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An unsupervised neural network technique, Growing Cell Structures (GCS) was used to visualize
geochemical differences between four different island arc volcanic rock types: basalts, andesites,
dacites and rhyolites. The output of the method shows the cluster structure of the dataset clearly, and
the relevant geochemical patterns and relationships between its variables. The data can be separated
into four clusters, each associated with a specific volcanic rock type (basalt, andesite, dacite and
rhyolite), according to a unique combination of major element concentrations. Following clustering,
performance of the trained GCS network as a classifier of volcanic rock type was tested using two
test datasets with major element concentration data for 312 and 496 island arc volcanic rock samples
of known volcanic type. Preliminary classification results are promising. In the first test dataset 94%
of basalts, 76% of andesites, 83% of dacites and 100% of the rhyolites were classified correctly.
Successful classification rates in the second dataset were 100%, 80%, 77%, and 98% respectively. The
success of the analysis suggests that neural networks analysis constitutes a useful analytical tool for
identification of natural clusters and examination of the relationships between numeric variables in
large datasets, and that can be used for automatic classification of new data.
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INTRODUCTION

New developments in analytical technology over the last decades have dramati-
cally increased the volume of geochemical data collected and stored in databases.
Traditional data analysis techniques have become inadequate for processing such
large volumes of geochemical data and new techniques for isolation of complex
correlations between variables, associations among samples, and anomaly identi-
fication are needed.

Artificial neural networks (ANN) are distributed networks of simple com-
puting elements operating in parallel. They differ from traditional modeling ap-
proaches in that they can be trained to learn solutions rather than being programmed
to model a specific problem using complex rules and mathematical routines. Con-
nection strengths or weights between interconnected nodes are adjusted during
the training or learning process, according to the input data. Consequently, ANN
are capable of modeling highly complex non-linear functions, and of identifying
relations in input data that are not readily apparent with common analytical tech-
niques (e.g. Lacassie and others, 2003). Furthermore, ANN are non-parametric
and thus are not constrained by the error distributions of the population, as are
regression algorithms. Kohonen’s Self-Organizing Map (SOM; Kohonen, 1995)
is one of the best-known ANN with unsupervised learning rules, i.e. the train-
ing process is carried out without any a priori classification of the samples.
SOM’s central property is that it forms a non-linear projection or mapping of a
high-dimensional (multivariate) input space on a low-dimensional output space
(usually a 2-dimensional regular grid), with information on the relationships be-
tween the input data preserved as much as possible. Through the training process,
neighboring input samples are mapped onto neighboring (or the same) nodes ac-
cording to the metrics defined in the output space. This mapping therefore not
only displays the clustering of the original data space but also preserves (at least
approximately) the metric-topological relations of the data items. Furthermore,
relevant geochemical information can be exhibited in a maximally concentrated
form, in a way that the user does not require advanced specialist knowledge for its
perception, and outlying observations can also be included in the dataset without
significantly affecting the main patterns and relationships identified. Additionally,
the SOM averages the input dataset in weight vectors during the training process,
and thus removes noise (Vesanto and others, 1999). Although SOM has been used
as an analytical tool in a variety of fields it has not been used extensively for the
analysis of geochemical data.

In this paper we use Growing Cell Structures (GCS; Fritzke, 1994), an exten-
sion of the SOM algorithm, which allows simultaneous adaptation of the position
of the weight vectors in the input space and the topology of the output space.
Rather than using a predetermined rectangular grid of cells, as for the SOM algo-
rithm, the GCS structure is dynamically defined during the training process. Each
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GCS node has an associated activity counter, which registers the number of times
that training samples are mapped onto a given node. A high counter value means
high activity in this particular node. The counter information is used for deciding
where new nodes should be inserted into the network. New nodes are inserted in
network positions of high activity (high counter values), and which thus require
higher resolution. Simultaneously, the node weight vectors are adapted: each time
a training sample is mapped onto a given node, the node weight vector is moved
in the direction of the sample (Kohonen, 1995). This process is repeated until
stable values for the network parameters are attained, and not necessarily when
the number of nodes of the network is equal to the number of input variables.
After training is completed, the GCS algorithm converts the frequency of training
samples assigned to each node of the final GCS map (prior probability) into a pre-
diction for new samples associated to the nodes (posterior probability) (Fritzke,
1994; Walker, Cross, and Harrison, 1999). The prior probability corresponds to
the probability of occurrence of a given class, thus it reflects a priori knowledge.
The posterior probability corresponds to the probability of a class given an ob-
servation, and in the GCS algorithm it is determined for the activated network
node after mapping a given input vector. For each class the prior probability is
estimated using the node counters. The posterior probabilities estimation is the
result of the network self-organization (training). The posterior probabilities of the
different classes are displayed on color maps, which are lain over the final two-
dimensional GCS map structure (e.g. Fig. 1(c)). Alternatively, a three-dimensional
visualization can be generated, in which the posterior probabilities are displayed
as altitudes (i.e. Z-axis values) ranging between 0 and 1 (e.g. Fig. 1(b)). At each
node of the final GCS map the average value of each individual input variable can
be computed as the corresponding average of the training samples associated to
this map unit, irrespective of their individual class. This information can also be
displayed on separate color maps, one for each input variable, and overlain on the
final GCS structure (e.g. Fig. 1(d)).

Although GCS is primarily a clustering algorithm, after training and assig-
nation of a class label to each network node, it can also be used for classifica-
tion. The method has been tested with geochemical analyses of island arc vol-
canic rocks comprising four first-order categories: basalts, andesites, dacites, and
rhyolites.

METHODOLOGY

Data Sources

In this study we utilize three literature-derived datasets that contain island
arc volcanic rock data from different geographic regions, with concentration data
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Figure 1. Visualization of posterior probabilities and input variable distributions for an 11-
node GCS map trained with the 1529 samples of the Training dataset (Table 1). (a) Volcanic
type-related node distribution over the GCS map structure. All nodes are associated with
a specific volcanic rock type, labeled accordingly: B (basalts); A (andesites); D (dacites);
R (rhyolites). (b) Three-dimensional and (c) two-dimensional visualization of the posterior
probability distributions. Four clearly-separated clusters were modeled by the network. Each
is associated with a specific volcanic rock type (basalts, andesites, dacites and rhyolites). For
the two-dimensional visualization (c) the posterior probability values are shown by the color
axes at right. (d) Two-dimensional visualization of the distributions of each input variable.
The distributions of each variable can be easily compared visually with that of the posterior
probabilities, and with each other. Scales at right indicate whole rock concentrations (wt.%).
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(wt.%) for the ten major and minor oxides (SiO2, TiO2, Al2O3, K2O, Na2O, CaO,
FeOt , MgO, MnO and P2O5).

The first dataset (Training dataset) comprises 1529 whole-rock analyses of
basalts (32%), andesites (24%), dacites (27%) and rhyolites (17%) (Table 1).
This dataset was constructed using data from the GEOROC database, requested
through the web site (http://georoc.mpch-mainz.gwdg.de/georoc/). The second
dataset (Lau-Taupo dataset) includes data from the Lau island arc (Fiji) and the
Taupo Volcanic Zone (New Zealand), comprising 312 whole-rock analyses of
basalts (32%), andesites (28%), dacites (15%) and rhyolites (25%) (Table 2). The
third dataset (Honshu dataset) is from the Honshu arc (Japan), and contains 496
volcanic whole-rock analyses of basalts (8%), andesites (63%), dacites (16%) and
rhyolites (13%) (Table 2).

Data Analysis

The Training dataset was used to examine geochemical patterns of island arc
volcanic rock suites. The GCS algorithm projected the samples of this dataset onto
a two-dimensional feature map, and converted the frequency of training samples
assigned to each node into a prediction for new samples associated to the nodes
(posterior probability). The posterior probabilities of occurrence of the different
volcanic rock types were then displayed over the final map structure as color maps
(Fig. 1(c)). The GCS algorithm also projected average values for individual input
variables at each node onto the feature map (Fig. 1(d)).

The Lau-Taupo and Honshu datasets were then used to test the performance of
the GCS network trained above as a classifier of island arc volcanic rock type. The
classification procedure works as follows. (i) A best-matching unit (BMU) was
chosen for each sample or input vector, in both datasets as the node of the trained
network whose weight vector presents the greatest similarity with the current input
vector in the 10-dimensional input space. For this purpose the euclidean distance
between each trained GCS network’s weight vector and each input vector was
calculated, and the node with the closest weight vector to the current input vector
was tagged as its BMU. (ii) Then the class assigned to each sample corresponds
to the class of its BMU, which in turn can be computed using the prior probability
information. A more detailed explanation of the trained network class assignation
method is given by Lacassie and others (2004).

The reliability of the classification model achieved by the trained GCS net-
work was then assessed from the classification accuracy. For each of the Lau-Taupo
and the Honshu datasets, the classification accuracy was evaluated separately for
each volcanic rock type by the formula:

Ai = 100 × (Ti/Ni)
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where Ai is the classification accuracy, Ti is the number of correctly classified
samples (true positives) and Ni is the total number of samples of the volcanic rock
i (basalts, andesites, dacites, or rhyolites).

Finally, a second classification model was developed, based only on the
information contained in SiO2, K2O and Na2O.

RESULTS

The GCS analysis of the Training data set identified four clusters, which
appear in the GCS color map as distinct areas with high posterior probabilities.
Each cluster was associated by the GCS network to a specific rock type (basalt,
andesite, dacite and rhyolite) with limited overlap between neighboring clusters,
as indicated by the low percentages of samples assigned to a cluster of a different
class (Fig. 1; Table 3).

The concentrations of the input variables (major elements) in the GCS map
have distinct distributions which are useful for understanding the cluster structure
of the data: SiO2 and K2O increase systematically from basalts through rhyolites,
whereas the highly correlated oxides Al2O3, FeOt, TiO2, MnO, MgO, CaO and
P2O5 decrease. Only Na2O is discontinuous, with high values associated mainly
with the dacite cluster and a limited sub-region of the rhyolite cluster (Fig. 1(d)).

The classification results obtained using the Lau-Taupo and Honshu datasets
as tests are shown in Table 4. Classification of the Lau-Taupo dataset was sat-
isfactory for rhyolites (100%) and basalts (94%), but was lower for the dacites
(83%) with 17% misclassified as rhyolites. Accuracy was lower still for andesites
(76%) with 24% misclassified as dacites. Similarly, best classification rates in the
Honshu dataset were for rhyolites (98%) and basalts (100%), with lower rates
for dacites and andesites (77% and 80%, respectively). Most of the misclassified

Table 3. Distribution of the Training Dataset Samples in the Cluster
Structure of the Trained Network

Percentages of assigned samples per class
Cluster type B A D R

B 96 0 0 0
A 4 98 1 0
D 0 2 97 1
R 0 0 2 99
Total (%) 100 100 100 100

Note. Values are the percentage of training samples of each volcanic
type that were assigned to each volcanic type-related cluster.
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Table 4. Confusion Matrix of the GCS Classification

A priori class A priori classa

Assigned Class B A D R B A D R

Lau-Taupo dataset
B 94 0 0 0 99 0 0 0
A 6 76 0 0 1 81 4 0
D 0 24 83 0 0 17 73 0
R 0 0 17 100 0 2 23 100
N 99 87 48 78 99 87 48 78

Honshu dataset
B 100 9 0 0 75 10 0 0
A 0 80 9 0 25 78 11 0
D 0 11 77 2 0 11 69 3
R 0 0 14 98 0 1 20 97
N 41 312 80 63 41 312 80 63

Values are the classification rates, i.e. the percentage of samples of each volcanic
type that was correctly classified.
aClassification results using only the information of SiO2, K2O and Na2O. N:
Number of samples of each class.

andesites and dacites of the Honshu dataset were classified as dacites (11%) and
rhyolites (14%), respectively (Table 4).

DISCUSSION

The two- and the three-dimensional diagrams of Figure 1 constitute maxi-
mally concentrated projections of the relevant linear and non-linear multidimen-
sional geochemical information of the Training dataset. These projections allow
the rapid identification (visualization) of significant geochemical patterns and re-
lationships of this multivariate dataset in a way that the user is not obliged to have
a great amount of specialized knowledge for its perception. The relevant informa-
tion that can be visualized includes the cluster structure of the Training dataset
as described above, factors responsible for its cluster structure, and meaningful
correlations between the relevant discriminating factors.

The cluster’s topological relations resulting after the GCS analysis of the
Training dataset (Fig. 1(b) and 1(c)) are compatible with the natural geochemical
similarities between island arc volcanic rock types. These similarities are related
to expected systematic changes of major element concentrations that resembles
the differentiation trend from basalts to rhyolites (Fig. 1(c) and 1(d)).

The results (Table 4) suggest that andesites and dacites cannot be effec-
tively discriminated from other volcanic rock types based on total major element
information, whereas both rhyolites and basalts can be easily identified. This
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indicates that the cluster boundaries between the differing lithotypes, especially
between andesites and dacites, should be regarded as guides rather than rigorous
separations.

Volcanic rocks are normally classified using simple chemical parameters such
as the total alkali vs. silica (TAS) scheme (e.g. Cox, Bell, and Pankhurst, 1979;
Rollinson, 1993), which is restricted to the linear information contained in three
major oxide variables (SiO2, K2O and Na2O). In sub-alkaline rocks, SiO2 carries
the greatest weight for division into the four primary lithotypes. When the GCS
classification model was restricted to the TAS scheme variables, classification
accuracy for the Honshu dataset decreased slightly (Table 4). This suggests that in
this case relevant information was disregarded when restricting the classification
to the TAS scheme variables. In contrast, classification accuracy in the Lau-Taupo
dataset (Table 4) changed little.

Several opportunities exist for further research on both feature extraction and
unsupervised volcanic rock classification, including exploring combined major
and trace element data, in particular incorporating high field strength elements, for
characterizing and distinguishing geochemical signatures of island arc volcanic
rock types using ANN. If based on immobile elements, this could be useful
for determining both lithotype and magma series in altered or metamorphosed
volcanic rocks, where current methods using potentially mobile elements (e.g.
K2O, Na2O) are inappropriate.

The study of Lacassie and others (2003) has shown that the GCS method offers
several advantages over Principal Component Analysis (PCA), a conventionally
used method for multidimensional data reduction and visualization. Although
PCA is not intended for cluster analysis it corresponds to a commonly used linear-
based exploratory tool which provides insightful graphical summaries of large
sets of multidimensional data, and it can be used to identify structures, trends,
redundancies and correlations in the data set. Both GCS and PCA were tested in
the above study, using three different datasets consisting of geochemical analyses
of stream sediments, sandstones of four provenance categories, and zircon grains
from a wide range of igneous rock types. After being analyzed by GCS, a clustered
structure was revealed in all three datasets. However, no separable features were
distinguished in any of the datasets using PCA (performed on the correlation
matrix, using two and three components), because this method is useful only
when the data has linearly-separable features, as concluded by Lacassie and others
(2003).

Similarly, the study of Lacassie and others (2004) showed that the sharpness
of the GCS map boundaries between different classes is likely to be influenced by
the dataset used as input. In that study, the GCS map clusters associated to the P3
(felsic provenance) and P4 (recycled) provenance groups displayed some overlap.
Lacassie and others (2004) noted this was to be expected, as many P4 sandstones
are derived from felsic crystalline basement rocks, and the effects of recycling of
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preexisting sediments and varying intensity of source area weathering can also
produce gradual transition between P3 and P4 characteristics.

CONCLUSIONS

This study shows that GCS analysis can be used as an efficient tool to improve
analysis of large geochemical datasets, as it allows visualization of subtle inter-
relations between variables and of the cluster structure of highly dimensional data
using the linear and the non-linear relationships between components.

The GCS classification scheme based on major element geochemical compo-
sitions accurately predicts volcanic rock type for basalts (94–100%) and rhyolites
(98–100%) in two test sets with 312 and 496 samples, respectively. Although less
successful for dacites (77–83%) and andesites (76–80%) in both datasets, these
percentages are regarded as satisfactory for this preliminary application of the
methodology. The results indicate that GCS could become a useful tool for classi-
fication of multidimensional island arc volcanic rock geochemical data, provided
that a large and representative dataset is available for learning. Future research
involving training with larger and more representative test sets and with different
combination of chemical variables could improve results further.
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