on Theoretical Aspects of Co
Science (STACS 2003), in: Lecture Notes in Comput. Sci., vol. 2607, Springer-Verlag, 2003, pp. 191–202

* Corresponding author.
E-mail addresses:vmakinen@cs.helsinki.fi (V. Mäkinen), gnavarro@dcc.uchile.cl (G. Navarro),

ukkonen@cs.helsinki.fi (E. Ukkonen).
1 Supported by the Academy of Finland under grant 22584.

2 Supported by Millenium Nucleus Center for Web Research, Grant P01-029-F, Mideplan, Chile.

V. Mäkinen et al.

ming;

n all

f

in the
one
o this

sposition
t a hu-

ance is
tion 3).
luating
ve been
culty
ur aim
ch as
ssians

duced
tter and
ic pro-
r cases
ngest
flexible

the best
too far
trans-
most

use,
work

ressed.
“edit

impler
es our
Keywords:Edit distance; Music sequence comparison; Transposition invariance; Sparse dynamic program
Range-minimum searching

1. Introduction

Transposition invariant string matching is the problem of matching two strings whe
the characters of either of them can be “shifted” by some amountt . By “shifting” we mean
that the strings are sequences of numbers and we add or subtractt from each character o
one string.

Interest in transposition invariant string matching problems has recently arisen
field of music information retrieval (MIR) [11,30,31]. In music analysis and retrieval,
often wants to compare two music pieces to test how similar they are. One way to d
is to define a distance measure between the corresponding note sequences. Tran
invariance is one of the properties that such a distance measure should fulfill to reflec
man sense of similarity. There are other application areas where transposition invari
useful, like time series comparison [5], image comparison [21], and others (see Sec

In this paper we study how transposition invariance can be achieved when eva
some of the classical distance measures for strings. We focus on measures that ha
used in practice and have applications in MIR. We are interested in the intrinsic diffi
of the problem, focusing on the essential aspects and in worst case complexities. O
is to build a foundation on top of which one can develop practical improvements su
good average cases, threshold-sensitive computation, bit-parallel simulation, four-Ru
techniques, filtering approaches, and so on.

We show that several transposition invariant string matching problems can be re
to sparse dynamic programming, and demonstrate the connection between the la
multidimensional range-minimum searching. In some cases our new sparse dynam
gramming techniques are inferior compared to the best existing solutions, but in othe
we give improved solutions to well known problems such as sparse computation of lo
common subsequences and Levenshtein distance. Moreover, our techniques are
and can be successfully extended to cases of interest that cannot be handled by
current algorithms, for example to distances where matching characters cannot be
apart. As a result, we show that all the distance measures studied allow including
position invariance without a significant increase in the asymptotic running times (in
cases we pay polylogarithmic penalty factors).

The paper is organized as follows. In Section 2 we give the main definitions we
including the string similarity measures we focus on. In Section 3 we cover related
and give at the same time motivations for some of the string matching problems add
In Section 4 we summarize our main results. Section 5 is devoted to the so-called
distances” (where characters in both strings can be ignored) and Section 6 to the s
distances where all characters must be aligned one by one. Finally, Section 7 giv

conclusions and future work directions.

V. Mäkinen et al.

t

s
]. The

e unit
that
6,40].

e.

es

be-
ters

dis-
2. Definitions

Let Σ be a numerical alphabet, which is a subset of some totally ordered universeU that
is closed under addition and subtraction. LetA = a1a2 . . . am andB = b1b2 . . . bn be two
stringsin Σ∗, that is,ai, bj ∈ Σ for all 1� i � m, 1� j � n. We will assume w.l.o.g. tha
m � n, since the distance measures we study are symmetric.3 StringA′ is asubstringof A

if A′ = Ai...j = ai . . . aj for some 1� i � j � m. StringA′′ is asubsequenceof A, denoted
by A′′ � A, if A′′ = ai1ai2 . . . ai|A′′| for some indexes 1� i1 < i2 < · · · < i|A′′| � m.

The following measures can be defined between two stringsA andB. These measure
can be found in any standard text book of string algorithms, see for example [17,25
length of thelongest common subsequence(LCS) of A andB is lcs(A,B) = max{|S| |
S � A, S � B}. The dual problem of computing LCS is to compute distancedID , which
is the minimum number of character insertions and deletions necessary to convertA into
B (or vice versa). The duality is clear sincedID(A,B) = m + n − 2 · lcs(A,B). For con-
venience, we will mainly use the minimization problemdID (not lcs) in the sequel. If we
permit character substitutions in addition to insertions and deletions, the result is th
costLevenshtein distancedL [32]. This is a particular case of more complex distances
assign a different cost to each operation and minimize the total cost of operations [3
Finally, if only deletions of characters ofB are allowed, we get distancedD. We calldID ,
dL anddD collectively “edit distances.”

Whenm = n, the following distances can also be defined. TheHamming distancedH
between stringsA andB is dH(A,B) = |{i | ai �= bi,1 � i � m}|. The sum of absolute
differences distancedSAD betweenA andB isdSAD(A,B) = ∑m

i=1 |ai −bi |. Themaximum
absolute difference distancedMAD betweenA andB is dMAD (A,B) = max{|ai − bi | | 1�
i � m}. Note thatdSAD is in fact the Manhattan metric (l1 norm) anddMAD is the maximum
metric (l∞ norm) when we interpretA andB as points inm-dimensional Euclidean spac

StringA is atransposed copyof B (denoted byA =t B) if

B = A + t = (a1 + t)(a2 + t) · · · (am + t)

for somet ∈ U. The transposition invariant versions of the above distance measurd∗
where∗ ∈ {ID,L,D,H,SAD,MAD } can now be stated as

d t∗(A,B) = min
t∈U

d∗(A + t,B).

So far our definitions allow either only exact (transposition invariant) matches
tween some characters (d t

ID, d t
L, d t

D, d t
H), or approximate matches between all charac

(d t
SAD, d t

MAD). To relax these conditions, we introduce a constantδ > 0. We writea =δ b

when |a − b| � δ, a, b ∈ Σ . By replacing the equalitiesa = b with a =δ b, we get more
error-tolerant versions of the distance measures:d

t,δ
ID , d

t,δ
L , d t,δ

D , andd
t,δ
H . Similarly, by intro-

ducing another constantκ > 0, we can define distancesd
t,κ
SAD, d

t,κ
MAD such that theκ largest

differences|ai − bi | are discarded.
We can also defineα-limited versions of the edit distance measures, where the

tance (gap) between any two consecutive matching characters inA or B is limited by a
3 Except fordD, but in this case it is necessary thatm � n.

V. Mäkinen et al.

n the
s

, is

e

lem
rtest
problem
ll

,

t

g
osition
h the

ly, this
ced by

g con-
sures,

ilarity
easure:
eger

pute
constantα > 0. That is, if in order to obtaind(A,B) charactersai1, ai2, . . . , air match
bj1, bj2, . . . , bjr , while the others are inserted, deleted or substituted (depending o
distance), theni� − i�−1 − 1� α andj� − j�−1 − 1� α for all 1< � � r . We get distance
d

t,δ,α
ID , d

t,δ,α
L , andd

t,δ,α
D .

The approximate string matching problem, based on the above distance functions
to find the minimum distance betweenA and any substring ofB. In this case we callA
the patternand denote itP1...m = p1p2 · · ·pm, and callB the text and denote itT1...n =
t1t2 · · · tn, and usually assume thatm � n. A closely related problem is thethresholded
search problemwhere, givenP , T , and a threshold valuek � 0, one wants to find all th
text positionsjr such thatd(P,Tjl ...jr) � k for somejl . We will refer collectively to these
two closely related problems as thesearch problem.

In particular, if distancedD is used in approximate string matching, we obtain a prob
known asepisode matching[18,33], which can also be stated as follows: Find the sho
substring of the text that contains the pattern as a subsequence. Another search
related todSAD and dMAD is called “(δ, γ)-matching” [7], where one wants to find a
occurrencesjr such thatdMAD (P,Tjr−m+1...jr) � δ anddSAD(P,Tjr−m+1...jr) � γ .

Our complexity results will vary depending on the form of the alphabetΣ . We will dis-
tinguish two cases. Anintegeralphabet is any finite alphabetΣ ⊂ Z. For integer alphabets
|Σ | will denote max(Σ) − min(Σ) + 1. A generalalphabet will be any otherΣ , finite or
not, and we will omit any reference to|Σ |. We will only assume thatΣ is totally ordered
and closed under addition and subtraction (a good example to fix ideas isΣ = R). On the
other hand, for any stringA = a1 . . . am, we will call ΣA = {ai | 1 � i � m} the alphabe
of A. In these cases we will use|ΣA| = max(ΣA)−min(ΣA)+1 � |Σ | whenΣA is taken
as an integer alphabet. On general alphabets,|ΣA| � m will denote the cardinality of the
setΣA.

3. Related work and motivation

We start by noticing that the problem ofexacttransposition invariant string matchin
is extremely easy to solve. For the comparison problem, the only possible transp
is t = b1 − a1. For the search problem, one can use the relative encoding of bot
pattern (p′

1 = p2 − p1,p
′
2 = p3 − p2, . . .) and the text (t ′1 = t2 − t1, t

′
2 = t3 − t2, . . .), and

use the whole arsenal of methods developed for exact string matching. Unfortunate
relative encoding seems to be of no use when the exact string comparison is repla
an approximate one.

Transposition invariance, as far as we know, was introduced in the string matchin
text in the work of Lemström and Ukkonen [31]. They proposed, among other mea
transposition invariant longest common subsequence (LCTS) as a measure of sim
between two music (pitch) sequences. They gave a descriptive nickname for the m
“Longest Common Hidden Melody.” As the alphabet of pitches is some limited int
alphabetΣ ⊂ Z, the transpositions that have to be considered areT = {b − a | a, b ∈ Σ}.
This gives a brute force algorithm for computing the length of the LCTS [31]: Com
lcs(A+ t,B) usingO(mn) dynamic programming for eacht ∈ T. The running time of this

algorithm isO(|Σ |mn), where typically|Σ | = 128. In the general case, whereΣ can be

 V. Mäkinen et al.

ze of
oth
tröm

worst

exten-
etween
sts of
toler-

ween

o se-
e search
sume
search
y hum-
ences
re for-
rences
ce with
music.
re the
stant.
ing in
y this
to

acters
ere,
y are
ings as
r types

in [35].
ce

de vari-
re
ly.
d bit-
se and

stion
unlimited, one could instead use the set of transpositionsT
′ = {b − a | a ∈ ΣA,b ∈ ΣB}.

This is because some characters must match in any meaningful transposition. The siT
′

could bemn, which givesO(m2n2) worst case time for general alphabets. Thus it is of b
practical and theoretical interest to improve this algorithm. In a recent work by Lems
et al. [29], a backtracking algorithm to solve the LCTS problem was proposed. Its
case is as bad asO(|Σ |(mn + log|Σ |)), but its best case isO(log|Σ |(mn + log log|Σ)).

The Levenshtein distance allows substituting a note by some other note. A natural
sion would be to make the cost of a substitution operation depend on the distance b
the notes. This is however problematic since there is no natural way of defining co
insertions and deletions in this setting. We have chosen an alternative approach: A
anceδ > 0 is allowed for matching pitch levels. This can be used to allow matches bet
pitch levels that are relatively close. In practice, one could use different valuesδ for each
pitch level to better reflect musical closeness.

While the LCS and the edit distance in general are useful tools for comparing tw
quences that represent whole musical pieces, simpler measures could be used in th
problem. An especially suitable relaxation of the LCS is episode matching [18,33]. As
that the pattern is (a discretized version of a signal) given by humming. The goal is to
for the matching musical pieces in a large music database. The pattern obtained b
ming would usually contain the melody in its simplest form, but the searched occurr
in the music database might additionally contain some “decorative” notes, which we
gotten by the person humming the piece. Episode matching would find the occur
that contain the fewest decorative notes. This is a good objective, since an occurren
a large number of additional notes would not be recognized as the same piece of
A version of episode matching has been proposed in the context of MIR [13,19], whe
number of these additional notes between two matching pitches is limited by a con
This variant, as well as the original problem, can be solved using dynamic programm
O(mn) time. Including transposition invariance has not been considered. We will stud
problem and “matching withα-limited gaps” in general, where an additional restriction
thedID , dL anddD distances is that the gap between two consecutive matching char
is limited by an integerα > 0. This aims at avoiding seriously distorted occurrences wh
although the total number of extra notes is a small fraction of the whole string, the
all concentrated in the same place, so that a human would not recognize both str
variants of the same melody. Moreover, such restrictions become necessary in othe
of edit distances, see for example the edit distances for point-patterns developed
Here we will only concentrate on theα-limitation on well-known distance measures, sin
this is enough to demonstrate the key techniques.

Even simpler measures have been proposed for the search problem. These inclu
ants ofdδ

H, dSAD and dMAD , such as the(δ, γ)-matching problem [7,12,15,16], whe
occurrences should have limiteddMAD anddSAD distances to the pattern, simultaneous
Algorithms for exact string matching can be generalized to this special case, an
parallel algorithms can be applied [7,16]. These algorithms are fast in the average ca
in practice, but their worst case is stillO(mn). In fact, for δ = ∞ the problem is known
as the weightedk-mismatches problem [34], for which it has long been an open que

whether the quadratic bound can be improved. We will not answer that here, but we will

V. Mäkinen et al.

osition

nic mu-
s of a

e poly-
). This
how-

should
atching
have
algo-

en by
ition

ering
apted to

atching
].

mage
ple use
ern in-
udy of
hting
ere

otation

episode
lated
more
wed.
ositions

ming
parse)

. These
t eval-

e

show that within the same bounds one can solve the harder problem where transp
invariance is included.

So far we have discussed problems for monophonic musical sequences. Polypho
sic is much more challenging. Usually one would be interested in finding occurrence
monophonic pattern in a polyphonic music. The basic approach would be to separat
phonic music into parallel monophonic pitch sequences (each instrument separately
case can be handled easily by applying algorithms for monophonic music. This would
ever lose the melodies that “jump” between instruments. To find these melodies one
represent the polyphonic music as a sequence of subsets of pitch levels. The exact m
is in this case called subset matching, for which novel (but impractical) algorithms
been developed [8–10]. To allow transposition invariance, one could simulate these
rithms with each possible transposition. The time complexity would then beO(|Σ |s log2 s)

[10], wheres is the sum of the subset sizes. A practical approach has been tak
Lemström and Tarhio [30], who developed a fast filter for the problem with transpos
invariance, as well as a simple verification algorithm that has running timeO(|Σ |n+ sm).
Lemström and Navarro [28] presented bit-parallel algorithms for this problem, consid
several distance measures. We note that the edit distance problems can easily be ad
the case in which the text consists of subsets. A more robust extension of episode m
for polyphonic music, where the number of jumps is controlled, was also studied [27

Other applications for transposition invariance can be found, for example, in i
processing and time series comparison. In image comparison, one could for exam
the sum of absolute differences to find approximate occurrences of a template patt
side a larger image. This measure is used, for instance, by Fredriksson in his st
rotation invariant template matching [21]. Transposition invariance would mean “lig
invariance” in this context. As images usually contain a lot of noise, the measure whκ

largest differences can be discarded could be useful. We study the combination of r
and lighting invariances in a subsequent paper [22].

In time series comparison, many of the measures mentioned can be used. In fact,
matching was first introduced in this context [33]. Recently, a problem closely re
to transposition invariant LCS was studied by Bollobás et al. [5]. They studied a
difficult problem where not only transposition (translation), but also scaling was allo
They also allowed a tolerance between matched values, but did not consider transp
alone. Our algorithms could be useful to improve these results, as dynamic program
algorithms are used as a black box in their techniques, and we give improved (s
dynamic programming algorithms.

4. Summary of results

Our results are two-fold. For evaluating the easier distance measures (d
t,δ
H , d

t,κ
SAD, d

t,κ
MAD)

we achieve almost the same bounds that are known without transposition invariance
results are achieved by noticing that the optimum transposition can be found withou
uating the distances for each possible transposition.

For the more difficult measures (d
t,δ,α
ID , d

t,δ,α
L , andd

t,δ,α
D) we still need to compute th
distances for each possible transposition. This would be costly if the standard dynamic

 V. Mäkinen et al.

s. Then
ms and
s for

dy-
r
Hunt-
programming algorithms for these problems were used. However, we show thatsparsedy-
namic programming algorithms can be used to obtain much better worst case bound
we show the connection between the resulting sparse dynamic programming proble
multidimensional range-minimum queries. We obtain simple yet efficient algorithm
these distances.

For LCS (and thus fordID) there already exists Hunt-Szymanski [26] type (sparse
namic programming) algorithms whose time complexities depend on the number of
matching character pairs between the compared strings. The complexity of the

Table 1
Upper bounds for string matching without transposition invariance

Distance Distance evaluation Searching

exact O(m) O(m + n)

dH O(m) O(n
√

m logm) [1]

dδ
H O(m) O(mn)

dSAD O(m) O(mn)

dMAD O(m) O(mn)

(δ, γ)-matching O(m) O(mn)

dID , dL O(mn/ logm) O(mn/ logm) [14]

d
δ,α
ID O(mn) O(mn) [35]

d
δ,α
L O(αmn) O(αmn) [35]

dD O(mn/ logm) O(mn/ logm) [18]

d
δ,α
D O(mn) O(mn) [13]

We omit bounds that depend on the thresholdk in the search problems.

Table 2
Our upper bounds for transposition invariant string matching

Distance Distance evaluation Searching

exact O(m) O(m + n)

d
t,δ
H O(m logm) O(mn logm)

d
t,κ
SAD O(m + κ logκ) O((m + κ logκ)n)

d
t,κ
MAD O(m + κ logκ) O((m + κ logκ)n)

(δ, γ)-matching O(m) O(mn)

d
t,δ
ID O(δmn log logm) O(δmn log logm)

d
t,δ,α
ID O(δmn logm) O(δmn logm)

d
t,δ
L O(δmn log logm) O(δmn log logm)

d
t,δ,α
L O(δmn log2 m) O(δmn log2 m)

d
t,δ,α
D O(δmn) O(δmn)

On an integer alphabet, termm logm in d
t,δ
H can be replaced by|Σ | + m, and

κ logκ by |Σ | + κ . We have not added, for clarity, the preprocessing time of
Theorem 2 for the edit distance measures. Finally,δ should be understood as
(2δ + 1)/µ, whereµ is the minimum difference between any two different

ai − bj values (µ = 1 on integer alphabets).

V. Mäkinen et al.

As

com-

S.
stant

more
oblem
es [24].

s
e min-

or

ns,

ode

e time
r hand,

ithout
osition

mpha-
elated

ming

mn-
Szymanski algorithm isO(r logn) once the matching pairs are given in correct order.
the sum of valuesr over all different transpositions ismn, we get the boundO(mn logn)

for the transposition invariant case. Later improvements [2,20] permit reducing this
plexity to O(mn log logn) time (see Section 5.2). We improve this toO(mn log logm)

by giving a newO(r log log min(m, r)) sparse dynamic programming algorithm for LC
This algorithm can also be generalized to the case where gaps are limited by a conα,
giving O(mn logm) time for evaluatingd t,α

ID (A,B).
Eppstein et al. [20] have proposed sparse dynamic programming algorithms for

complex distance computations such as the Wilbur–Lipman fragment alignment pr
[41,42]. The unit cost Levenshtein distance can also be solved using these techniqu
Using this algorithm, the transposition invariant case can be solved inO(mn log logn)

time. However, the algorithm does not generalize to the case ofα-limited gaps, and thu
we develop an alternative solution that is based on two-dimensional semi-static rang
imum queries. This gives usO(mn log2 m) time for evaluatingd t,α

L (A,B). However, we
develop in passing an improvedO(r log logm) sparse dynamic programming algorithm f
Levenshtein distance, which permits computingd t

L in O(mn log logm) time. Also, we note
that our algorithm to computed t,α

L (A,B) can be applied to the case without transpositio
where it is stillO(mn log2 m), and hence better than the existingO(αmn) time algorithm
[35] for α = �(log2 m).

Finally, we give a newO(r) time sparse dynamic programming algorithm for epis
matching. This gives usO(mn) time for transposition invariant episode matching.

The search problems on the edit distances can be solved in general within the sam
bounds of the distance computation problems. For the simpler distances, on the othe
our only solution is to evaluate them at every text position.

Table 1 gives a simplified list of upper bounds that are known for these problems w
transposition invariance. Table 2 gives the achieved upper bounds for the transp
invariant versions of these problems.

We start by describing our solutions to the edit distances, since they are the main e
sis of this paper. Then we briefly give the other results for Hamming distance and r
measures.

5. Transposition invariant edit distances

Let us first review how the edit distances can be computed using dynamic program
[32,36,40]. LetA = a1a2 · · ·am andB = b1b2 · · ·bn. FordID , evaluate an(m+1)× (n+1)

matrix (dij), 0� i � m, 0� j � n, using the recurrence

di,j = min
(
(if ai = bj then di−1,j−1 else ∞), di−1,j + 1, di,j−1 + 1

)
, (1)

with initializationdi,0 = i for 0� i � m andd0,j = j for 0� j � n.
The matrix(dij) can be evaluated (in some suitable order, like row-by-row or colu

by-column) inO(mn) time, and the valuedmn equalsdID(A,B).
A similar method can be used to calculate distancedL(A,B). Now, the recurrence is

di,j = min
(
(di−1,j−1 + if ai = bj then 0 else 1), di−1,j + 1, di,j−1 + 1

)
, (2)
with initializationdi,0 = i for 0� i � m andd0,j = j for 0� j � n.

 V. Mäkinen et al.

s in the
t
nd

them
cell. For

es. For

ynamic
ch the

-

ake

ning the
es
d
ithms

proxi-

vant

e
t us
holds
The recurrence for distancedD(A,B), which is used in episode matching, is

di,j = if ai = bj then di−1,j−1 else di,j−1 + 1, (3)

with initializationdi,0 = ∞ for 0� i � m andd0,j = j for 1� j � n.
The corresponding search problems can be solved by assigning zero to the value

first row,d0,j = 0 (recall that we identify patternP = A and textT = B). To find the bes
approximate match, we take min0�j�n dm,j . For thresholded searching, we report the e
positions of the occurrences, that is, thosej wheredm,j � k.

A useful alternative formulation of these distance computation problems is to see
as a shortest path problem on a graph. The graph contains one node for each matrix
dID(A,B), there are (horizontal) edges of cost 1 that connect every cell(i, j − 1) to (i, j),
as well as (vertical) edges of cost 1 that connect every cell(i − 1, j) to (i, j). Whenever
ai = bj , there is also a (diagonal) zero-cost cell that connects(i − 1, j − 1) to (i, j). It is
not hard to see thatdm,n is the minimum path cost that connects cell(0,0) to cell (m,n).
For dL this graph has also diagonal edges of cost 1 from every cell(i − 1, j − 1) to (i, j).
FordD, the graph contains only the horizontal edges and the zero-cost diagonal edg
searching, we add zero-cost edges connecting(0, j − 1) to (0, j) for everyj .

To solve our transposition invariant problems, we compute the distances inall required
transpositions, but we use algorithms that are more efficient than the above basic d
programming solutions, such that the overall complexity does not exceed by mu
worst case complexities of computing the distances for a single transposition.

LetM be the set of matching characters (also called match set) between stringsA andB,
that is,M = M(A,B) = {(i, j) | ai = bj , 1 � i � m, 1 � j � n}. The match set corre
sponding to a transpositiont will be calledMt = M(A + t,B) = {(i, j) | ai + t = bj }. Let
r = r(A,B) = |M(A,B)|. Let us defineT to be the set of those transpositions that m
some characters match betweenA andB, that isT = {bj − ai | 1 � i � m, 1 � j � n}.
One could compute the above edit distances and solve the search problems by run
above recurrences over all pairs (A + t , B), wheret ∈ T. In an integer alphabet this tak
O(|Σ |mn) time, andO(|ΣA||ΣB |mn) = O(m2n2) time in a general alphabet. This kin
of procedure can be significantly sped up if the basic dynamic programming algor
are replaced by suitable “sparse dynamic programming” algorithms.

Moreover, we are actually interested in computing the edit distances allowing ap
mate matches between the characters (recall the versions with parameterδ). To take these
approximate matches into account, let us redefine our match setMt as Mδ

t = {(i, j) |
|bj − (ai + t)| � δ}.

We note that, ifδ = 0, then the sum of the sizes of all the match sets ismn, that is,∑
t |Mt | = mn. However, ifδ > 0 then each cell may participate in more than one rele

transposition, and the total size of the match sets,
∑

t |Mδ
t |, may perfectly exceedmn.

On an integer alphabet, each cell can participate at most in 2δ + 1 match sets, so th
overall size is

∑
t |Mδ

t | � (2δ + 1)mn. On a general alphabet, this is not enough. Le
call µ the smallest difference between two different relevant transpositions, then it∑

t |Mδ
t | � (2δ + 1)mn/µ. Note thatµ = 1 on an integer alphabet.

Lemma 1. If distanced(A,B) can be computed inO(g(r(A,B))f (m,n)) time, where

g() is a concave increasing function, then the transposition invariant distanced t(A,B) =

V. Mäkinen et al.

irs

bove,

r

at the
compu-

t

ges

en
dit

to
ranges

-

e

mint∈T d(A + t,B) can be computed inO(g(mn)f (m,n)) time. Theδ-tolerant distance
d t,δ(A,B) = mint∈T dδ(A + t,B) can be computed inO(g(

∑
t |Mδ

t |)f (m,n)) time.

Proof. For δ = 0, let rt = |Mt | = r(A + t,B) be the number of matching character pa
betweenA + t andB. Then

∑
t∈T

g(rt)f (m,n) = f (m,n)
∑
t∈T

g

(
m∑

i=1

∣∣{j | ai + t = bj , 1 � j � n}∣∣
)

� f (m,n)g

(
m∑

i=1

∑
t∈T

∣∣{j | ai + t = bj , 1� j � n}∣∣
)

= f (m,n)g

(
m∑

i=1

n

)
= g(mn)f (m,n).

The caseδ > 0 is similar (change the order of the summations in the second line a
and

∑
t∈T

Mδ
t shows up). �

The rest of the section is devoted to developing algorithms that depend onr . However,
we start by considering how to obtain the setsMt = M(A + t,B).

5.1. Preprocessing

As a first step, we need a way of constructing the match setMt sorted in some orde
that enables sparse evaluation of matrix(dij).

We must be careful in constructing these match sets for all transpositions so th
overall preprocessing time does not exceed the time needed for the actual distance
tations. For example, one could easily construct a match set by considering all themn pairs
(i, j) in any desired order and adding each pair(i, j) to Mbj −ai

, first initializing it if the
transpositiont = bj − ai did not previously exist. This method gives usO(|Σ |+mn) time
on an integer alphabet andO(mn log(|ΣA||ΣB |)) = O(mn logn) on a general alphabe
(by using a balanced tree of existing transpositions).

Let us now consider the caseδ > 0. Now each pair(ai, bj) defines arangeof relevant
transpositions,[bj − ai − δ, bj − ai + δ]. However, only at the extremes of those ran
the setsMδ

t can change, so it is enough to consider two transpositions,bj − ai − δ and
bj −ai +δ, for each pair(ai, bj). Moreover, ift ′ = t +ε such that a range finishes betwe
t andt ′ and all the rest stays the same, thenMδ

t ′ ⊆ Mδ
t , and because of the definitions of e

distances,d(A+ t,B) � d(A+ t ′,B) for any edit distance. This shows that it is enough
consider only the places where ranges start (or, symmetrically, all the places where
finish, but not both). Hence, we will computeMδ

t for t ∈ {bj − ai − δ}.

Theorem 2. The match setsMδ
t = {(i, j) | |bj − (ai + t)| � δ}, each sorted in a de

sired cell order, for all relevant transpositionst ∈ T = {b − a − δ | a ∈ ΣA, b ∈ ΣB},
can be constructed in timeO(|Σ | + (2δ + 1)mn) on an integer alphabet, and in tim
O(m log|ΣA| + n log|ΣB | + |ΣA||ΣB | log(min(|ΣA|, |ΣB |)) + ∑

t∈T
|Mδ

t |) on a general

alphabet.

 V. Mäkinen et al.

r

d
h

et us

nding
f

erse the

s

f

try

ch

d

bets is

m for
r
erra
Proof. On an integer alphabet we can proceed naively to obtainO(|Σ | + mn) time using
array lookup to get the transpositionbj − ai where each pair(i, j) has to be added. Fo
δ > 0 each pair(i, j) is added to entries frombj − ai − δ to bj − ai + δ, in O(|Σ | +
(2δ + 1)mn) time.

The case of general alphabets is solved as follows.
(i) Start by obtaining the sets of different characters inA and B. Create a balance

binary search treeTA where every charactera = ai of A is inserted, maintaining for eac
sucha ∈ ΣA a listLa of the positionsi of A, in increasing order, such thata = ai . Do the
same forB andTB . This costsO(m log|ΣA| + n log|ΣB |).

(ii) Then, obtain a sorted list of all the relevant transpositions, with duplicates. L
assume|ΣA| � |ΣB | (otherwise do it the symmetric way). For eacha ∈ TA, traverse all
b in TB in order and generate a list of increasing transpositions and their correspo
position lists(b − a − δ,La,Lb). Then merge the|ΣA| lists into a unique ordered list o
relevant transpositions and positions, where there are possible duplicates in theb − a − δ

values (but these are all contiguous). Since we choose the smaller alphabet to trav
larger, this part costsO(|ΣA||ΣB | log(min(|ΣA|, |ΣB |))) time.

(iii) Now, create listT of relevant transpositions and associate the set of positionMδ
t

to eacht ∈ T. We will need to fill simultaneously a matrixC of m rows andn columns,
such that each cellCi,j points to the proper nodeMδ

t in T. Traverse the sorted list o
transpositions and remove duplicate transpositions, appending a new nodet = b − a − δ at
the end ofT, whereMδ

t is stored, initially empty. At the same time, each time a list en
(b − a − δ,La,Lb) is processed, assign a pointer toMδ

t at each cellCi,j for everyi ∈ La

andj ∈ Lb. This costsO(mn) since every cell ofC will be visited exactly once.
(iv) Finally, fill the Mδ

t sets. Traverse matrixC in any desired order, and for ea
processed entry(i, j), add (i, j) to the set pointed to byCi,j (that is,Mδ

bj −ai−δ). This
costsO(mn). If δ > 0 add entry(i, j) not only toCi,j , but also move forward in the sorte
list T, adding entry(i, j) to next transpositionsb′ −a′ while (b′ −a′)− (b −a) � 2δ. This
costs

∑
t∈T

|Mδ
t |. �

In the rest of this section, we will only consider explicitly the caseδ = 0 and develop
algorithms that compute a distanced(A,B) using a match setMt . However, all algorithms
can be used for computing the corresponding error tolerant distancedδ(A+ t,B) in a given
transpositiont by running them onMδ

t instead of onM . All the complexities forδ = 0 will
include a term of the formmn, which has to be replaced by

∑
t∈T

|Mδ
t | � (2δ + 1)mn/µ

if δ > 0. Note that a simple upper bound on the preprocessing time for general alpha
O(mn logm + n logn) for δ = 0 andO(mn(logm + (2δ + 1)/µ)) in general.

5.2. Computing the longest common subsequence

For LCS (and thus fordID) there exist algorithms that depend onr . The classical Hunt–
Szymanski [26] algorithm has running timeO(r logn) if the set of matchesM is already
given in the proper order. Using Lemma 1 we can conclude that there is an algorith
transposition invariant LCS that has time complexityO(mn logn). There are even faste
algorithms for LCS: Eppstein et al. [20] improved an algorithm of Apostolico and Gu

[2] achieving running timeO(D log logmin(D,mn/D)), whereD � r is the number of

V. Mäkinen et al.

have
ight

xtend
at
fficient
e
8, we

n a
be

o-

al

e any

values
put-

able
e
e

p-
to use
,

dominant matches (see, for example, [2] for a definition). Using this algorithm, we
the boundO(mn log logn) for the transposition invariant case (note that this is a t
estimate, since it can be achieved whenD = 	(mn/D) at each transposition).

The existing sparse dynamic programming algorithms for LCS, however, do not e
to the case ofα-limited gaps. We will give a simple but efficient algorithm for LCS th
generalizes to this case. We will also use the same technique when developing an e
algorithm for the Levenshtein distance withα-limited gaps. Moreover, by replacing th
data structure used in the algorithm by a more efficient one described in Lemma
can achieveO(r log logm) complexity, which givesO(mn log logm) for the transposition
invariant LCS (this is better than the previous bound, sincem � n).

Recall the set of matching character pairsM = {(i, j) | ai = bj }. Let M = M ∪
{(0,0), (m + 1, n + 1)}. We have the following sparsity property fordID .

Lemma 3. DistancedID(A,B) can be computed by evaluatingdi,j for (i, j) ∈ M using
the recurrence

di,j = min
{
di′,j ′ + i − i′ + j − j ′ − 2 | (i′, j ′) ∈ M, i′ < i, j ′ < j

}
, (4)

with initializationd0,0 = 0. Valuedm+1,n+1 equalsdID(A,B).

Proof. Let us regard again the computation of matrixd as a shortest path computation o
graph. Every path from cell(0,0) to a cell(i, j) that is the target of a zero-cost edge can
divided into two parts: from cell(0,0) until a cell(i′, j ′) that is the target of the last zer
cost edge traversed before reaching(i, j), and from cell(i′, j ′) until cell (i, j). The path
from (i′, j ′) to (i, j) moves first to(i − 1, j − 1) traversing only horizontal and vertic
cost-1 edges, and then moves for free from(i − 1, j − 1) to (i, j). Overall,(i − 1) − i′
vertical and(j −1)−j ′ horizontal edges are traversed, for a total cost ofi − i′ +j −j ′ −2.
Hence the cost of this particular path isdi′,j ′ + i − i′ + j − j ′ − 2. M contains all the cells
that are targets of zero-cost edges, and therefore minimizing over all cells(i′, j ′) ∈ M

yields the optimal cost, except for the possibility that the optimal path does not us
zero-cost edge before(i, j). This last possibility is covered by adding cell(0,0) to M ,
with d0,0 = 0 (which is also a way to state that our paths must start at cell(0,0)). Finally,
as we wish to obtain valuedm,n, we could have added cell(m,n) to M , but our reasoning
applies only to cells that are target of zero-cost edges. Hence, we add cell(m + 1, n + 1)

as such a target, sodm,n = dm+1,n+1 is correctly computed. �
The obvious strategy to use the above lemma is to keep the already computed

di′,j ′ in a data structure such that their minimum can be retrieved efficiently when com
ing the value of the nextdi,j . One difficulty here is that the values stored are not compar
as such since we want the minimum only afteri − i′ + j − j ′ − 2 is added. This can b
solved by storing thepath-invariantvaluesdi′,j ′ − i′ − j ′ instead. Then, after retrieving th
minimum value, one can addi + j −2 to get the correct value fordi,j . To get the minimum
valuedi′,j ′ − i′ −j ′ from range(i′, j ′) ∈ [−∞, i)×[−∞, j), we need a data structure su
porting dynamic one-dimensional range minimum queries. To see that it is enough
query range[−∞, i), notice that if we compute points(i, j) column-by-column (that is

for increasingj), each column from bottom to up (that is, for decreasingi), then the query

 V. Mäkinen et al.

rs
by
oints
ma
it.

men-

ys
y of

ues

and
). This

ed

or

ch is

t
node

et
op-
points that are in the range[−∞, i) are also those in the range[−∞, j). We call this
order thereverse column-by-column order: (i′, j ′) precedes(i, j) if j ′ < j , or if j ′ = j

andi′ > i.
Hence we need an efficient data structure where we can store the row numbei′ as

the sort keys, and valuesv(i′) = d(i′, j ′) − i′ − j ′ associated to them, and query it
minimum values over a range of keys. Furthermore, we will need later to remove p
from this data structure, so we want it to be dynamic. The following well-known lem
establishes the existence of such a data structure. Lacking any reference, we prove

Lemma 4. There is a data structureT supporting the following operations inO(logn)

time, wheren is the amount of elements currently in the structure:

T .Insert(k, v): Inserts valuev into the structure with keyk. If key k already exists, the
value of the element is updated tov if v is smaller than the current value.

T .Delete(k): Deletes the element with keyk.
v = T .Minimum(I): Returns the minimum of values whose keys are in the one-di

sional rangeI = [�, r].

Proof. A modified balanced binary search tree (AVL, for example) organized by kek

and storing associated valuesv(k) is a suitable data structure. Let us speak indistinctl
nodes and keys, and denote left and right children of a nodek by k.left andk.right. This
tree is augmented with a field minv(k) stored at each node, where the minimum of val
in the subtree rooted atk is maintained. The tree is easily updated when a new keyk is
inserted, as the only additional operation is to update the value minv(k′) of any traversed
internal nodek′ to min(minv(k′), v). Once a nodek is deleted, values minv(k′) in the path
from the root to the parent ofk need to be recomputed (if the deleted node is internal
hence replaced by a leaf, this update is done from the parent of the removed leaf
updating is easy since minv(k) = min(v(k),minv(k.left),minv(k.right)) is recomputed in
constant time per node. For the same reason, minv(k) values are also easily recomput
when the tree is rebalanced by rotations.

Minimum over ranges of keys[�, r] are obtained as follows. The tree is searched f�

andr simultaneously until nodes∗ is reached where the search path splits. Froms∗.left the
search is continued with� and at every nodes where the search path of� goes left, value
minv(s.right) is compared to the minimum value obtained so far. Similarly, the sear
continued withr ats∗.right, and at every nodes where the search path ofr goes right, value
minv(s.left) is considered for updating the computed minimum. Also, thev(k) values of
nodesk visited are included in the minimization whenever� � k � r . A not so infrequen
special case occurs when the search path splits before the root node, and hences∗
does not exist. In this case, both searches for� andr start at the root node.�

We are ready to give the algorithm now. Initialize the treeT of Lemma 4 by adding
the value ofd0,0 − i − j = 0 with key i = 0: T .Insert(0,0). Proceed with the match s
M \ {(0,0)} that is sorted in reverse column-by-column order and make the following

erations at each such pair(i, j):

V. Mäkinen et al.

r

and

es
ll
once

n

e first
,

n

ent larger

our tree

.

d

(1) Take the minimum value fromT whose key is smaller than the current row numbei:
d = T .Minimum([−∞, i)). Add i + j − 2 to this value:d ← d + i + j − 2.

(2) Add the current valued minus current row and column number,i + j , intoT , with the
current row number as its key:T .Insert(i, d − i − j).

Finally, after cell(m + 1, n + 1) has been processed, we have thatdID(A,B) = d .
The above algorithm works correctly: The reverse column-by-column evaluation

the range query restricted by the row number inT guarantee that conditionsi′ < i and
j ′ < j hold. The only point where the work on treeT deviates from what Lemma 3 requir
is that new keys overwrite equal old keys. That is, if a new cell(i, j) is inserted, an old ce
(i, j ′) is virtually removed if it existed. It is easy to see that the old cell is of no use
the new cell is inserted. Say that cell(i, j ′) obtained its value from cell(i0, j0), so that
di,j ′ = di0,j0 + i − i0 + j ′ − j0 − 2. Hence cell(i0, j0) is also a candidate todi,j � di0,j0 +
i− i0+j −j0−2, sodi,j � di′,j ′ +j −j ′. Now, assume a later cell(i′′, j ′′) uses cell(i, j ′),
so thatdi′′,j ′′ = di,j ′ + i′′ − i + j ′′ − j ′ − 2. But then it can also use cell(i, j) to obtain a
smaller or equal value usingdi′′,j ′′ = di,j + i′′ − i+j ′′ −j −2� di′,j ′ + i′′ − i+j ′′ −j ′ −2.
Note that this is simply a consequence of the fact that cell(i, j) dominates(i, j ′) [2].

Clearly, the time complexity of the algorithm isO(r logm), wherer = |M|, since we
can only havem + 1 different row numbers stored inT at any moment. Figure 1 gives a
example.

The algorithm also generalizes easily to the search problem: The 0 values in th
row can be added implicitly by usingd ← min(i, d + i + j − 2) in step (1) above. Also
every valuedi,j = d computed in step (2) above induces a valuedm,j+s � d + (m − i) + s

in the last row, which can be used either to keep the minimumdm,j value (in which case
we consider only cases = 0), or to report all valuesdm,j � k in thresholded searching. I

Fig. 1. Example of computation ofdID on a sparse matrix. Black circles represent the matching pairs(i, j).
Each such matrix position has an influence area represented by a gray rectangle (darker grays repres
differences from the standard valuei + j). Next to each position we represent the matrix valuedi,j we compute.
The value of interest is the lowest rightmost position. In particular, we depict the computation of the cell(24,39),
for which we have to consider all the positions included in the dashed rectangle. On the right we show
data structure. Each node corresponds to a cell(i, j) and is represented asi [v] {minv}, wherei is the tree key,
v is the value (meaning that the real cell value is(i + j) + v), andminv is the minimumv value in the subtree
The search for cell (24,39) includes all the nodes below the dashed line, and it takes the minimumd over all the
underlined values. Its new value isd24,39 = d + 24+ 39− 2= 57, so we will insert a new node with key 24 an

value 57− 24− 39= −6 in the tree.

 V. Mäkinen et al.

ts

.3)
tructure
orted

ted
t

ur
e

e

.
re

d

acking

as
the

o

es
sional
ity

lved
order to report occurrences only once and in order, two arraysS(1 . . . n) andE(1 . . . n) of
counters are maintained: The counters are initialized to zero, and at each pair(i, j) ∈ M

such thatdi,j + (m − i) � k we setS(j) = S(j) + 1 andE(j + s) = E(j + s) + 1
for the maximums such thatd + (m − i) + s � k. This marks the start and end poin
of the occurrences. Then it is easy to collect all the occurrences inO(n) time by us-
ing S() and E() to keep track on how many ranges are active at any positionj of the
text.

The queries[−∞, i) we use are semi-infinite. We will show in Lemma 8 (Section 5
that the balanced binary search tree can be replaced by a more advanced data s
in this case. That is, semi-infinite queries for minimum and insertions can be supp
in amortizedO(log logu) time, where[1, u] is the integer range of keys that are inser
into the structure. In our caseu = m, which gives usO(log logm) query time. The nex
theorem follows immediately.

Theorem 5. Given two stringsA = a1 . . . am and B = b1 . . . bn, m � n, and ther cells
(i, j) such thatai = bj in reverse column-by-column order, then the LCS betweenA and
B can be computed in timeO(r log logmin(r,m)).

Let us now consider the case withα-limited gaps. The only change we need in o
algorithm is to make sure that, in order to computedi,j , we only take into account th
matches that are in the range(i′, j ′) ∈ [i − α − 1, i) × [j − α − 1, j). What we need to
do is to change the search range[−∞, i) into [i − α − 1, i) in T , as well as to delet
any elements in columnj − α − 1 after processing elements in columnj . The former is
easily accomplished by using queryT .Minimum([i −α−1, i)) at step (1) of the algorithm
The latter needs that we delete nodes fromT when their columns become too old. Mo
specifically, we maintain a pointer to the oldest (that is, smallest column) element inM that
is still stored inT . When we finish processing columnj , we check whether the pointe
cell is of the form(i′, j − α − 1) for somei′. If it is, we remove keyi′ usingT .Delete(i′)
and advance the pointer until the pointed cell belongs to a later column. Since the tr
takes constant time per cell ofM , its effect in the complexity is negligible.

Note that it might be that keyi′ in T actually corresponds to a later column that h
overwritten cell(i′, j − α − 1). In this case we must advance the pointer but not delete
key. In order to check this, we also store inT nodes the currentj ′ value corresponding t
each keyi′.

Notice that we cannot obtainO(log logm) query time anymore, since the query rang
are no longer semi-infinite. On the other hand, we could have used two-dimen
queries instead of deleting points fromT but, as shown in Lemma 8, the complex
would be worse. An illustration of the algorithm for LCS withα-limited gaps is given
in Fig. 2.

By using Lemma 1 and the above algorithms, we get the following result.

Theorem 6. The transposition invariant distanced t
ID(A,B) (or, equivalently, LCS) can

be computed inO(mn log logm) time. The corresponding search problem can be so

within the same time bound. For the distanced

t,α
ID (A,B) the time bounds areO(mn logm)

V. Mäkinen et al.

1
s
o-sided
nt when

ans-
e
ferent

he
e
those

s
r, is that
ven

in
rea
ances

for
ct
Fig. 2. Example ofα-gapped computation ofdID on a sparse matrix, forα = 10. The same conventions of Fig.
apply. The difference is that now the influence areas are restricted to width and heightα, so we delete value
which correspond to column numbers which are small enough to have become irrelevant and perform a tw
range search over the tree, so only its middle part qualifies. In this example, the tree has only one eleme
computing cell(24,39), and it is outside the search range. In this case the value of the cell isi + j − 2 = 61.

for distance computation and for searching. The preprocessing cost of Theorem2 must be
added to these bounds.

The algorithms useO(mn) space, since the overall size of the sets for different tr
positions ismn (note that the algorithm itself needs onlyO(m) space). This might b
problematic especially for the search problem, when the two strings are of very dif
size.

We can achieve space complexityO(m2) in the search problem as follows. Divide t
text intoO(n/m) segments of the formT1...2m, Tm+1...3m, T2m+1...4m, and so on. Run th
whole algorithm (including generating the sets of transpositions) separately over
O(n/m) text segments, one after the other. When processing text segmentTmi+1...m(i+2),
report the matches found in the areaTm(i+1)+1...m(i+2). This way, each text position i
processed twice and hence the complexity remains the same. The space, howeve
to process one text segment,O(m2). With respect to correctness, we remark that, gi
that cell di,j receives valuei from cell (0, j), no column beforej − m can influence
it (indeed, no column beforej − i). Hence, in order to report correctly the matches
areaTm(i+1)+1...m(i+2) we only need to startm positions behind, thus processing a
Tmi+1...m(i+2). This technique is rather general and can be applied to other edit dist
as well.

In particular, in the case ofα-limited gaps we can use the same technique both
distance computation and for searching, since only the lastα columns processed can affe
current values. Hence we can computed

t,α
ID (A,B) usingO(αm) space.

We recall that, whenδ > 0 and we consider distancesd
t,δ
ID andd

t,δ,α
ID , all termsmn are

replaced by
∑

t∈T
|Mδ

t | in the time and space complexities.

5.3. Computing the Levenshtein distance

For the Levenshtein distance, there exists anO(r log logmin(r,mn/r)) sparse dynamic

programming algorithm [20,24]. Using this algorithm, the transposition invariant case can

 V. Mäkinen et al.

to
tance
gener-
arse

cost

gonal
se.

t
.
h from

ago-

at their
tch
ding a

l have
nded as

er
lus

ues

ose

.

ge
be solved inO(mn log logn) time. As with the LCS, this algorithm does not generalize
the case ofα-limited gaps. We develop an alternative solution for the Levenshtein dis
by generalizing our LCS range query approach. This new algorithm can be further
alized to solve the problem ofα-limited gaps. On the other hand, we show that the sp
computation can be done inO(r log logm) time.

The Levenshtein distancedL has a sparsity property similar to the one given fordID in
Lemma 3. Recall thatM = M ∪ {(0,0), (m + 1, n + 1)}, whereM is the set of matching
character pairs.

Lemma 7. DistancedL(A,B) can be computed by evaluatingdi,j for (i, j) ∈ M using the
recurrence

di,j = min

{
{di′,j ′ + j − j ′ − 1 | (i′, j ′) ∈ M, i′ < i, j ′ − i′ < j − i},
{di′,j ′ + i − i′ − 1 | (i′, j ′) ∈ M, j ′ < j, j ′ − i′ � j − i}, (5)

with initializationd0,0 = 0. Valuedm+1,n+1 equalsdL(A,B).

Proof. Following the proof of Lemma 3 it is enough to show that the minimum path
to reach cell(i − 1, j − 1) from match point(i′, j ′) is (i) j − j ′ − 1 whenj ′ − i′ < j − i,
and (ii) i − i′ − 1 otherwise. The reason is that, in both cases, we use as many dia
edges as possible and the rest are horizontal or vertical edges, depending on the ca�

The recurrence relation is now more complex than the one fordID . In the case ofdID we
could store valuesdi′,j ′ in a comparable format (by storingdi′,j ′ − i′ − j ′ instead) so tha
the minimumdi′,j ′ − i′ − j ′ of (i′, j ′) ∈ [−∞, i) × [−∞, j) could be retrieved efficiently
For dL there does not seem to be such a comparable format, since the path lengt
(i′, j ′) to (i, j) may be eitheri − i′ − 1 or j − j ′ − 1.

Figure 3 illustrates the geometric setting implicit in (5). The lower region (below di
nalj − i) contains match points such that their extension by match(i, j) will add j −j ′ −1
to the score, and the upper region (above diagonal) contains match points such th
extension by match(i, j) will add i − i′ − 1 to the score. The score of the new ma
is computed as the minimum between the lowest possible score obtained by exten
match from the lower region and from the upper region. Therefore, each match wil
its scores maintained in two structures, one structure representing scores to be exte
“lower region” scores, and other for “upper region” extensions.

LetL denote the data structure for the lower region andU the data structure for the upp
region. If we store valuesdi′,j ′ − j ′ in L, we can take the minimum over those values p
j − 1 to get the value ofdi,j . However, we want this minimum over a subset of val
stored inL, that is, over thosedi′,j ′ − j ′ whose coordinates satisfyi′ < i, j ′ − i′ < j − i.
Similarly, if we store valuesdi′,j ′ − i′ in U , we can take minimum over those values wh
coordinates satisfyj ′ < j , j ′ − i′ � j − i, plus i − 1 to get the value ofdi,j . The actual
minimum is then the minimum of upper region and lower region minima.

What is left to be explained is how the minima of subsets ofL andU can be obtained
For the upper region, we can use the same structure as fordID : If we keep valuesdi′,j ′ − i′
in a balanced binary search treeU with key j ′ − i′, we can make one-dimensional ran

search to locate the minimum of valuesdi′,j ′ − i′ whose coordinates satisfyj ′ − i′ � j − i.

V. Mäkinen et al.

uish
st
ations
e at

ich

this
gion.
n both
them.
need

to a

for the
e will
the

ing
Fig. 3. Example of computation ofdL on a sparse matrix. The same conventions of Fig. 1 apply. We disting
in the matrix the lower and upper regions considered to solve cell(24,39). Since the upper region is handled ju
like for dID , we show on the right only the data structure of the lower region. It supports minimum oper
over two dimensional ranges. Each relevant matrix position(i, j) is represented in the range search structur
position (i, j − i). The value in brackets is[y − j], wherey is the value of cell(i, j). To solve cell(24,39)
we take the minimum in the range[−∞,24) × [−∞,39− 24) (inside the dashed rectangle on the right), wh
returns−2, and addj − 1 to it to obtain 36. After this, point(24,15) will be updated to value 36− 39= −3.

The reverse column-by-column traversal guarantees thatU only contains valuesdi′,j ′ − i′
whose coordinates satisfyj ′ < j . Thus, the upper region can be handled efficiently.

The problem is the lower region. We could use row-by-row traversal to handle
case efficiently, but then we would have the symmetric problem with the upper re
No traversal order seems to allow us to limit to one-dimensional range searches i
regions simultaneously; we will need two-dimensional range searching in one of
Let us consider the two-dimensional range search for the lower region. We would
a query that retrieves the minimum of valuesdi′,j ′ − j ′ whose coordinates satisfyi′ < i,
j ′ − i′ < j − i. We make a coordinate transformation to turn this triangle region in
rectangle: We map each valuedi′,j ′ − j ′ into anxy-plane at coordinate(i′, j ′ − i′). In
this plane we perform a rectangle query[−∞, i) × [−∞, j − i). The following lemma,
adapted from Gabow, Bentley and Tarjan [23], provides the required data structure
lower region. We summarize some other related results in the same lemma that w
soon use in theα-limited case (we already referred to the one-dimensional result in
algorithm fordID).

Lemma 8 (Gabow, Bentley, Tarjan [23]).There is a data structureR that stores a two-
dimensional point-setS with a value associated to each point, and supports the follow
operations in amortizedO(logn log logn) time afterO(n logn) time preprocessing onS,
wheren = |S|:

R.Update(x, y, v): Update value of points = (x, y) ∈ S to v, under the condition(∗) that
the current value ofs is larger thanv.

v = R.Minimum(I): Retrieve the minimum value from a rangeI of S, whereI is semi-

infinite at least in one fixed coordinate.

 V. Mäkinen et al.

er

e,

e

r
s given

n
ates of
sary to
tors

e,
e
ertions
g stage

onal to

ase

38,39],

t
r-
n-

milar

ws

ry
There is another structureP that supports the same operations inO(log2 n) time, where
condition(∗) does not need to hold, and search rangeI needs not be semi-infinite in eith
coordinate.

Semi-infinite queries can be supported inO(log logn) time in the one-dimensional cas
if the point coordinatess ∈ S are integers in the range[1, n]. In this case condition(∗) must
hold.

Proof. We will review the proof of theO(logn log logn) bound [23] in order to cover th
one-dimensional case and the closed range case.

The basic structure supporting operations in timeO(log2 n) is a range tree (see, fo
example, [3, Section 5]), where the secondary structures are replaced by the one
in Lemma 4. The structure is a balanced (primary) search tree for thex-coordinate range
searches, where each nodew stores another (secondary) balanced tree fory-coordinate
searches among the points that are stored in the subtree ofw in the primary tree. As show
in Lemma 4, the secondary trees support minimum queries and unrestricted upd
values. To update a value, its node in the primary tree is found and then it is neces
update the corresponding nodes in all theO(logn) secondary trees stored at the ances
of the primary tree node. For range searching, we find inO(logn) time theO(logn) nodes
of the primary tree whose subtrees cover thex-coordinate range, and then payO(logn)

time in each such node to find the minimum of points in they-coordinate range. Henc
updating and searching can be done inO(log2 n) time. Note that it is costly to maintain th
invariants of the secondary trees contents upon rebalancing the primary tree, so ins
and deletions of points are not supported. Rather, the trees are built in a preprocessin
in perfectly balanced form and stay with that shape. Preprocessing cost is proporti
the space needed by the data structure, which isO(n logn).

Let us then review howO(log logn) time can be achieved in the one-dimensional c
for integer point sets. As our query is w.l.o.g. min{v(s) | s ∈ [−∞, r)}, wherev(s) gives
the value ofs, it is enough to choose the minimum among those pointss whose valuev(s)

is the minimum in the range[−∞, s]; these are calledleft-to-right minima. It is easy to see
that other valuesv(s) can never be the minimum in any range[−∞, r). Note that left-to-
right minima form a decreasing sequence. The data structure of van Emde Boas [
which we will denoteQ, supports operationsQ.insert(s) (insertss into Q), Q.delete(s)
(deletess from Q), Q.successor(s) (returns the largest point stored inQ smaller thans),
andQ.predecessor(s) (returns the smallest point stored inQ larger thans) in O(log logn)

time, wheres is an integer in the range[1, n]. We will store only left-to-right minima from
S in Q. When inserting a new points with value v = v(s) into Q, we first check tha
v(Q.predecessor(s)) > v(s), otherwise we do not inserts. If s is inserted, we repeat ope
ationQ.delete(Q.successor(s)) until v(Q.successor(s)) < v(s). These operations guara
tee thatv(Q.predecessor(r)) is the answer to our query[−∞, r). Note that it is possible
to replace the valuev of an already inserted point by a smaller value, by a process si
to insertion, but we cannot changev to a larger value.

TheO(logn log logn) bound for the semi-infinite two-dimensional queries then follo
easily by replacing the secondary trees of the range tree with data structuresQ: Consider a
query[l, r] × [−∞, t]. We build the primary tree on thex-coordinates and the seconda

trees on they-coordinates. Instead of adding they-coordinates as such, we use the rank

V. Mäkinen et al.

ry

rch in

shtein
of

h
wing

ent

e time
wer

are
oints
point
are

new,

the
k

ct of

dis-
ce
of each point in the sorted order of the points wherey-coordinate is used as the prima
key andx-coordinate as the secondary key. To answer the query, we find the rankρ of
(t,∞) (place where it would be inserted) in the sorted set of points by binary sea
timeO(logn), then query each of theO(logn) secondary structuresQ found by thex-co-
ordinate range search withs = Q.predecessor(ρ), and select the minimumv(s). �

We are now ready to give a sparse dynamic programming algorithm for the Leven
distance. Initialize a balanced binary treeU for the upper region by adding the value
d0,0 − i = 0 with key i = 0: U .Insert(0,0). Initialize a data structureL for the lower
region (R of Lemma 8) with the triples(i, j − i,∞) such that(i, j) ∈ M . Update value
of d0,0 − j = 0 with keysi = 0 andj − i = 0: L.Update(0,0,0). Proceed with the matc
setM \ {(0,0)} that is sorted in reverse column-by-column order and make the follo
operations at each pair(i, j):

(1) Take the minimum value fromU whose key is larger than or equal to the curr
diagonalj − i: d ′ = U .Minimum([j − i,∞]). Add i −1 to this value:d ′ ← d ′ + i −1.

(2) Take the minimum value fromL inside the rectangle[−∞, i) × [−∞, j − i): d ′′ =
L.Minimum([−∞, i) × [−∞, j − i)). Add j − 1 to this value:d ′′ ← d ′′ + j − 1.

(3) Choose the minimum ofd ′ andd ′′ as the current valued = di,j .
(4) Add the current valued minusi into U with key j − i: U .Insert(j − i, d − i).
(5) Add the current valued minusj intoL with keysi andj − i: L.Update(i, j − i, d −j).

Finally, after cell(m + 1, n + 1) has been processed, we have thatdL(A,B) = d .
The correctness of the algorithm should be clear from the above discussion. Th

complexity isO(r logr log logr) (r = |M| elements are inserted and updated in the lo
region structure, andr times it is queried). The space usage isO(r logr). Figure 3 gives
an example.

Actually, we can switch the roles ofx andy in L, so that the secondary structures
searched fori values. As explained in Section 5.2, we do not need to store different p
with the samei coordinate in the secondary structures; it is enough to retain the last
inserted with coordinatei, since it dominates previous ones (that is, the new value we
inserting is never larger than the existing points with coordinatei). As we have shown in
the proof of Lemma 8, the structure permits us replacing the value of a point with a
smaller, one. Hence we can in fact store only unique coordinates in the range 0. . .m, each
associated to the last (that is, smallest) valuev(i) inserted so far. The advantage is that
time complexity becomesO(r logr log logmin(r,m)). Moreover, we do not need to ran
the points, but can directly search thei values.

The algorithm can be modified for the search problem similarly asdID , by implic-
itly adding values 0 in the first row of the current column and considering the effe
each computeddi,j value in the last row of the matrix. Now cell(i, j) induces values
dm,j+s � di,j + max(m − i, s). Applying the same text segmenting technique used for
tancedID yields O(r logm log logm) time, slightly better for our purposes than distan
computation.

We show now a general technique to make distance computationO(r logm log logm)
time as well. Segment the text intoO(r/m) regions, such that each text region contains

 V. Mäkinen et al.

lls in
end of
n.
ates).
ost 3

on, as

ture
mn) is

ture

search-
e
of the

0] is
ing
ons as

ance

htein

y solve
imum

e

ving
lumn
n

g
d

betweenm and 2m cells inM (we must be flexible because there may be several ce
a column). Run the algorithm for each region separately, one after the other. At the
each region, insert cells inM so thatM covers all the cells of the last column of the regio
Use those last values to initialize the data structure for the next region (via cell upd
This ensures continuity in the computation across regions. Overall we process at mr
cells, and each region containsO(m) cells, so the search time isO(r logm log logm). We
observe that the same time complexity would be obtained if we used regions ofO(mc)

entries, for any constantc.
Using this algorithm, the transposition invariant Levenshtein distance computati

well as the search problem, can be solved inO(mn logm log logm) time andO(mn logn)

space. Note that in this case the space complexity is dominated by the data strucL.
Removing unnecessary elements (those that cannot give minima for the current colu
no longer possible, since the structure for the lower region is semi-static.

With the techniques used for splitting the text into regions, however, the data strucL
needs onlyO(m2 logm) space. Distance computation still needsO(mn) additional space
to store the transpositions. We cannot, as in the text segmenting approach used for
ing, process the transpositions region by region to obtainO(m2) space, because this tim
region limits are different for each transposition and we need to remember the state
computation for every different transposition.

We recall that the sparse dynamic programming algorithm by Eppstein et al. [2
better than ours,O(r log logr). Our text regions approach, however, permits improv
Eppstein’s algorithm. We can use the latter as a black box and apply it over text regi
with our algorithm. The result is given in the next theorem.

Theorem 9. Given two stringsA = a1 . . . am and B = b1 . . . bn, m � n, and ther cells
(i, j) such thatai = bj in reverse column-by-column order, then the Levenshtein dist
betweenA andB can be computed in timeO(r log logm).

Using this new theorem, the time complexity for transposition invariant Levens
distance computation decreases toO(mn log logm).

Our range query approach, although slower, has the advantage of letting us easil
the case ofα-limited gaps. First consider the easier upper region. We need the min
over the values whose coordinates(i′, j ′) satisfyi′ ∈ [i −α −1, i), j ′ ∈ [j −α −1, j), and
j ′ − i′ � j − i. These can be simplified toj ′ < j (which comes for free with the revers
column-by-column order),i′ � i − α − 1 andj ′ − i′ � j − i. We can use structureR of
Lemma 8 to support minimum queries in the range[i −α − 1,∞]×[j − i,∞]. The lower
region is more complicated. Its limiting conditions,i′ ∈ [i − α − 1, i), j ′ ∈ [j − α − 1, j),
andj ′ − i′ < j − i, can be simplified toi′ < i, j ′ � j − α − 1 andj ′ − i′ < j − i. Instead
of resorting to three-dimensional searching, which would costO(log2 n log logn) [23], we
use structureP of Lemma 8, which supports unlimited updates of values. Once mo
from column j to j + 1, we update each value in the secondary structures at co
j −α −1 to∞. As in theα-limited case ofdID , we keep a pointer to the last active colum
in the match setM to determine which cells(i′, j −α−1) have to be virtually deleted usin
P .Update(i′, j −α−1− i′,∞). If we do this, conditionj ′ � j −α−1 can be ignored, an

P is built over the other two conditions and queried with range[−∞, i) × [−∞, j − i).

V. Mäkinen et al.

. On

ity in

r the

the
e
ost of

s

nd
t
ing
zero-
Fig. 4. Example of computation ofα-gappeddL on a sparse matrix. The same conventions of Fig. 3 apply
the right we show now both two-dimensional range search structures,U andL. To solve cell(24,39), we take
the minimum in the range[24,∞] × [15,∞] onU and[−∞,24) × [−∞,15) onL. The area inU is empty, and
that inL is virtually empty because we have set old column cell values to∞.

Again, text segmenting techniques can be used to maintain time complex
O(r log2 m). An illustration of the algorithm for Levenshtein distance withα-limited gaps
is given in Fig. 4.

Combining Lemma 1 with the above results, we obtain the following bounds fo
transposition invariant case.

Theorem 10. Transposition invariant Levenshtein distanced t
L(A,B) can be computed

in O(mn log logm) time. The corresponding search problem can be solved within
same time bounds. For the case ofα-limited gaps,d t,α

L (A,B), the time requirements ar
O(mn log2 m), both for distance computation and for searching. The preprocessing c
Theorem2 must be added to these bounds.

As before, the space complexity isO(m2 logm) plus that of storing the setsMt , that
is, O(mn) for distance computation andO(m2) for searching. Also, theα-limited version
can be solved usingO(αm) space. In caseδ > 0, themn in the complexities become∑

t∈T
|Mδ

t |.

5.4. Episode matching

To conclude the edit distance section we look at the episode matching problem ad t
D

distance, which have a simple sparse dynamic programming solution. Recall thaM =
M ∪{(0,0), (m+1, n+1)}, whereM is the set of matching character pairs. The follow
lemma fordD is easy to prove using similar arguments as in Lemma 3, since the last

cost edge in a path to(i, j) must be in rowi − 1.

 V. Mäkinen et al.

n

hen

ll

ing) by

ily.
ed

d

cannot
ious

nspo-
mpler
es, it is
only

tion of
gs are
Lemma 11. DistancedD(A,B) can be computed by evaluatingdi,j for (i, j) ∈ M using
the recurrence

di,j = min
{
di−1,j ′ + j − j ′ − 1 | j ′ < j, (i − 1, j ′) ∈ M

}
, (6)

with initializationd0,0 = 0. Valuedm+1,n+1 equalsdD(A,B).

Consider an algorithm that traverses the match setM in reverse column-by-colum
order. We maintain for each rowi′ a valued(i′) that gives the minimumdi′,j ′ − j ′ value
seen so far in that row among pairs(i′, j ′) ∈ M . First, initialized(0) = 0 andd(i) = ∞
for 1 � i � m. Let (i, j) ∈ M be the current pair whose value we need to evaluate. T
d = di,j can simply be computed asd = j − 1 + d(i − 1), sincej − 1 + d(i − 1) =
j − 1+ min{di−1,j ′ − j ′ | j ′ < j, (i − 1, j ′) ∈ M} (conditionj ′ < j holds because(i, j)

precedes(i − 1, j) in reverse column-by-column order). Afterd = di,j is computed, we
can safely update the row minimumd(i) = min(d(i), d − j). The algorithm takes overa
O(|M|) = O(r) time.

The above algorithm generalizes to the search problem (that is, to episode match
implicitly considering all valuesd0,j as zero for allj . That is,d(0) is assumed to bej − 1
if a cell d1,j is being processed. The problem ofα-limited gaps can also be handled eas
Let c(i−1) give the last columnj ′ whered(i−1) has been updated (even if its value stay
the same). One easily notices thatc(i −1) is always the last match(i −1, j ′) seen so far in
that row. Therefore, we simply avoid updatingd(i) as defined whenj − c(i − 1) − 1> α.
In this case we setd(i) = ∞. Using Lemma 1 we get the following result.

Theorem 12. The transposition invariant computation of distanced t
D(A,B), as well as

transposition invariant episode matching, can be solved inO(mn) time. The same boun
applies in the case ofα-limited gaps. The preprocessing cost of Theorem2 must be added
to these bounds.

Note again that the algorithm needs onlyO(m) space, but the overall space isO(mn),
because of the need to store the transpositions. It is interesting that in this case we
reduce the space toO(m2) for the search problem, as it is not true anymore that the prev
m columns define the matrix contents. On the other hand, in the case ofα-limited gaps we
still can useO(αm) space.

6. Transposition invariant Hamming distance and variants

So far we have seen that sparse dynamic programming is the key in solving tra
sition invariant distance computation problems. It could be used to solve other si
distances such as Hamming distance. However, for such simpler distance measur
possible to find the optimal transposition directly, and do the distance computation
for that transposition. To demonstrate this, we consider in this section the computa
some error tolerant versions of Hamming, SAD and MAD distances, where the strin

aligned position-wise (ai with bi) and hence have the same length.

V. Mäkinen et al.

s
not

n

heme,

t

nd

on

s.

imes.

-
is
For this section, let us redefineT = {ti = bi −ai | 1� i � m} as the set of transposition
that make some charactersai andbi match. Note that the optimal transposition does
need, in principle, to be included inT, but we will show that this is the case ford t

H and
d

t,κ
SAD. Note also that|T| = O(|Σ |) on an integer alphabet and|T| = O(m) in any case.

6.1. Hamming distance

Let A = a1 . . . am andB = b1 . . . bm, whereai, bi ∈ Σ for 1 � i � m. We consider the
computation of transposition invariant Hamming distanced

t,δ
H (A,B). That is, we search

for a transpositiont maximizing the size of set{i | |bi − (ai + t)| � δ, 1� i � m}.

Theorem 13. Given two numeric stringsA and B, both of lengthm, there is an algo-
rithm for computing distanced t,δ

H (A,B) in O(|Σ | + m) time on an integer alphabet, or i
O(m logm) time on a general alphabet.

Proof. It is clear that the Hamming distance is minimized for the transposition inT that
makes the maximum number of characters match. What follows is a simple voting sc
where the most voted transposition wins. Since we allow a toleranceδ in the matched
values,ti votes for range[ti − δ, ti + δ]. Construct setsS = {(ti − δ, “open”) | 1 � i � m}
andE = {(ti + δ, “close”) | 1� i � m}. SortS ∪ E into a listI using order

(x′, y′) <H (x, y) if x′ < x or (x′ = x andy′ < y),

where “open”< “close.” Initialize variablecount= 0. Do for i = 1 to |I | if I (i) =
(x, “open”) thencount= count+ 1 elsecount= count− 1. Let maxcountbe the larges
value ofcount in the above algorithm. Then clearlyd t,δ

H (A,B) = m − maxcount, and the
optimal transposition is any value in the range[xi, xi+1], whereI (i) = (xi,∗), for any
i wheremaxcountis reached. The complexity of the algorithm isO(m logm). Sorting
can be replaced by array lookup whenΣ is an integer alphabet, which gives the bou
O(|Σ | + m) for that case. �
6.2. Sum of absolute differences distance

We shall first look at the basic case whereκ = 0. That is, we search for a transpositi
t minimizingdSAD(A + t,B) = ∑m

i=1 |bi − (ai + t)|.

Theorem 14. Given two numeric stringsA andB, both of lengthm, there is an algorithm
for computing distanced t

SAD(A,B) in O(m) time on both integer and general alphabet

Proof. Let us considerT as a multiset, where the same element can repeat multiple t
Then|T| = m, since there is one element inT for eachbi − ai , where 1� i � m. Sorting
T in ascending order gives a sequenceti1 � ti2 � · · · � tim . Let topt be the optimal transpo
sition. We will prove by induction thattopt = tim/2�+1, that is, the optimal transposition

the median transposition inT.

 V. Mäkinen et al.

t
tly of

l

we
om one

al
To start the induction we claim thatti1 � topt � tim . To see this, notice thatdSAD(A +
(ti1 − ε),B) = dSAD(A + ti1,B) + mε, anddSAD(A + (tim + ε),B) = dSAD(A + tim,B) +
mε, for anyε � 0.

Our induction assumption is thattik � topt � tim−k+1 for somek. We may assume tha
tik+1 � tim−k

, since otherwise the result follows anyway. First notice that, independen
the value oftopt in the above interval, the cost

∑k
l=1 |bil − (ail + topt)| + ∑m

l=m−k+1 |bil −
(ail + topt)| will be the same. Then notice that

m−k∑
l=k+1

∣∣bil − (ail + tik+1 − ε)
∣∣ =

m−k∑
l=k+1

∣∣bil − (ail + tik+1)
∣∣ + (m − 2k)ε, and

m−k∑
l=k+1

∣∣bil − (ail + tim−k
+ ε)

∣∣ =
m−k∑

l=k+1

∣∣bil − (ail + tim−k
)
∣∣ + (m − 2k)ε.

This completes the induction, since we showed thattik+1 � topt � tim−k
.

The consequence is thattik � topt � tim−k+1 for maximalk such thattik � tim−k+1, that
is, k = �m/2�. Whenm is odd, it holdsm − k + 1 = k and there is only one optima
transposition,ti�m/2� . Whenm is even, one easily notices that all transpositionstopt, tim/2 �
topt � tim/2+1, are equally good. Finally, the median can be found in linear time [4].�

To get a fast algorithm ford t,κ
SAD whenκ > 0 largest differences can be discarded,

need a lemma that shows that the distance computation can be incrementalized fr
transposition to another. Letti1, ti2, . . . , tim be the sorted sequence ofT.

Lemma 15. Once valuesSj and Lj are computed so thatdSAD(A + tij ,B) = Sj + Lj ,

Sj = ∑j−1
j ′=1 tij − tij ′ , andLj = ∑m

j ′=j+1 tij ′ − tij then the values ofSj+1 andLj+1 can
be computed inO(1) time.

Proof. ValueSj+1 can be written as

Sj+1 =
j∑

j ′=1

tij+1 − tij ′ =
j∑

j ′=1

tij+1 − tij + tij − tij ′ = j (tij+1 − tij) + Sj .

Similar rearranging gives

Lj+1 =
m∑

j ′=j+2

tij ′ − tij+1 = (m − j)(tij − tij+1) + Lj .

Thus both values can be computed in constant time given the values ofSj andLj (and
tij+1). �
Theorem 16. Given two numeric stringsA andB both of lengthm, there is an algorithm
for computing distanced t,κ

SAD(A,B) in O(m + κ logκ) time on both integer and gener

alphabets. On integer alphabets, timeO(|Σ | + m + κ) can also be obtained.

V. Mäkinen et al.

ly

all

s:
ect

o
n
ma 15.

d
dian to

plexity
ced

i-

al

ion

te the
Proof. Consider the sorted sequenceti1, ti2, . . . , tim as in the proof of Theorem 14. Clear
the candidates for theκ outliers (largest differences) areM(k′, k′′) = {ti1, . . . , tik′ , tim−k′′+1

,

. . . , tim} for somek′ + k′′ = κ . The naive algorithm is then to compute the distance in
theseκ +1 cases: Compute the median ofT\M(k′, k′′) for eachk′ +k′′ = κ and choose the
minimum distance induced by these medians. Theseκ +1 medians can be found as follow
First select valuestκ+1 andtm−κ using the linear time selection algorithm [4]. Then coll
and sort all values smaller thantκ+1 or larger thantm−κ . After selecting the medianm0,κ

of T\M(0, κ) andmκ,0 of T\M(κ,0), one can collect all mediansmk′,k′′ of T\M(k′, k′′)
for k′ + k′′ = κ , since themk′,k′′ values are those betweenm0,κ and mκ,0. The κ + 1
medians can thus be collected and sorted inO(m+κ logκ) time, and the additional time t
compute the distances for all of theseκ + 1 medians isO(κm). However, the computatio
of distances given by consecutive transpositions can be incrementalized using Lem
First one has to compute the distance for the median ofT \ M(0, κ), dSAD(A + m0,κ ,B),
and then continue incrementally fromdSAD(A + mk′,k′′ ,B) to dSAD(A + mk′+1,k′′−1,B),
until we reach the median ofT \ M(κ,0), dSAD(A + mκ,0,B) (this is where we nee
the medians sorted). Since the set of outliers changes when moving from one me
another, one has to add valuetik′ − tim to Sm and valuetim − tik′′ to Lm, whereSm andLm

are the values given by Lemma 15 (here we need the outliers sorted). The time com
of the whole algorithm isO(m + κ logκ). On an integer alphabet, sorting can be repla
by array lookup to yieldO(|Σ | + m + κ). �
6.3. Maximum absolute difference distance

We consider now howd t,κ
MAD can be computed. In caseκ = 0, we search for a transpos

tion t minimizingdMAD (A + t,B) = maxmi=1 |bi − (ai + t)|. In caseκ > 0, we are allowed
to discard thek largest differences|bi − (ai + t)|.

Theorem 17. Given two numeric stringsA andB both of lengthm, there is an algorithm
for computing distanced t,κ

MAD (A,B) in O(m + κ logκ) time on both integer and gener
alphabets. On integer alphabets, timeO(|Σ | + m + κ) can also be obtained.

Proof. Whenκ = 0 the distance is clearlyd t
MAD (A,B) = (maxi{ti}−mini{ti})/2, and the

transposition giving this distance is(maxi{ti} + mini{ti})/2. Whenκ > 0, consider again
the sorted sequenceti1, ti2, . . . , tim as in the proof of Theorem 14. Again theκ outliers are
M(k′, k′′) for somek′ + k′′ = κ in the optimal transposition. The optimal transposit
is then the value(tim−k′′ + tik′+1

)/2 that minimizes(tim−k′′ − tik′+1
)/2, wherek′ + k′′ = κ .

The minimum value can be computed inO(κ) time, once theκ + 1 smallest and largestti
values are sorted. These values can be selected inO(m) time and then sorted inO(κ logκ)

time, orO(|Σ | + κ) on integer alphabets.�
6.4. Searching

Up to now we have considered distance computation. Any algorithm to compu

distance betweenA andB can be trivially converted into a search algorithm forP in T by

 V. Mäkinen et al.

in

the

-

ding on

-
ed.

ching
idered
stances
rse in-
vised
S and
pisode

ing and

te the
comparingP against every text window of the formTj−m+1...j . Actually, we do not have
any search algorithm better than this.

Lemma 18. For distancesd t,δ
H , d

t,κ
SAD, and d

t,κ
MAD , if the distance can be evaluated

O(f (m)) time, then the corresponding search problem can be solved inO(f (m)n) time.

On the other hand, it is not immediate how to perform transposition invariant(δ, γ)-
matching. We show how the above results can be applied to this case.

Note that one can find all the occurrences{j} such thatd t
MAD (P,Tj−m+1...j) � δ and all

the occurrences{j ′} whered t
SAD(P,Tj ′−m+1...j ′) � γ in O(mn) time. The(δ, γ)-matches

constitute a subset of{j} ∩ {j ′}, but identity does not necessarily hold. This is because
optimal transposition can be different ford t

MAD andd t
SAD.

What we need to do is to verify this set of possible occurrences{j} ∩ {j ′}. This
can be done as follows. For each possible matchj ′′ ∈ {j} ∩ {j ′} one can compute lim
its s and l such thatdMAD (P + t, Tj ′′−m+1...j ′′) � δ for all s � t � l: If the distance
d = dMAD (P + topt, Tj ′′−m+1...j ′′) is given, thens = topt − (δ − d) andl = topt + (δ − d).
On the other hand, note thatdSAD(P + t, Tj ′′...j ′′+m−1), as a function oft , is decreasing
until t reaches the median of the transpositions, and then increasing. Thus, depen
the relative order of the median of the transpositions with respect tos andl, we only need
to compute distancedSAD(P + t, Tj ′′−m+1...j ′′) in one of them (t = s, t = l, or t = t�m/2�).
This gives the minimum value fordSAD in the range[s, l]. If this value is� γ , we have
found a match.

One can see that using the results of Theorems 14 and 17 withκ = 0, the above proce
dures can be implemented so that onlyO(m) time at each possible occurrence is need
There are at mostn occurrences to test.

Theorem 19. Given two numeric stringsP (pattern) andT (text) of lengthsm andn, there
is an algorithm for finding all the transposition invariant(δ, γ)-occurrences ofP in T in
O(mn) time on both integer and general alphabets.

7. Conclusions and future work

We have studied two techniques for solving transposition invariant string mat
problems. The first technique, applicable to several “edit distance” measures, cons
all the possible transpositions. However, since most transpositions produce sparse in
of the edit distance matrix, specialized algorithms could be used to solve these spa
stances efficiently. These kind of algorithms already existed in the literature. We de
improved sparse dynamic programming algorithms in those cases (for example LC
Levenshtein distance), as well as new ones when they did not exist (for example e
matching andα-limited gaps in all the distances). The problem of matching withα-limited
gaps most clearly demonstrated the connection between sparse dynamic programm
range-minimum searching.

The second technique was to directly identify the optimal transposition and compu

distance in that transposition. This identification was shown to be efficiently computable

V. Mäkinen et al.

inst

ances

trans-

hieve
d the
eneral
ce
m-

it
ed to
ce
o
essing
time.
ied can
ms that
ple, an
7] can
d
hat is
a

as edit
ed

rk.

(1987)

and

Sci. 7
for several distance measures where theith character of one string is compared only aga
theith character of the other.

In general, we found that including transposition invariance in the studied dist
increases the time complexity only slightly, usually by a polylogarithmic factor.

To demonstrate the practicality of the developed methods, we implemented the
position invariant LCS algorithm. This implementation is now included in the C-BRAHMS

music retrieval engine [6].
An interesting remaining question is whether the log factors could be avoided to ac

O(mn) for transposition invariant edit distances. For episode matching we achieve
O(mn) bound, except that the preprocessing can (in very uncommon situations on g
alphabets) takeO(mn logm + n logn) time. Independently, it would be nice to redu
preprocessing time toO(mn), so that it can never affect the real dynamic progra
ming complexities. The bottleneck is in sortingmn values of the formbj − ai , once
the {ai} and the{bj } sequences, of lengthn and m, have been sorted. We could do
in O(mn logmin(m,n)) time, but maybe it can be done better. Also, the space need
arrange the transpositions for distance computation isO(mn). We have been able to redu
all the other space complexities to small polynomials inm, so it would be interesting to d
the same with the transpositions. We tried, with no result, to mix generation and proc
of the cells. The problem is that there may be too many active transpositions at any

Also, we are confident that the search times for the easier measures that we stud
be improved at least in the average case. For the edit distance measures, algorith
depend on the minimum (transposition invariant) distance can be derived. For exam
algorithm that processes only diagonal areas of the dynamic programming matrix [3
be generalized to give time bounds likeO(|T|dn), whereT is the set of transpositions an
d = d t∗(A,B). This can be combined with the sparse evaluation to get an algorithm t
fast both in practice and in the worst case,O(dn log logm). The challenge is to derive
similar bound for the search problem.

Finally, a more ambitious goal is to handle more general distance functions, such
distances with substitution costs of the form|bj − ai |. Other related models are discuss
in [35].

Acknowledgments

We thank the anonymous referees for their useful suggestions to improve this wo

References

[1] K. Abrahamson, Generalized string matching, SIAM J. Comput. 16 (6) (1987) 1039–1051.
[2] A. Apostolico, C. Guerra, The longest common subsequence problems revisited, Algorithmica 2

315–336.
[3] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational Geometry: Algorithms

Applications, second rev. ed., Springer-Verlag, 2000.
[4] M. Blum, R. Floyd, V. Pratt, R. Rivest, R. Tarjan, Time bounds for selection, J. Comput. System
(1972) 448–461.

 V. Mäkinen et al.

d geo-

imate
hop on
999,

45–

Annual

elodic

ences,
ersity

atch-

tricted
679–

), in:

mation
23.

ympo-
inger-

nnual

tions,

puter

c. 6th
Sci.,

c. 16th

ci. 92

iology,

omm.

14th
Sci.,
[5] B. Bollobás, G. Das, D. Gunopulos, H. Mannila, Time-series similarity problems and well-separate
metric sets, Nordic J. Comput. 8 (4) (2001) 409–423.

[6] C-BRAHMS, http://www.cs.helsinki.fi/group/cbrahms/demoengine/.
[7] E. Cambouropoulos, M. Crochemore, C.S. Iliopoulos, L. Mouchard, Algorithms for computing approx

repetitions in musical sequences, in: R. Raman, J. Simpson (Eds.), Proc. 10th Australian Works
Combinatorial Algorithms, AWOCA’99, Curtin University of Technology, Perth, Western Australia, 1
pp. 129–144.

[8] R. Cole, R. Hariharan, Tree pattern matching and subset matching in randomizedO(n log3 m) time, in: Proc.
29th Annual Symposium on the Theory of Computing (STOC’97), 1997, pp. 66–75.

[9] R. Cole, R. Hariharan, P. Indyk, Tree pattern matching and subset matching in deterministicO(n log3 m)

time, in: Proc. 10th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’99), 1999, pp. 2
254.

[10] R. Cole, R. Hariharan, Verifying candidate matches in sparse and wildcard matching, in: Proc. 34th
Symposium on the Theory of Computing (STOC’02), 2002, pp. 596–601.

[11] T. Crawford, C.S. Iliopoulos, R. Raman, String matching techniques for musical similarity and m
recognition, Comput. Musicol. 11 (1998) 71–100.

[12] M. Crochemore, C.S. Iliopoulos, T. Lecroq, Y.J. Pinzon, Approximate string matching in musical sequ
in: M. Baliik, M. Simanek (Eds.), Proc. Prague Stringology Club (PSC 2001), Czech Technical Univ
of Prague, DC-2001-06, 2001, pp. 26–36.

[13] M. Crochemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, K. Tsichlas, Approximate string m
ing with gaps, Nordic J. Comput. 9 (1) (2002) 54–65.

[14] M. Crochemore, G. Landau, M. Ziv-Ukelson, A sub-quadratic sequence alignment algorithm for unres
cost matrices, in: Proc. 13th ACM–SIAM Symposium on Discrete Algorithms (SODA’02), 2002, pp.
688.

[15] M. Crochemore, C.S. Iliopoulos, T. Lecroq, W. Plandowski, W. Rytter, Three heuristics forδ-matching:
δ-BM algorithms, in: Proc. 13th Annual Symposium on Combinatorial Pattern Matching (CPM’02
Lecture Notes in Comput. Sci., vol. 2373, Springer-Verlag, 2002, pp. 178–189.

[16] M. Crochemore, C. Iliopoulos, G. Navarro, Y. Pinzon, A bit-parallel suffix automaton approach for(δ, γ)-
matching in music retrieval, in: Proc. 10th International Symposium on String Processing and Infor
Retrieval (SPIRE’03), in: Lecture Notes in Comput. Sci., vol. 2857, Springer-Verlag, 2003, pp. 211–2

[17] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, 1984.
[18] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, J. Kärkkäinen, Episode matching, in: Proc. 8th S

sium on Combinatorial Pattern Matching (CPM’97), in: Lecture Notes in Comput. Sci., vol. 1264, Spr
Verlag, 1997, pp. 12–27.

[19] M.J. Dovey, A technique for “regular expression” style searching in polyphonic music, in: Proc. 2nd A
International Symposium on Music Information Retrieval (ISMIR 2001), 2001, pp. 179–185.

[20] D. Eppstein, Z. Galil, R. Giancarlo, G.F. Italiano, Sparse dynamic programming I: linear cost func
J. ACM 39 (3) (1992) 519–545.

[21] K. Fredriksson, Rotation invariant template matching, PhD Thesis, A-2001-3, Department of Com
Science, University of Helsinki, 2001, p. 139.

[22] K. Fredriksson, V. Mäkinen, G. Navarro, Rotation and lighting invariant template matching, in: Pro
Latin American Symposium on Theoretical Informatics (LATIN’04), in: Lecture Notes in Comput.
vol. 2976, Springer-Verlag, 2004, pp. 39–48.

[23] H.N. Gabow, J.L. Bentley, R.E. Tarjan, Scaling and related techniques for geometry problems, in: Pro
ACM Symposium on Theory of Computing (STOC’84), 1984, pp. 135–143.

[24] Z. Galil, K. Park, Dynamic programming with convexity, concavity and sparsity, Theoret. Comput. S
(1992) 49–76.

[25] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and Computational B
Cambridge University Press, 1997.

[26] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing longest common subsequences, C
ACM 20 (5) (1977) 350–353.

[27] K. Lemström, V. Mäkinen, On minimizing pattern splitting in multi-track string matching, in: Proc.
Annual Symposium on Combinatorial Pattern Matching (CPM’03), in: Lecture Notes in Comput.

vol. 2676, Springer-Verlag, 2003, pp. 237–253.

V. Mäkinen et al.

t ap-
ng and
2003,

riant
E’04),
press.

t-Based

and re-
ence

Dokl. 6

nterna-
215.
Annual
937,

tching,
ugust

s 1 (4)

18.
Math.

Process.

. Acad.

Appl.
[28] K. Lemström, G. Navarro, Flexible and efficient bit-parallel techniques for transposition invarian
proximate matching in music retrieval, in: Proc. 10th International Symposium on String Processi
Information Retrieval (SPIRE’03), in: Lecture Notes in Comput. Sci., vol. 2857, Springer-Verlag,
pp. 224–237. Extended version: J. Discrete Algorithms, in press.

[29] K. Lemström, G. Navarro, Y. Pinzon, Bit-parallel branch & bound algorithm for transposition inva
LCS, in: Proc. 11th International Symposium on String Processing and Information Retrieval (SPIR
in: Lecture Notes in Comput. Sci., Springer-Verlag, 2004. Extended version: J. Discrete Algorithms, in

[30] K. Lemström, J. Tarhio, Searching monophonic patterns within polyphonic sources, in: Proc. Conten
Multimedia Information Access (RIAO 2000), vol. 2, Paris, France, 2000, pp. 1261–1279.

[31] K. Lemström, E. Ukkonen, Including interval encoding into edit distance based music comparison
trieval, in: Proc. Symposium on Creative & Cultural Aspects and Applications of AI & Cognitive Sci
(AISB 2000), Birmingham, United Kingdom, 2000, pp. 53–60.

[32] V. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals, Sov. Phys.
(1966) 707–710.

[33] H. Mannila, H. Toivonen, A.I. Verkamo, Discovering frequent episodes in sequences, in: Proc. 1st I
tional Conference on Knowledge Discovery and Data Mining (KDD’95), AAAI Press, 1995, pp. 210–

[34] S. Muthukrishnan, New results and open problems related to non-standard stringology, in: Proc. 6th
Symposium on Combinatorial Pattern Matching (CPM’95), in: Lecture Notes in Comput. Sci., vol.
Springer-Verlag, 1995, pp. 298–317.

[35] V. Mäkinen, Parameterized approximate string matching and local-similarity-based point-pattern ma
PhD thesis manuscript, Report A-2003-6, Department of Computer Science, University of Helsinki, A
2003.

[36] P. Sellers, The theory and computation of evolutionary distances: Pattern recognition, J. Algorithm
(1980) 359–373.

[37] E. Ukkonen, Algorithms for approximate string matching, Inform. and Control 64 (1–3) (1985) 100–1
[38] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of an efficient priority queue,

Systems Theory 10 (1977) 99–127.
[39] P. van Emde Boas, Preserving order in a forest in less than logarithmic time and linear space, Inform.

Lett. 6 (3) (1977) 80–82.
[40] R. Wagner, M. Fisher, The string-to-string correction problem, J. ACM 21 (1) (1974) 168–173.
[41] W.J. Wilbur, D.J. Lipman, Rapid similarity searches of nucleic acid and protein data banks, Proc. Natl

Sci. USA 80 (1983) 726–730.
[42] W.J. Wilbur, D.J. Lipman, The context-dependent comparison of biological sequence, SIAM J.
Math. 44 (3) (1984) 557–567.

