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Abstract. The use of edge based refinement in general, and Delaunay
terminal edge refinement in particular are well established for adaptive
meshing, but largely on a heuristic basis. In this paper, we present some
theoretical results on geometric improvement, and it limitations, for these
methods. Angle bounds for simple longest edge bisection are reviewed
and extended. Terminal edges are local maximal edges in a mesh; two
additional bounds that apply to simple bisection of terminal edges in De-
launay meshes are presented. The angle properties of Delaunay insertion
of the midpoint of a terminal edge are described.

1 Introduction

Delaunay terminal edge refinement, specified in §2 below, is a member of the
family of edge-based adaptive mesh refinement methods; references to which
can be found in [1, 5, 12]. The use of edge based refinement in general, and
Delaunay terminal edge refinement in particular are well established for planar
meshing, but largely on a heuristic basis. In this paper, we present a series
of theoretical results on the geometric mesh improvement properties of these
methods. Iterative refinement methods for generating such meshes typically take
a triangulation of D, M0, as input. M0 is not connected to any approximation
task necessarily. It is simply a representation of D and may have arbitrarily
small angles and/or edges. For some applications, the merit of an unstructured
mesh for discretizing a domain D is influenced by the geometric quality of its
triangles, e.g. Berzins, [2]. Part of the task of generating a mesh is to improve
these measures, which typically involves better aspect ratios in the triangles. It
is well known that for the goals of efficient and appropriate meshes for piecewise
linear approximation, the measures of length and angles should be made in an
error based metric, e.g. George and Borouchaki [4], or Simpson [12].

Strong mesh improvement properties for Delaunay circumcenter based refine-
ment have been established by Chew, [3], Ruppert [6], and Shewchuk [9]. In
particular, under appropriate conditions on D, the methods are guaranteed to
produce meshes with the minimum angle larger that a specified angle tolerance.
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Our discussion presents, in §2, an overview of triangle properties local to
Delaunay terminal edge bisection, including some new results. We will usually
shorten ‘Delaunay terminal’ to ‘Deter’ in the sequel. The terminal edge concept is
explained in §2.2. In §3, we analyse the angle distribution in the mesh resulting
from a Deter bisection and study a case of repeated Delaunay terminal edge
refinement of a triangle with one small edge.

2 Local Features of Deter Edge Bisection

We first look at the properties of the angles produced in a simple longest edge
bisection of t. We usually use ‘LEBis’ for this bisection. Individual properties
have been reported in a variety of references, [7, 5, 8]. In §2.1, we believe we have
included all previously published properties, provided some simpler proofs for
some cases, and added new properties in Theorem 2.1 b) and c) and Theorem 2.2.

In §2.2, we explain the components of Deter refinement and our terminology
for them. We then present two bounds on the angles in the pairs of triangles
incident on a Delaunay terminal edge.

2.1 Basic Properties of LEBis

We introduce a standardized notation for this splitting by labeling the vertices
of t as A, B, C and normalizing this labeling by requiring

|B − C| ≤ |C − A| ; |C − A| ≤ |B − A| ; M = (A + B)/2

where M is the where M is the midpoint of the longest edge that is to be split.
The two new child triangles of t are labelled tA and tB, and the angles of tA
(tB) are labelled αj (βj) ; for j = 0, 1, 2.

Fig. 1. Notation for longest edge bisection

The following lemma and theorems present some simple properties of a LEBis
of any t.
Lemma 2.1. Each of the assertions in the following groups is equivalent to any
other in the group.

a)
t is right angled

α1 = α0
β1 = β0

|A − M | = |C − M |

b)
t is acute
α1 < α0
β1 < β0

|A − M | < |C − M |

c)
t is obtuse
α1 > α0
β1 > β0

|A − M | > |C − M |
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Theorem 2.1. The following angle bounds apply

a) α1 ≥ α0/2 ; b) β1 ≥ π/6 ; c) β2 ≥ 3α0/2

Theorem 2.2. The following angle bounds apply conditionally

a) if t is obtuse, then β2 ≥ 2α0

b) if α0 < π/6,then β1 > min(β0, β2)
c) if α0 > arcsin(1/3) = 19.5◦ , then β1 < π/2, i.e. tB is acute.

2.2 Deter Edge Bisection

One of the tactics in refinement for geometric improvement is to refine the largest
triangles first. If the size measure for largest is the length of the longest edge,
then refining terminal edges of the mesh is an approximation to using the longest
first ordering. A terminal edge in a mesh is a local maximum edge length in a
graph sense. Figure 2, a) shows edge AB as an example of an internal terminal
edge with two neighbouring triangles, t2, t3 and b) shows edge CD as a boundary
terminal edge with one neighbouring triangle. This, and the following, concepts
were introduced and used in references [5, 8, 7].

We now explain the terminology of the paper. Terminal edge bisection is
simple LEBis of each triangle incident on a terminal edge as described in §2.1
above. Delaunay terminal edge bisection is is a modification of terminal edge
bisection in which the mesh being refined is Delaunay, or constrained Delaunay,
and the insertion is a Delaunay point insertion. ‘Lepp’ is an acronym for ‘ the
longest edge propagation path’. Given a triangle, t0 that is to be refined, Lepp
locates a terminal edge near t0, in a graph sense. Figure 2 illustrates this process
for the two triangles marked t0 on the left and t∗0 on the right. Finally, Deter
refinement of a triangle t will refer to finding a terminal edge associated with t
using Lepp and performing Deter edge bisection on it. As these examples show,
Deter refinement of t0 may not modify t0, in which case the process can be
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B
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t 3
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Fig. 2. (a) AB is an interior terminal edge shared by terminal triangles (t2, t3) as-
sociated to Lepp(t0) ={t0, t1, t2}; (b) CD is a boundary terminal edge with terminal
triangle t3 associated to Lepp(t∗

0 = {t∗
0, t1, t2, t3}
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repeated in the refined mesh. Algorithmic details of Deter refinement, including
repeated application to a given t, are given in [5, 8, 7, 13].

Our discussion of simple LEBis applies to terminal boundary edges of a mesh
in full generality. However, special ‘encroachment’ rules are needed to ensure
mesh improvement for refining boundary edges, [3, 6]. In this paper, we will
restrict our attention to refinement of internal edges. The fact that the neigh-
bouring triangles, t1 and t2 of an internal terminal edge are a Delaunay pair
places significant restrictions their configuration. So, for an internal edge, De-
launay terminal edge bisection is more constrained than terminal edge bisection
applied to two independent triangles separately. This can been seen in Figure 3.

Fig. 3. The configuration of triangles at an internal terminal edge

The figure shows only t1; we denote the vertex of t2 opposite edge AB by D,
which is not shown. The dashed circular arcs are part of the circles of radius
|B − A| centered at A and B respectively. We will use CC(t) to denote ‘the
circumcircle of t’. CC(t1) is shown with a solid perimeter. Because edge AB is
terminal and the triangles are Delaunay, D must lie in the small region at the
bottom of the diagram below the short arc of CC(t1) from D′ to D′′ and inside
the two dashed arcs that meet at E.

Simple implications of this diagram are the following lemma and corollary.

Lemma 2.2. For any pair of Delaunay terminal-triangles t1, t2 sharing an in-
ternal terminal edge, largest angle(ti) ≤ 2π/3 for i = 1, 2.

Corollary 2.1. For child triangle tA of LEBis in a Delaunay mesh, if
max(α0, α1) < π/6 then edge CA is not a terminal edge.

For a pair of triangles (t1, t2) sharing a Delaunay edge, the sum of the angles
opposite the common edge cannot exceed π, Consequently, at most one of the tk
can be obtuse. The following theorem shows that if the edge is a terminal edge,
then the more obtuse t1 is, the larger the smallest angle of acute t2 is.
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Theorem 2.3. Let t1 and t2 be incident on an internal terminal edge. Let t1
be obtuse, with largest angle θ > π/2 and let α0(2) be the smallest angle of t2.
Then

α0(2) ≥ 2θ − π

This theorem, and Figure 3 illustrate restrictions on the configuration of tri-
angles that share a terminal edge, e.g. if θ = 7π/12, then α0(2) ≥ π/6.

Intuitively, as Figure 1 suggests, LEBis produces an improved triangle,tB,
and a triangle,tA which is not improved. So mesh improvement can depend
on subsequent processing of tA. It may happen that the Delaunay insertion
of M removes tA from the mesh. The implications of of this possibility are
discussed in the next section. If not, i.e. if edge AC is an internal Delaunay
edge , it may not be a terminal edge. Intuitively, it would be expected that the
configurations of the two triangles incident on edge AC would not commonly
meet the conditions presented above for it to be a terminal edge, in general.
Corollary 2.1 is a particular instance of this. So, in general, it would be expected
that repeated Deter refinements of tA would, sooner or later, result in edge AC
being removed from the mesh by a Delaunay insertion following the bisection of
some other nearby terminal edge.

3 Mesh Properties of Deter Edge Refinement

We now look at properties of Deter edge bisection associated with the region of
the mesh affected by the refinement. We start, in §3.1, with a study of the angles
in the updated mesh, assuming that tA is not Delaunay in the mesh resulting
from a LEBis of t. However, it may be that no update is necessary. , i.e. that
tA is already Delaunay in the refined mesh. The second subsection discusses a
configuration that that could be applicable to repeated Deter refinement in this
case.

3.1 Delaunay Insertion of Point M

We describe the Deter edge bisection process as the simple LEBis of each trian
gle, t, incident on the terminal edge, which results in an updated mesh MSB,
followed by the conversion of MSB to a Delaunay mesh, MCD.

To describe the conversion of MSB, we will use the terminology of George
and Borouchaki ,[4]. The cavity of the vertex M in MSB is the set of triangles,
t, such that M ∈ CC(t). It has a polygonal boundary that is star-shaped with
respect to vertex M . We will denote the boundary vertices by Pk for k = 0, to
N in clockwise order about M starting with P0 = C. Since A, B and C are on
this boundary, N ≥ 2. The result of the Delaunay insertion of vertex M is that
the triangles in the cavity of M are removed from MSB and triangles MPkPk+1
replace them in MCD.

We let NA be the index of A in the list of boundary vertices of the cavity of M
i.e. PNA = A. The subset of the cavity of M that is bounded by the first NA+1
vertices and the edges AM and MC will be referred to as the partial cavity
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Fig. 4. Example of the partial cavity of vertex M in mesh MSB with NA = 4

of M . An example is shown in Figure 4; this figure also shows CC(tA) of child
triangle tA = CMA with the Pk in its interior. This illustrates the statement of
the following lemma. We have also shown a mesh vertex, Q , and triangle P2QP3
which are not in the cavity of M although they are in CC(tA). So the converse
of the lemma is not true.

Lemma 3.1. If NA > 1, Pk is in CC(tA) for 1 < k < NA.

We will study the angles of the new triangles incident on M . Let αmin(M) be
the the minimum angle of the triangles in the partial cavity of M excluding tA
Each triangle t ∈ MSB in the cavity of M , except tA, has vertices, Pi, Pj , Pk

for i < j < k. If t has an edge on the boundary of the cavity, then i = j − 1.
In this case, M ∈ CC(t) implies that the angle at M in MCD opposite edge
Pj−1, Pj is larger than the angle opposite edge Pj−1, Pj in t. So, in particular,
the angle at M is larger than αmin(M). Intuitively, we can see that the closer
a cavity edge, Pj−1Pj , is to M the larger this angle improvement will be. Con-
versely, if CC(t) is very close to CC(tA) then very little angle improvement can
occur.

The following theorem details the worse case limits of angle improvement. Its
proof provides insight into the mechanisms of angle improvement resulting from
Delaunay insertion.

Theorem 3.1. Angle CP1M ≥ α0 and the other two angles of triangle CP1M
exceed αmin(M).
Angle MPNA−1A ≥ α1 and the other two angles of triangle MPNA−1A exceed
αmin(M).
If NA > 2, then in the set of triangles PjPj+1M for 1 ≤ j ≤ NA − 2, every
angle exceeds αmin(M).

Corollary 3.1. If t is obtuse, then no new angles smaller than the existing ones
in the unrefined mesh result from Deter bisection of t.
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3.2 A Case of Repeated Delaunay Refinement

In this section, we show that if t is shaped so that |B − C| < |C − M |, i.e.
if |B − C| is the shortest edge of tB, then Delaunay insertion of M into the
mesh can only produce new edges that are longer than |B − C|. We then look
at repeated Deter refinement applied to a special case of t.

Fig. 5. Configuration of terminal triangle t and its neighbour

Figure 5 shows the terminal triangle t = ABC, and an arc of its circumcircle
CC(t). The point C′ is the projection of C onto edge BA. The figure also shows
the insertion point M , and an arc of CC(tA = CMA). We assume that |C −
M | > |A − M |, and consequently, that t is acute and that α1 < α0. Other
features of the figure are used in the proofs; see technical report [14].

Lemma 3.2. If |C − M | > |B − C|, the circle of radius |B − C| about M lies
inside CC(ABC).

Corollary 3.2. If |B −C| is the shortest edge of tB then Delaunay insertion of
M into the current mesh can only produce edges longer than |B − C|.

We now use this lemma in a theorem that demonstrates a special case of t for
which we can prove that no new small edges are produced in repeated Deter
refinements of t. Let D be the vertex of the triangle that shares edge CA with
t. D must be outside CC(ABC).

Theorem 3.2. If α0 ≤ angle ACD ; |B − C| is the shortest edge of tB, and
edge CA is not terminal as an edge of tA, then the circle of radius |B −C| about
M is empty for repeated applications of Deter refinement to tA.

Corollary 3.3. Under the conditions of Theorem 3.2, if tB is acceptable, i.e.
β2 ≥ θtol, then no edge smaller than |B −C| is introduced at M by Deter refine-
ment of the mesh.
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4 Conclusions

Our motivation in this study has been to understand how, or in what circum-
stances, Deter refinement can produce a submesh near a small angled triangle
t with improved triangles. There are two ways in which the method can create
this submesh, either at some stage of repeated Deter refinement, the longest
edge of t is a terminal edge, in which case its midpoint is Delaunay inserted
into the mesh, or the longest edge is removed from the mesh by the Deter bi-
section of the terminal edge of Lepp(t). This paper addresses the first case. As
mentioned in §2.2, simple terminal edge bisection of a small angled triangle, t,
produces a demonstrably improved triangle, tB and an unimproved triangle, tA
both incident on the new vertex M . Improvement of the submesh near t may
come from the Delaunay insertion of M . Our analysis of §3.1 identifies the only
circumstances under which this does not happen; i.e. t must be acute and the
neighbour of t on side AC must have a special configuration. These circum-
stances do not preclude Deter refinement from successfully improving the mesh,
of course, but suggests that it may not be possible to identify improvement on
the basis of Deter refinement aplied to one small angled triangle. On the other
hand, we demonstrate in §3.2, a special case in which it is possible to show at
least non-degeneration of the local submesh based on properties of t and its
neighbour.

References

[1] T. J. Baker, Triangulations, Mesh Generation and Point Placement Strategies.
Computing the Future, ed. D Caughey,John Wiley, 61-75.

[2] M. Berzins, Mesh Quality: A Function of Geometry, Errror Estimates or Both?,
Engineering with Computers, 15, 1999, 236-247.

[3] L.P.Chew, Guaranteed-Quality Mesh Generation for Curved Surface 9th Annual
Symposium on Comp Geometry, ACM, 1993, 274-280,

[4] P L George and H Borouchaki, Delaunay Triangulation and Meshing. Hermes,
1998.

[5] M. C. Rivara. New longest-edge algorithms for the refinement and/or improvement
of unstructured triangulations. International Journal for Numerical Methods in
Engineering, 40, 1997, 3313–3324.

[6] J Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh gen-
eration. J. of Algorithms, 18, 1995, 548–585.

[7] M. C. Rivara and M. Palma. New LEPP Algorithms for Quality Polygon and
Volume Triangulation: Implementation Issues and Practical Behavior. In Trends
unstructured mesh generation, Eds: S. A. Cannan . Saigal, AMD, 220, 1997, 1–8.

[8] M. C. Rivara, N. Hitschfeld, and R. B. Simpson. Terminal edges Delaunay (small
angle based) algorithm for the quality triangulation problem. Computer-Aided
Design, 33, 2001, 263–277.

[9] J R Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator. First Workshop on Applied Computational Geometry, ACM, 1996,
124-133.



B. Simpson and M.-C. Rivara

[10] M.C. Rivara and N. Hitschfeld,LEPP-Delaunay algorithm: a robust tool for pro-
ducing size-optimal quality triangulations, Proc. of the 8th Int. Meshing Round-
table, October 1999, 205-220.

[11] I.G. Rosenberg and F. Stenger, A lower bound on the angles of triangles con-
structed by bisecting the longest side, Mathematics of Computation, 29, 1975,
390-395.

[12] R.B. Simpson, Anisotropic Mesh Transformations and Optimal Error Control.
Applied Numerical Mathematics, 14, 1994, 183-198.

[13] R.B. Simpson, N. Hitschfeld and M.C. Rivara, Approximate quality mesh gener-
ation, Engineering with computers, 17, 2001, 287-298.

[14] R. B. Simpson and M. C. Rivara, GeometricalMesh improvement Properties of
Delaunay Terminal Edge Refinement. Technical Report CS-2006-16, David Cheri-
ton School of Computer Science, University of Waterloo.


	Introduction
	Local Features of Deter Edge Bisection
	Basic Properties of LEBis
	Deter Edge Bisection

	Mesh Properties of Deter Edge Refinement
	Delaunay Insertion of Point M
	A Case of Repeated Delaunay Refinement

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




