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Full-text indexes provide fast substring search over large text collections. A serious problem of these indexes
has traditionally been their space consumption. A recent trend is to develop indexes that exploit the com-
pressibility of the text, so that their size is a function of the compressed text length. This concept has evolved
into self-indexes, which in addition contain enough information to reproduce any text portion, so they replace
the text. The exciting possibility of an index that takes space close to that of the compressed text, replaces
it, and in addition provides fast search over it, has triggered a wealth of activity and produced surprising
results in a very short time, which radically changed the status of this area in less than 5 years. The most
successful indexes nowadays are able to obtain almost optimal space and search time simultaneously.

In this article we present the main concepts underlying (compressed) self-indexes. We explain the relation-
ship between text entropy and regularities that show up in index structures and permit compressing them.
Then we cover the most relevant self-indexes, focusing on how they exploit text compressibility to achieve
compact structures that can efficiently solve various search problems. Our aim is to give the background to
understand and follow the developments in this area.
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1. INTRODUCTION

The amount of digitally available information is growing at an exponential rate. A large
part of this data consists of text, that is, sequences of symbols representing not only
natural language, but also music, program code, signals, multimedia streams, biological
sequences, time series, and so on. The amount of (just HTML) online text material in
the Web was estimated, in 2002, to exceed by 30–40 times what had been printed
during the whole history of mankind.1 If we exclude strongly structured data such as
relational tables, text is the medium to convey information where retrieval by content
is best understood. The recent boom in XML advocates the use of text as the medium
to express structured and semistructured data as well, making text the favorite format
for information storage, exchange, and retrieval.

Each scenario where text is used to express information requires a different form of
retrieving such information from the text. There is a basic search task, however, that
underlies all those applications. String matching is the process of finding the occur-
rences of a short string (called the pattern) inside a (usually much longer) string called
the text. Virtually every text-managing application builds on basic string matching to
implement more sophisticated functionalities such as finding frequent words (in natu-
ral language texts for information retrieval tasks) or retrieving sequences similar to a
sample (in a gene or protein database for computational biology applications). Signifi-
cant developments in basic string matching have a wide impact on most applications.
This is our focus.

String matching can be carried out in two forms. Sequential string matching requires
no preprocessing of the text, but rather traverses it sequentially to point out every
occurrence of the pattern. Indexed string matching builds a data structure (index) on
the text beforehand, which permits finding all the occurrences of any pattern without
traversing the whole text. Indexing is the choice when (i) the text is so large that a
sequential scanning is prohibitively costly, (ii) the text does not change so frequently
that the cost of building and maintaining the index outweighs the savings on searches,
and (iii) there is sufficient storage space to maintain the index and provide efficient
access to it.

While the first two considerations refer to the convenience of indexing compared to
sequentially scanning the text, the last one is a necessary condition to consider indexing
at all. At first sight, the storage issue might not seem significant given the common
availability of massive storage. The real problem, however, is efficient access. In the last
two decades, CPU speeds have been doubling every 18 months, while disk access times
have stayed basically unchanged. CPU caches are many times faster than standard
main memories. On the other hand, the classical indexes for string matching require
from 4 to 20 times the text size [McCreight 1976; Manber and Myers 1993; Kurtz
1998]. This means that, even when we may have enough main memory to hold a text,
we may need to use the disk to store the index. Moreover, most existing indexes are not
designed to work in secondary memory, so using them from disk is extremely inefficient
[Ferragina and Grossi 1999]. As a result, indexes are usually confined to the case where
the text is so small that even the index fits in main memory, and those cases are less
interesting for indexing given consideration (i): For such a small text, a sequential



scanning can be preferable for its simplicity and better cache usage compared to an
indexed search.

Text compression is a technique to represent a text using less space. Given the rela-
tion between main and secondary memory access times, it is advantageous to store a
large text that does not fit in main memory in compressed form, so as to reduce disk
transfer time, and then decompress it by chunks in main memory prior to sequential
searching. Moreover, a text may fit in main memory once compressed, so compression
may completely remove the need to access the disk. Some developments in recent years
have focused on improving this even more by directly searching the compressed text
instead of decompressing it.

Several attempts to reduce the space requirements of text indexes were made in the
past with moderate success, and some of them even considered the relation with text
compression. Three important concepts have emerged.

Definition 1. A succinct index is an index that provides fast search functionality
using a space proportional to that of the text itself (say, two times the text size). A
stronger concept is that of a compressed index, which takes advantage of the regularities
of the text to operate in space proportional to that of the compressed text. An even more
powerful concept is that of a self-index, which is a compressed index that, in addition
to providing search functionality, contains enough information to efficiently reproduce
any text substring. A self-index can therefore replace the text.

Classical indexes such as suffix trees and arrays are not succinct. On a text of n char-
acters over an alphabet of size σ , those indexes require �(n log n) bits of space, whereas
the text requires n log σ bits. The first succinct index we know of was by Kärkkäinen
and Ukkonen [1996a]. It used Lempel-Ziv compression concepts to achieve O(n log σ )
bits of space. Indeed, this was a compressed index achieving space proportional to the
kth order entropy of the text (a lower-bound estimate for the compression achievable
by many compressor families). However, it was not until this decade that the first self-
index appeared [Ferragina and Manzini 2000] and the potential of the relationship
between text compression and text indexing was fully realized, in particular regarding
the correspondence between the entropy of a text and the regularities arising in some
widely used indexing data structures. Several other succinct and self-indexes appeared
almost simultaneously [Mäkinen 2000; Grossi and Vitter 2000; Sadakane 2000]. The
fascinating concept of a self-index that requires space close to that of the compressed
text, provides fast searching on it, and moreover replaces the text has triggered much
interest in this issue and produced surprising results in a very few years.

At this point, there exist indexes that require space close to that of the best ex-
isting compression techniques, and provide search and text recovering functionality
with almost optimal time complexity [Ferragina and Manzini 2005; Grossi et al. 2003;
Ferragina et al. 2006]. More sophisticated problems are also starting to receive at-
tention. For example, there are studies on efficient construction in little space [Hon
et al. 2003a], management of secondary storage [Mäkinen et al. 2004], searching for
more complex patterns [Huynh et al. 2006], updating upon text changes [Hon et al.
2004], and so on. Furthermore, the implementation and practical aspects of the in-
dexes are becoming focuses of attention. In particular, we point out the existence of
PizzaChili, a repository of standardized implementations of succinct full-text indexes
and testbeds, freely available online at mirrors http://pizzachili.dcc.uchile.cl
and http://pizzachili.di.unipi.it. Overall, this is an extremely exciting research
area, with encouraging results of theoretical and practical interest, and a long way
to go.

The aim of this survey is to give the theoretical background needed to understand
and follow the developments in this area. We first give the reader a superficial overview
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of the main intuitive ideas behind the main results. This is sufficient to have a rough
image of the area, but not to master it. Then we begin the more technical exposition.
We explain the relationship between the compressibility of a text and the regularities
that show up in its indexing structures. Next, we cover the most relevant existing self-
indexes, focusing on how they exploit the regularities of the indexes to compress them
and still efficiently handle them.

We do not give experimental results in this article. Doing this seriously and thor-
oughly is a separate project. Some comparisons can be found, for example, in Mäkinen
and Navarro [2005a]. A complete series of experiments is planned on the PizzaChili
site, and the results should appear in there soon.

Finally, we aim at indexes that work for general texts. Thus we do not cover the very
well-known inverted indexes, which only permit word and phrase queries on natural
language texts. Natural language not only excludes symbol sequences of interest in
many applications, such as DNA, gene, or protein sequences in computational biology;
MIDI, audio, and other multimedia signals; source and binary program code; numeric
sequences of diverse kinds, etc. It also excludes many important human languages!
In this context, natural language refers only to languages where words can be syn-
tactically separated and follow some statistical laws [Baeza-Yates and Ribeiro 1999].
This encompasses English and several other European languages, but it excludes, for
example, Chinese and Korean, where words are hard to separate without understand-
ing the meaning of the text. It also excludes agglutinating languages such as Finnish
and German, where “words” are actually concatenations of the particles one wishes to
search.

When applicable, inverted indexes require only 20%–100% of extra space on top of
the text [Baeza-Yates and Ribeiro 1999]. Moreover, there exist compression techniques
that can represent inverted index and text in about 35% of the space required by the
original text [Witten et al. 1999; Navarro et al. 2000; Ziviani et al. 2000], yet those
indexes only point to the documents where the query words appear.

2. NOTATION AND BASIC CONCEPTS

A string S is a sequence of characters. Each character is an element of a finite set
called the alphabet. The alphabet is usually called � and its size |�| = σ , and it is
assumed to be totally ordered. Sometimes we assume � = [1, σ ] = {1, 2, . . . , σ }. The
length (number of characters) of S is denoted |S|. Let n = |S|; then the characters of S
are indexed from 1 to n, so that the ith character of S is Si or S[i]. A substring of S is
written Si, j = Si Si+1 · · · Sj . A prefix of S is a substring of the form S1, j , and a suffix is
a substring of the form Si,n. If i > j then Si, j = ε, the empty string of length |ε| = 0.

The concatenation of strings S and S′, written SS′, is obtained by appending S′ at
the end of S. It is also possible to concatenate string S and character c, as in cS or Sc.
By ci we denote i concatenated repetitions of c: c0 = ε, ci+1 = cic.

The lexicographical order “<” among strings is defined as follows. Let a and b be
characters and X and Y be strings. Then aX < bY if a < b, or if a = b and X < Y .
Furthermore, ε < X for any X �= ε.

The problems we focus on in this article are defined as follows.

Definition 2. Given a (long) text string T1,n and a (comparatively short) pattern
string P1,m, both over alphabet �, the occurrence positions (or just occurrences) of
P in T are the set O = {1 + |X |, ∃Y , T = X PY }. Two search problems are of interest:
(1) count the number of occurrences, that is, return occ = |O|; (2) locate the occurrences,
that is, return set O in some order. When the text T is not explicitly available, a third
task of interest is (3) display text substrings, that is, return Tl ,r given l and r.



In this article we adopt for technical convenience the assumption that T is terminated
by Tn = $, which is a character from � that lexicographically precedes all the others
and appears nowhere else in T nor in P .

Logarithms in this article are in base 2 unless otherwise stated.
In our study of compression algorithms, we will need routines to access individual bit

positions inside bit vectors. This raises the question of which machine model to assume.
We assume the standard word random access model (RAM); the computer word size w
is assumed to be such that log n = O(w), where n is the maximum size of the problem
instance. Standard operations (like bit-shifts, additions, etc.) on an O(w) = O(log n)-
bit integer are assumed to take constant time in this model. However, all the results
considered in this article only assume that an O(w)-bit block at any given position in
a bit vector can be read, written, and converted into an integer, in constant time. This
means that on a weaker model, where for example such operations would take time
linear in the length of the bit block, all the time complexities for the basic operations
should be multiplied by O(log n).

A table of the main symbols, with short explanations and pointers to their definitions,
is given in the Appendix.

3. BASIC TEXT INDEXES

Given the focus of this article, we are not covering the various text indexes that have
been designed with constant-factor space reductions in mind, with no relation to text
compression or self-indexing. In general, these indexes have had some, but not spectacu-
lar, success in lowering the large space requirements of text indexes [Blumer et al. 1987;
Andersson and Nilsson 1995; Kärkkäinen 1995; Irving 1995; Colussi and de Col 1996;
Kärkkäinen and Ukkonen 1996b; Crochemore and Vérin 1997; Kurtz 1998; Giegerich
et al. 2003].

In this section, in particular, we introduce the most classical full-text indexes, which
are those that are turned into compressed indexes later in this article.

3.1. Tries or Digital Trees

A digital tree or trie [Fredkin 1960; Knuth 1973] is a data structure that stores a set
of strings. It can support the search for a string in the set in time proportional to the
length of the string sought, independently of the set size.

Definition 3. A trie for a set S of distinct strings S1, S2, . . . , SN is a tree where each
node represents a distinct prefix in the set. The root node represents the empty prefix
ε. Node v representing prefix Y is a child of node u representing prefix X iff Y = X c
for some character c, which will label the tree edge from u to v.

We assume that all strings are terminated by “$”. Under this assumption, no string
Si is a prefix of another, and thus the trie has exactly N leaves, each corresponding to
a distinct string. This is illustrated in Figure 1.

A trie for S = {S1, S2, . . . , SN } is easily built in time O(|S1| + |S2| + · · · + |SN |) by
successive insertions. Any string S can be searched for in the trie in time O(|S|) by
following from the trie root the path labeled with the characters of S. Two outcomes
are possible: (i) at some point i there is no edge labeled Si to follow, which means that
S is not in the set S; (ii) we reach a leaf corresponding to S (assume that S is also
terminated with character “$”).

Actually, the above complexities assume that the alphabet size σ is a constant. For
general σ , we must multiply the above complexities by O(log σ ), which accounts for
the overhead of searching the correct character to follow inside each node. This can be
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Fig. 1. A trie for the set {"alabar", "a", "la", "alabarda"}. In general, the arity of
trie nodes may be as large as the alphabet size.

made O(1) by using at each node a direct addressing table of size σ , but in this case
the size and construction cost must be multiplied by O(σ ) to allocate the tables at each
node. Alternatively, perfect hashing of the children of each node permits O(1) search
time and O(1) space factor, yet the construction cost is multiplied by O(σ 2) [Raman
1996].

Note that a trie can be used for prefix searching, that is, to find every string prefixed
by S in the set (in this case, S is not terminated with “$”). If we can follow the trie path
corresponding to S, then the internal node reached corresponds to all the strings Si

prefixed by S in the set. We can then traverse all the leaves of the subtree to find the
answers.

3.2. Suffix Tries and Suffix Trees

Let us now consider how tries can be used for text indexing. Given text T1,n (terminated
with Tn = $), T defines n suffixes T1,n, T2,n, . . . , Tn,n.

Definition 4. The suffix trie of a text T is a trie data structure built over all the
suffixes of T .

The suffix trie of T makes up an index for fast string matching. Given a pattern
P1,m (not terminated with “$”), every occurrence of P in T is a substring of T , that
is, the prefix of a suffix of T . Entering the suffix trie with the characters of P leads
us to a node that corresponds to all the suffixes of T prefixed by P (or, if we do not
arrive at any trie node, then P does not occur in T ). This permits counting the occur-
rences of P in T in O(m) time, by simply recording the number of leaves that descend
from each suffix tree node. It also permits finding all the occ occurrences of P in T in
O(m + occ) time by traversing the whole subtree (some additional pointers threading
the leaves and connecting each internal node to its first leaf are necessary to ensure this
complexity).

As described, the suffix trie usually has �(n2) nodes. In practice, the trie is pruned
at a node as soon as there is only a unary path from the node to a leaf. Instead, a
pointer to the text position where the corresponding suffix starts is stored. On average,
the pruned suffix trie has only O(n) nodes [Sedgewick and Flajolet 1996]. Yet, albeit
unlikely, it might have �(n2) nodes in the worst case. Fortunately, there exist equally
powerful structures that guarantee linear space and construction time in the worst
case [Morrison 1968; Apostolico 1985].



 

Fig. 2. The suffix tree of the text "alabar a la alabarda$". The white space is written as an
underscore for clarity, and it is lexicographically smaller than the characters "a"–"z".

Definition 5. The suffix tree of a text T is a suffix trie where each unary path is con-
verted into a single edge. Those edges are labeled by strings obtained by concatenating
the characters of the replaced path. The leaves of the suffix tree indicate the text posi-
tion where the corresponding suffixes start.

Since there are n leaves and no unary nodes, it is easy to see that suffix trees require
O(n) space (the strings at the edges are represented with pointers to the text). Moreover,
they can be built in O(n) time [Weiner 1973; McCreight 1976; Ukkonen 1995; Farach
1997]. Figure 2 shows an example.

The search for P in the suffix tree of T is similar to a trie search. Now we may use
more than one character of P to traverse an edge, but all edges leaving from a node
have different first characters. The search can finish in three possible ways: (i) at some
point there is no edge leaving from the current node that matches the characters that
follow in P , which means that P does not occur in T ; (ii) we read all the characters of
P and end up at a tree node (or in the middle of an edge), in which case all the answers
are in the subtree of the reached node (or edge); or (iii) we reach a leaf of the suffix tree
without having read the whole P , in which case there is at most one occurrence of P in
T , which must be checked by going to the suffix pointed to by the leaf and comparing the
rest of P with the rest of the suffix. In any case, the process takes O(m) time (assuming
one uses perfect hashing to find the children in constant time) and suffices for counting
queries.

Suffix trees permit O(m + occ) locating time without need of further pointers to
thread the leaves, since the subtree with occ leaves has O(occ) nodes. The real problem
of suffix trees is their high space consumption, which is �(n log n) bits and at the very
least 10 times the text size in practice [Kurtz 1998].



 

Fig. 3. The suffix array of the text "alabar a la alabarda$". We have shown explicitly where
the suffixes starting with "a" point to.

3.3. Suffix Arrays

A suffix array [Manber and Myers 1993; Gonnet et al. 1992] is simply a permutation of
all the suffixes of T so that the suffixes are lexicographically sorted.

Definition 6. The suffix array of a text T1,n is an array A[1, n] containing a permu-
tation of the interval [1, n], such that TA[i],n < TA[i+1],n for all 1 ≤ i < n, where “<”
between strings is the lexicographical order.

The suffix array can be obtained by collecting the leaves of the suffix tree in left-to-
right order (assuming that the children of the suffix tree nodes are lexicographically
ordered left-to-right by the edge labels). However, it is much more practical to build
them directly. In principle, any comparison-based sorting algorithm can be used, as
it is a matter of sorting the n suffixes of the text, but this could be costly especially if
there are long repeated substrings within the text. There are several more sophisticated
algorithms, from the original O(n log n) time [Manber and Myers 1993] to the latest
O(n) time algorithms [Kim et al. 2005a; Ko and Aluru 2005; Kärkkäinen and Sanders
2003]. In practice, the best current algorithms are not linear-time ones [Larsson and
Sadakane 1999; Itoh and Tanaka 1999; Manzini and Ferragina 2004; Schürmann and
Stoye 2005]. See a comprehensive survey in Puglisi et al. [2007].

Figure 3 shows our example suffix array. Note that each subtree of the suffix tree
corresponds to the suffix array subinterval encompassing all its leaves (in the figure
we have shaded the interval corresponding to the suffix tree node representing "a").
Note also that, since Tn = $, we always have A[1] = n, as Tn,n is the smallest suffix.

The suffix array plus the text contain enough information to search for patterns. Since
the result of a suffix tree search is a subtree, the result of a suffix array search must be
an interval. This is also obvious if one considers that all the suffixes prefixed by P are
lexicographically contiguous in the sorted array A. Thus, it is possible to search for the
interval of A containing the suffixes prefixed by P via two binary searches on A. The
first binary search determines the starting position sp for the suffixes lexicographically
larger than or equal to P . The second binary search determines the ending position
ep for suffixes that start with P . Then the answer is the interval A[sp, ep]. A counting
query needs to report just ep−sp+1. A locating query enumerates A[sp], A[sp+1], . . . ,
A[ep].

Note that each step of the binary searches requires a lexicographical comparison
between P and some suffix TA[i],n, which requires O(m) time in the worst case. Hence
the search takes worst case time O(m log n) (this can be lowered to O(m + log n) by
using more space to store the length of the longest common prefixes between consec-
utive suffixes [Manber and Myers 1993; Abouelhoda et al. 2004]). A locating query
requires additional O(occ) time to report the occ occurrences. Algorithm 1 gives the
pseudocode.



 

Algorithm 1. Searching for P in the suffix array A of text T . T is assumed to be terminated
by “$”, but P is not. Accesses to T outside the range [1, n] are assumed to return “$”. From the
returned data, one can answer the counting query ep − sp + 1 or the locating query A[sp, ep].

Algorithm SASearch(P1,m,A[1, n],T1,n)
(1) sp ← 1; st ← n + 1;
(2) while sp < st do
(3) s ← �(sp + st)/2	;
(4) if P > TA[s], A[s]+m−1 then sp ← s + 1 else st ← s;
(5) ep ← sp − 1; et ← n;
(6) while ep < et do
(7) e ← 
(ep + et)/2�;
(8) if P = TA[e], A[e]+m−1 then ep ← e else et ← e − 1;
(9) return [sp, ep];

All the space/time tradeoffs offered by the different compressed full-text indexes in
this article will be expressed in tabular form, as theorems where the meaning of n,
m, σ , and Hk , is implicit (see Section 5 for the definition of Hk). For illustration and
comparison, and because suffix arrays are the main focus of compressed indexes, we
give now the corresponding theorem for suffix arrays. As the suffix array is not a self-
index, the space in bits includes a final term n log σ for the text itself. The time to count
refers to counting the occurrences of P1,m in T1,n. The time to locate refers to giving the
text position of a single occurrence after counting has completed. The time to display
refers to displaying one contiguous text substring of � characters. In this case (not a
self-index), this is trivial as the text is readily available. We show two tradeoffs, the
second referring to storing longest common prefix information. Throughout the survey,
many tradeoffs will be possible for the structures we review, and we will choose to show
only those that we judge most interesting.

THEOREM 1 [MANBER AND MYERS 1993]. The Suffix Array (SA) offers the following
space/time tradeoffs.

Space in bits n log n + n log σ
Time to count O(m log n)
Time to locate O(1)
Time to display � chars O(�)
Space in bits 2n log n + n log σ
Time to count O(m + log n)
Time to locate O(1)
Time to display � chars O(�)

4. PRELUDE TO COMPRESSED FULL-TEXT INDEXING

Before we start the formal and systematic exposition of the techniques that lead to
compressed indexing, we want to point out some key ideas at an informal level. This is
to permit the reader to understand the essential concepts without thoroughly absorbing
the formal treatment that follows. The section also includes a “roadmap” guide for the
reader to gather from the forthcoming sections the details required to fully grasp what
is behind the simplified presentation of this section.

We explain two basic concepts that play a significant role in compressed full-text
indexing. Interestingly, these two concepts can be plugged as such to traditional



Fig. 4. Backward search for pattern "ala" on the suffix array of the text "alabar a la
alabarda$". Here A is drawn vertically and the suffixes are shown explicitly; compare to
Figure 3.

full-text indexes to achieve immediate results. No knowledge of compression tech-
niques is required to understand the power of these methods. These are backward
search [Ferragina and Manzini 2000] and wavelet trees [Grossi et al. 2003].

After introducing these concepts, we will give a brief motivation to compressed data
structures by showing how a variant of the familiar inverted index can be easily turned
into a compressed index for natural language texts. Then we explain how this same
compression technique can be used to implement an approach that is the reverse of
backward searching.

4.1. Backward Search

Recall the binary search algorithm in Algorithm 1. Ferragina and Manzini [2000]
proposed a completely different way of guiding the search: The pattern is searched
for from its last to its first character. Figure 4 illustrates how this backward search
proceeds.

Figure 4 shows the steps a backward search algorithm takes when searching for the
occurrences of "ala" in "alabar a la alabarda$". Let us reverse engineer how the
algorithm works. The first step is finding the range A[5, 13] where the suffixes start
with "a". This is easy: all one needs is an array C indexed by the characters, such that
C["a"] tells how many characters in T are smaller than "a" (that is, the C["a"] + 1
points to the first index in A where the suffixes start with "a"). Then, knowing that "b"
is the successor of "a" in the alphabet, the last index in A where the suffixes start with
"a" is C["b"].

To understand step 2 in Figure 4, consider the column labeled TA[i]−1. By concate-
nating a character in this column with the suffix TA[i],n following it, one obtains suffix
TA[i]−1,n. Since we have found out that suffixes TA[5],21, TA[6],21, . . . , TA[13],21 are the only
ones starting with "a", we know that suffixes TA[5]−1,21, TA[6]−1,21, . . . , TA[13]−1,21 are the
only candidates to start with "la". We just need to check which of those candidates
actually start with "l".

The crux is to efficiently find the range corresponding to suffixes starting with "la"
after knowing the range corresponding to "a". Consider all the concatenated suffixes



 

"l"TA[i],n in the descending row order they appear in (that is, find the rows i where
TA[i]−1 = "l"). Now find the rows i′ for the corresponding suffixes TA[i′],n = TA[i]−1,n =
"l"TA[i],n (note that A[i′] = A[i] − 1): row i = 6 becomes row i′ = 17 after we prepend
"l" to the suffix, row 8 becomes row 18, and row 9 becomes row 19. One notices that the
top-to-bottom order in the suffix array is preserved! It is easy to see why this must be
so: the suffixes TA[i]−1,n that start with "l" must be sorted according to the characters
that follow that "l", and this is precisely how suffixes TA[i],n are sorted.

Hence, to discover the new range corresponding to "la" it is sufficient to count how
many times "l" appears before row 5 and up to row 13 in column TA[i]−1. The counts
are 0 and 3, and hence the complete range [17, 19] of suffixes starting with "l" (found
with C) also start with "la".

Step 3 is more illustrating. Following the same line of thought, we end up counting
how many times the first character of our query, "a", appears before row 17 and up to row
19 in column TA[i]−1. The counts are 5 and 7. This means that the range corresponding
to suffixes starting with "ala" is [C["a"] + 1 + 5, C["a"] + 7] = [10, 11].

We have now discovered that backward search can be implemented by means of a
small table C and some queries on the column TA[i]−1. Let us denote this column by
string L1,n (for reasons to be made clear in Section 5.3). One notices that the single
query needed on L is counting how many times a given character c appears up to some
given position i. Let us denote this query Occ(c, i). For example, in Figure 4 we have
L ="araadl ll$ bbaar aaaa" and Occ("a", 16) = 5 and Occ("a", 19) = 7.

Note that we can define a function LF(i) = C[Li] + Occ(Li, i), so that if LF(i) = i′,
then A[i′] = A[i]−1. This permits decoding the text backwards, mapping suffix TA[i],n to
TA[i]−1,n. Instead of mapping one suffix at a time, the backward search maps a range of
suffixes (those prefixed by the current pattern suffix Pi...m) to their predecessors having
the required first character Pi−1 (so the suffixes in the new range have the common
prefix Pi−1...m). Section 9 gives more details.

To finish the description of backward search, we still have to discuss how the function
Occ(c, i) can be computed. The most naive way to solve the Occ(c, i) query is to do the
counting on each query. However, this means O(n) scanning at each step (overall O(mn)
time!). Another extreme is to store all the answers in an array Occ[c, i]. This requires
σn log n bits of space, but gives O(m) counting time, which improves the original suffix
array search complexity. A practical implementation of backward search is somewhere
in between the extremes: consider indicator bit vectors Bc[i] = 1 iff Li = c for each
character c. Let us define operation rankb(B, i) as the number of occurrences of bit b
in B[1, i]. It is easy to see that rank1(Bc, i) = Occ(c, i). That is, we have reduced the
problem of counting characters up to a given position in string L to counting bits set up
to a given position in bit vectors. Function rank will be studied in Section 6, where it will
be shown that some simple dictionaries taking o(n) extra bits for a bit vector B of length
n enable answering rankb(B, i) in constant time for any i. By building these dictionaries
for the indicator bit-vectors Bc, we can conclude that σn + o(σn) bits of space suffices
for O(m) time backward search. These structures, together with the basic suffix array,
give the following result.

THEOREM 2. The Suffix Array with rank-dictionaries (SA-R) supports backward
search with the following space and time complexities.

Space in bits n log n + σn + o(σn)
Time to count O(m)
Time to locate O(1)
Time to display � chars O(�)

.



 

Fig. 5. A binary wavelet tree for the string L =
"araadl ll$ bbaar aaaa", illustrating the solution of
query Occ("a", 15). Only the bit vectors are stored; the
texts are shown for clarity.

4.2. Wavelet Trees

A tool to reduce the alphabet dependence from σn to n log σ in the space to solve Occ(c, i)
is the wavelet tree of Grossi et al. [2003]. The idea is to simulate each Occ(c, i) query by
log σ rank-queries on binary sequences. See Figure 5.

The wavelet tree is a balanced search tree where each symbol from the alpha-
bet corresponds to a leaf. The root holds a bit vector marking with 1 those po-
sitions whose corresponding characters descend to the right. Those characters are
concatenated to form the sequence corresponding to the right child of the root. The
characters at positions marked 0 in the root bit vector make up the sequence cor-
responding to the left child. The process is repeated recursively until the leaves.
Only the bit vectors marking the positions are stored, and they are preprocessed for
rank-queries.

Figure 5 shows how Occ("a", 16) is computed in our example. As we know that "a"
belongs to the first half of the sorted alphabet,2 it receives mark 0 in the root bit vector B,
and consequently its occurrences go to the left child. Thus, we compute rank0(B, 16) =
10 to find out which is its corresponding character position in the sequence of the left
child of the root. As "a" belongs to the second quarter of the sorted alphabet (that is,
to the second half within the first half), its occurrences are marked 1 in the bit vector
B′ of the left child of the root. Thus we compute rank1(B′, 10) = 7 to find out the
corresponding position in the right child of the current node. The third step computes
rank0(B′′, 7) = 5 in that node, so we arrive at a leaf with position 5. That leaf would
contain a sequence formed by just "a"s; thus we already have our answer Occ("a", 16) =
5. (The process is similar to fractional cascading in computational geometry [de Berg
et al. 2000, Chapter 5].)

With some care (see Section 6.3) the wavelet tree can be represented in n log σ +
o(n log σ ) bits, supporting the internal rank computations in constant time. As we have
seen, each Occ(c, i) query can be simulated by log σ binary rank computations. That is,
wavelet trees enable improving the space complexity significantly with a small sacrifice
in time complexity.

2In practice, this can be done very easily: one can use the bits of the integer representation of the character
within �, from most to least significant.
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THEOREM 3. The Suffix Array with wavelet trees (SA-WT) supports backward search
with the following space and time complexities.

Space in bits n log n + 2n log σ + o(n log σ )
Time to count O(m log σ )
Time to locate O(1)
Time to display � chars O(�)

4.3. Turning Suffix Arrays into Self-Indexes

We have seen that, using wavelet trees, counting queries can actually be supported
without using suffix arrays at all. For locating the occurrence positions or displaying
text context, the suffix array and original text are still necessary. The main technique
to cope without them is to sample the suffix array at regular text position intervals
(that is, given a sampling step b, collect all entries A[i] = b · j for every j ).

Then, to locate the occurrence positions, we proceed as follows: The counting query
gives an interval in the suffix array to be reported. Now, given each position i within
this interval, we wish to find the corresponding text position A[i]. If suffix position i is
not sampled, one performs a backward step LF(i) to find the suffix array entry pointing
to text position A[i] − 1, A[i] − 2, . . . , until a sampled position X = A[i] − k is found.
Then, X + k is the answer. Displaying arbitrary text substrings Tl ,r is also easy by
first finding the nearest sampled position after r, A[i] = r ′ > r, and then using LF
repeatedly over i until traversing all the positions backward until l . The same wavelet
tree can be used to reveal the text characters to display between positions r and l , each
in log σ steps. More complete descriptions are given in the next sections (small details
vary among indexes).

It should be clear that the choice of the sampling step involves a tradeoff between
extra space for the index and time to locate occurrences and display text substrings.

This completes the description of a simple self-index: we do not need the text nor
the suffix array, just the wavelet tree and a few additional arrays. This index is not
yet compressed. Compression can be obtained, for example, by using more compact
representations of wavelet trees (see Sections 6.3 and 9).

4.4. Forward Searching: Compressed Suffix Arrays

Another line of research on self-indexes [Grossi and Vitter 2000; Sadakane 2000]
builds on the inverse of function LF(i). This inverse function, denoted �, maps suf-
fix TA[i],n to suffix TA[i]+1,n, and thus it enables scanning the text in forward direc-
tion, from left to right. Continuing our example, we computed LF(6) = 17, and thus
the inverse is �(17) = 6. Mapping � has the simple definition �(i) = i′ such that
A[i′] = (A[i] mod n) + 1. This is illustrated in Figure 6.

While the Occ(c, i) function demonstrated the backward search paradigm, the inverse
function � is useful in demonstrating the connection to compression: when its values
are listed from 1 to n, they form σ increasing integer sequences with each value in
{1, 2, . . . , n}. Figure 6 works as a proof by example. Such increasing integer sequences
can be compressed using so-called gap encoding methods, as will be demonstrated in
Section 4.5.

Let us, for now, assume that we have the � values compressed in a form that enables
constant-time access to its values. This function and the same table C that was used in
backward searching are almost all we need. Consider the standard binary search algo-
rithm of Algorithm 1. Each step requires comparing a prefix of some text suffix TA[i],n
with the pattern. We can extract such a prefix by following the � values recursively:



Fig. 6. The suffix array of the
text "alabar a la alabarda$"
with � values computed.

i, �[i], �[�[i]], . . . , as they point to TA[i], TA[i]+1, TA[i]+2, . . . After at most m steps, we
have revealed enough characters from the suffix the pattern is being compared to. To
discover each such character TA[ j ], for j = i, �[i], �[�[i]], . . . , we can use the same
table C: because the first characters TA[ j ] of the suffixes TA[ j ],n, are in alphabetic order
in A, TA[ j ] must be the character c such that C[c] < j ≤ C[c + 1]. Thus each TA[ j ] can
be found by an O(log σ )-time binary search on C. By spending n + o(n) extra bits, this
binary search on C can be replaced by a constant-time rank (details in Section 6.1). Let
newF1,n be a bit vector where we mark the positions in A where suffixes change their
first character, and assume for simplicity that all the characters of � appear in T . In
our example, newF = 110010000000010110010. Then the character pointed from A[ j ]
is rank1(newF, j ).

The overall time complexity for counting queries is therefore the same O(m log n) as
in the standard binary search. For locating and displaying the text, one can use the
same sampling method of Section 4.3. We give more details in Section 8.

4.5. Compressing Ψ and Inverted Indexes

The same technique used for compressing function � is widely used in the more familiar
inverted indexes for natural language texts. We analyze the space usage of inverted
indexes as an introduction to compression of function �.

Consider the text "to be or not to be". An inverted index for this text is

"be": 4, 17
"not": 10
"or": 7
"to": 1, 14

That is, each word in the vocabulary is followed by its occurrence positions in the
text, in increasing order. It is then easy to search for the occurrences of a query
word: find it in the vocabulary (by binary search, or using a trie on the vocabulary
words) and fetch its list of occurrences. We can think of the alphabet of the text as
� = {"be","not","or","to"}. Then we have σ = |�| increasing occurrence lists to com-
press (exactly as we will have in function � later on).



An efficient way to compress the occurrence lists uses differential encoding plus a
variable-length coding, such as Elias-δ coding [Elias 1975; Witten et al. 1999]. Take the
list for "be": 4, 17. First, we get smaller numbers by representing the differences (called
gaps) between adjacent elements: (4 − 0), (17 − 4) = 4, 13. The binary representations
of the numbers 4 and 13 are 100 and 1101, respectively. However, sequence 1001101
does not reveal the original content as the boundaries are not marked. Hence, one
must somehow encode the lengths of the separate binary numbers. Such coding is for
example δ(4)δ(13) = 1101110011101001101, where the first bits set until the first zero
(11) encode a number y (= 2) in unary. The next y-bit field (11), as an integer (3), tells
the length of the bit field (100) that codes the actual number (4). The process is repeated
for each gap. Asymptotically the code for integer x takes log x + 2 log log x + O(1) bits,
where O(1) comes from the zero-bit separating the unary code from the rest, and from
rounding the logarithms.

We can now analyze the space requirement of the inverted index when the differen-
tially represented occurrence lists are δ-encoded. Let Iw[1], Iw[2], . . . Iw[nw] be the list
of occurrences for word w ∈ �. The list represents the differences between occurrence
positions, hence

∑nw
i=1 Iw[i] ≤ n. The space requirement of the inverted index is then

∑
w∈�

nw∑
i=1

(log Iw[i] + 2 log log Iw[i] + O(1))

≤ O(n) +
∑
w∈�

nw∑
i=1

(
log

n
nw

+ 2 log log
n

nw

)

= O(n) + n
∑
w∈�

nw

n

(
log

n
nw

+ 2 log log
n

nw

)

= nH0 + O(n log log σ ),

where the second and the last lines follow from the properties of the logarithm func-
tion (the sum obtains its largest value when the occurrence positions are distributed
regularly). We have introduced H0 as a shorthand notation for a familiar measure of
compressibility: the zero-order empirical entropy H0 = ∑

w∈�
nw
n log n

nw
(see Section 5),

where the text is regarded as a sequence of words. For example, nH0 is a lower bound
for the bit-length of the output file produced by any compressor that encodes each text
word using a unique (variable-length) bit sequence. Those types of zero-order word-
based compressors are very popular for their good results on natural language [Ziviani
et al. 2000].

This kind of gap encoding is the main tool used for inverted index compression [Witten
et al. 1999]. We have shown that, using this technique, the inverted index is actually
a compressed index. In fact, the text is not necessary at all to carry out searches, but
displaying arbitrary text substrings is not efficiently implementable using only the
inverted index.

Random access to �. As mentioned, the compression of function � is identical to the
above scheme for lists of occurrences. The major difference is that we need access to
arbitrary � values, not only from the beginning. A reasonably neat solution (not the
most efficient possible) is to sample, say, each log nth absolute � value, together with
a pointer to its position in the compressed sequence of � values. Access to �[i] is then
accomplished by finding the closest absolute value, following the pointer to the com-
pressed sequence, and uncompressing the differential values until reaching the desired
entry. Value �[i] is then the sampled absolute value plus the sum of the differences. It



is reasonably easy to uncompress each encoded difference value in constant time. There
will be at most log n values to decompress, and hence any �[i] value can be computed
in O(log n) time. The absolute samples take O(n) additional bits.

With a more careful design, the extraction of � values can be carried out in constant
time. Indexes based on function � will be studied in Sections 7 and 8.

4.6. Roadmap

At this point the reader can leave with a reasonably complete and accurate intuition of
the main general ideas behind compressed full-text indexing. The rest of the article is
devoted to readers seeking for a more in-depth technical understanding of the area, and
thus it revisits the concepts presented in this section (as well as other omitted ones) in
a more formal and systematic way.

We start in Section 5 by exposing the fundamental relationships between text com-
pressibility and index regularities. This also reveals the ties that exist among the dif-
ferent approaches, proving facts that are used both in forward and backward search
paradigms. The section will also introduce the fundamental concepts behind the index-
ing schemes that achieve higher-order compression, something we have not touched
on in this section. Readers wishing to understand the algorithmic details behind com-
pressed indexes without understanding why they achieve the promised compression
bounds, can safely skip Section 5 and just accept the space complexity claims in the
rest of the paper. They will have to return to this section only occasionally for some
definitions.

Section 6 describes some basic compact data structures and their properties, which
can also be taken for granted when reading the other sections. Thus this section can
be skipped by readers wanting to understand the main algorithmic concepts of self-
indexes, but not by those wishing, for example, to implement them.

Sections 7 and 8 describe the self-indexes based on forward searching using the �
function, and they can be read independently of Section 9, which describes the backward
searching paradigm, and of Section 10, which describes Lempel-Ziv-based self-indexes
(the only ones not based on suffix arrays).

The last sections finish the survey with an overview of the area and are recommended
to every reader, though not essential.

5. SUFFIX ARRAY REGULARITIES AND TEXT COMPRESSIBILITY

Suffix arrays are not random permutations. When the text alphabet size σ is smaller
than n, not every permutation of [1, n] is the suffix array of some text (as there are
more permutations than texts of length n). Moreover, the entropy of T is reflected in
regularities that appear in its suffix array A. In this section we show how some subtle
kinds of suffix array regularities are related to measures of text compressibility. Those
relationships are relevant later to compress suffix arrays.

The analytical results in this section are justified with intuitive arguments or infor-
mal proofs. We refer the reader to the original sources for the formal technical proofs. We
sometimes deviate slightly from the original definitions, changing inessential technical
details to allow for a simpler exposition.

5.1. kth Order Empirical Entropy

Opposed to the classical notion of kth order entropy [Bell et al. 1990], which can only be
defined for infinite sources, the kth-order empirical entropy defined by Manzini [2001]
applies to finite texts. It coincides with the statistical estimation of the entropy of



a source taking the text as a finite sample of the infinite source.3 The definition is
especially useful because it can be applied to any text without resorting to assumptions
on its distribution. It has become popular in the algorithmic community, for example in
analyzing the size of data structures, because it is a worst-case measure but yet relates
the space usage to compressibility.

Definition 7. Let T1,n be a text over an alphabet �. The zero-order empirical entropy
of T is defined as

H0 = H0(T ) =
∑

c∈�,nc>0

nc

n
log

n
nc

,

where nc is the number of occurrences of character c in T .

Definition 8. Let T1,n be a text over an alphabet �. The kth-order empirical entropy
of T is defined as

Hk = Hk(T ) =
∑

s∈�k ,T s �=ε

|T s|
n

H0(T s), (1)

where T s is the subsequence of T formed by all the characters that occur followed by
the context s in T . In order to have a context for the last k characters of T , we pad T
with k characters “$” (in addition to Tn = $). More precisely, if the occurrences of s in
T2,n$k start at positions p1, p2, . . . , then T s = Tp1−1Tp2−1 . . . .

In the text compression literature, it is customary to define T s regarding the charac-
ters preceded by s, rather than followed by s. We use the reverse definition for technical
convenience. Although the empirical entropy of T and its reverse do not necessarily
match, the difference is relatively small [Ferragina and Manzini 2005], and if this is
still an issue, one can always work on the reverse text.

The empirical entropy of a text T provides a lower bound to the number of bits
needed to compress T using any compressor that encodes each character considering
only the context of k characters that follow it in T . Many self-indexes state their space
requirement as a function of the empirical entropy of the indexed text. This is useful
because it gives a measure of the index size with respect to the size the best kth-order
compressor would achieve, thus relating the index size with the compressibility of the
text.

We note that the classical entropy defined over infinite streams is always constant and
can be zero. In contrast, the definition of Hk we use for finite texts is always positive, yet
it can be o(1) on compressible texts. For an extreme example, consider T = abab · · · ab$,
where H0(T ) = 1 − O(log n/n) and Hk(T ) = 2/n for k ≥ 1.

When we have a binary sequence B[1, n] with κ bits set, it is good to remember
some bounds on its zero-order entropy, such as log

(n
κ

) ≤ nH0(B) ≤ log
(n

κ

) + O(log κ),
κ log n

κ
≤ nH0(B) ≤ κ log n

κ
+ κ log e, and κ log n

κ
≤ nH0(B) ≤ κ log n.

5.2. Self-Repetitions in Suffix Arrays

Consider again the suffix tree for our example text T = "alabar a la alabarda$"
depicted in Figure 2. Observe, for example, that the subtree rooted at "abar" contains
leaves {3, 15}, while the subtree rooted at "bar" contains leaves {4, 16}, that is, the same
positions shifted by one. The reason is simple: every occurrence of "bar" in T is also
an occurrence of "abar". Actually, the chain is longer: if one looks at subtrees rooted

3Actually, the same formula of Manzini [2001] was used by Grossi et al. [2003], yet it was interpreted in this
latter sense.



at "alabar", "labar", "abar", "bar", "ar", and "r", the same phenomenon occurs, and
positions {1, 13} become {6, 18} after five steps. The same does not occur, for example,
with the subtree rooted at " a", whose leaves {7, 12} do not repeat as {8, 13} inside
another subtree. The reason is that not all occurrences of "a" start within occurrences
of " a" in T , and thus there are many more leaves rooted by "a" in the suffix tree,
apart from 8 and 13.

Those repetitions show up in the suffix array A of T , depicted in Figure 3. For example,
consider A[18, 19] with respect to A[10, 11]: A[18] = 2 = A[10] + 1 and A[19] = 14 =
A[11] + 1. We denote such relationship by A[18, 19] = A[10, 11] + 1. There are also
longer regularities that do not correspond to a single subtree of the suffix tree, for
example A[18, 21] = A[10, 13]+1. Still, the text property responsible for the regularity
is the same: all the text suffixes in A[10, 13] start with "a", while those in A[18, 21]
are the same suffixes with the initial "a" excluded. The regularity appears because,
for each pair of consecutive suffixes aX and aY in A[10, 13], the suffixes X and Y
are contiguous in A[18, 21], that is, there is no other suffix W such that X < W < Y
elsewhere in the text. This motivates the definition of self-repetition initially devised
by Mäkinen [2000, 2003].

Definition 9. Given a suffix array A, a self-repetition is an interval [i, i + �] of [1, n]
such that there exists another interval [ j , j + �] satisfying A[ j + r] = A[i + r] + 1 for
all 0 ≤ r ≤ �. For technical convenience, cell A[1] = n is taken as a self-repetition of
length 1, whose corresponding j is such that A[ j ] = 1.

A measure of the amount of regularity in a suffix array is how many self-repetitions
we need to cover the whole array. This is captured by the following definition [Mäkinen
and Navarro 2004a, 2005a, 2005b].

Definition 10. Given a suffix array A, we define nsr as the minimum number of self-
repetitions necessary to cover the whole A. This is the minimum number of nonoverlap-
ping intervals [is, is + �s] that cover the interval [1, n] such that, for any s, there exists
js satisfying A[ js + r] = A[is + r] + 1 for all 0 ≤ r ≤ �s (except for i1 = 1, where �1 = 0
and A[ j1] = 1).

The suffix array A in Figure 7 illustrates, where the covering is drawn below A. The
8th interval, for example, is [i8, i8 + �8] = [10, 13], corresponding to j8 = 18.

Self-repetitions are best highlighted through the definition of function � (recall Sec-
tion 4.4), which tells where in the suffix array lies the pointer following the current one
[Grossi and Vitter 2000].

Definition 11. Given suffix array A[1, n], function � : [1, n] → [1, n] is defined so
that, for all 1 ≤ i ≤ n, A[�(i)] = A[i] + 1. The exception is A[1] = n, in which case we
require A[�(1)] = 1 so that � is actually a permutation.

Function � is heavily used in most compressed suffix arrays, as seen later. There are
several properties of � that make it appealing to compression. A first one establishes
that � is monotonically increasing in the areas of A that point to suffixes starting with
the same character [Grossi and Vitter 2000].

LEMMA 1. Given a text T1,n, its suffix array A[1, n], and the corresponding function
�, it holds �(i) < �(i + 1) whenever TA[i] = TA[i+1].

To see that the lemma holds, assume that TA[i],n = cX and TA[i+1],n = cY , so cX < cY
and then X < Y . Thus TA[i]+1,n = TA[�(i)],n = X and TA[i+1]+1,n = TA[�(i+1)],n = Y . So
TA[�(i)],n < TA[�(i+1)],n, and thus �(i) < �(i + 1).

Another interesting property is a special case of the above: how does � behave inside
a self-repetition A[ j + r] = A[i + r] + 1 for 0 ≤ r ≤ �. Note that �(i + r) = j + r



Fig. 7. The suffix array A of the text T = "alabar a la alabarda$" and its corresponding func-
tion �. Below A we show the minimal cover with with self-repetitions, and below � we show the
runs. Both coincide. On the bottom are the characters of T bwt, where we show the equal-letter
runs. Almost all targets of self-repetitions become equal-letter runs.

throughout the interval. The first two arrays in Figure 7 illustrate. This motivates the
definition of runs in � [Mäkinen and Navarro 2004a, 2005a, 2005b].

Definition 12. A run in � is a maximal interval [i, i + �] in sequence � such that
�(i + r + 1) − �(i + r) = 1 for all 0 ≤ r < �.

Note that the number of runs in � is n minus the number of positions i such that
�(i+1)−�(i) = 1. The following lemma should not be surprising [Mäkinen and Navarro
2004a, 2005a, 2005b].

LEMMA 2. The number of self-repetitions nsr to cover a suffix array A is equal to the
number of runs in the corresponding � function.

5.3. The Burrows-Wheeler Transform

The Burrows-Wheeler Transform [Burrows and Wheeler 1994] is a reversible transfor-
mation from strings to strings.4 This transformed text is easier to compress by local
optimization methods [Manzini 2001].

Definition 13. Given a text T1,n and its suffix array A[1, n], the Burrows-Wheeler
transform (BWT) of T , T bwt

1,n , is defined as T bwt
i = TA[i]−1, except when A[i] = 1, where

T bwt
i = Tn.

That is, T bwt is formed by sequentially traversing the suffix array A and concatenat-
ing the characters that precede each suffix. This illustrated in Figure 7.

A useful alternative view of the BWT is as follows. A cyclic shift of T1,n is any string of
the form Ti,nT1,i−1. Let M be a matrix containing all the cyclic shifts of T in lexicograph-
ical order. Let F be the first and L the last column of M . Since T is terminated with
Tn = $, which is smaller than any other, the cyclic shifts Ti,nT1,i−1 are sorted exactly
like the suffixes Ti,n. Thus M is essentially the suffix array A of T , F is a sorted list
of all the characters in T , and L is the list of characters preceding each suffix, that is,
L = T bwt.

Figure 8 illustrates. Note that row M [i] is essentially TA[i],n of Figure 4, and that
every column of M is a permutation of the text. Among those, L can be reversed back
to the text, and in addition it exhibits some compressibility properties that can be
exploited in many ways, as we show next.

4Actually the original string must have a unique endmarker for the transformation to be reversible. Otherwise
one must know the position of the original last character in the transformed string.



Fig. 8. Obtaining the BWT for the text "alabar a la alabarda$".

In order to reverse the BWT, we need to be able to know, given a character in L, where
it appears in F . This is called the LF-mapping [Burrows and Wheeler 1994; Ferragina
and Manzini 2000] (recall Section 4.1).

Definition 14. Given strings F and L resulting from the BWT of text T , the LF-
mapping is a function LF : [1, n] −→ [1, n], such that LF(i) is the position in F where
character Li occurs.

Consider the single occurrence of character "d" in Figure 8. It is at L5. It is easy
to see where it is in F : since F is alphabetically sorted and there are 15 characters
smaller than "d" in T , it must be F16 = "d", and thus LF(5) = 16. The situation is a
bit more complicated for L18 = "a", because there are several occurrences of the same
character. Note, however, that all the occurrences of "a" in F are sorted according to
the suffix that follows the "a". Likewise, all the occurrences of "a" in L are also sorted
accordingly to the suffix that follows that "a". Therefore, equal characters preserve
the same order in F and L. As there are four characters smaller than "a" in T and
six occurrences of "a" in L1,18, we have that L18 = "a" occurs at F4+6 = F10, that is,
LF(18) = 10.

The following lemma gives the formula for the LF-mapping [Burrows and Wheeler
1994; Ferragina and Manzini 2000].

LEMMA 3. Let T1,n be a text and F and L be the result of its BWT. Let C : � −→ [1, n]
and Occ : � × [1, n] −→ [1, n], such that C(c) is the number of occurrences in T of
characters alphabetically smaller than c, and Occ(c, i) is the number of occurrences of
character c in L1,i . Then, that it holds that LF(i) = C(Li) + Occ(Li, i).

With this mapping, reversing the BWT is simple, as Li always precedes Fi in T . Since
Tn = $, the first cyclic shift in M is TnT1,n−1, and therefore Tn−1 = L1. We now compute
i = LF(1) to learn that Tn−1 is at Fi, and thus Tn−2 = Li precedes Fi = Tn−1. With
i′ = LF(i) we learn that Tn−2 is at Fi′ and thus Tn−3 = Li′ , and so on, Tn−k = L[LF k−1(1)].

We finish with an observation that is crucial to understand the relation between
different kinds of existing self-indexes [Sadakane 2000; Ferragina and Manzini 2000].

LEMMA 4. Functions LF and � are the inverse of each other.



To see this, note that LF(i) is the position in F of character Li = T bwt
i = TA[i]−1,

or which is the same, the position in A that points to suffix TA[i]−1,n. Thus A[LF(i)] =
A[i]−1, or LF(i) = A−1[A[i]−1]. On the other hand, according to Definition 11, A[�(i)] =
A[i] + 1. Hence LF(�(i)) = A−1[A[�(i)] − 1] = A−1[A[i] + 1 − 1] = i and vice versa. The
special case for A[1] = n works too.

5.4. Relation Between Regularities and Compressibility

We start by pointing out a simple but essential relation between T bwt, the Burrows-
Wheeler transform of T , and Hk(T ), the kth-order empirical entropy of T . Note that,
for each text context s of length k, all the suffixes starting with that context appear
consecutively in A. Therefore, the characters that precede each context (which form T s)
appear consecutively in T bwt. The following lemma [Ferragina et al. 2004, 2005] shows
that it suffices to compress the characters of each context to their zero-order entropy to
achieve kth-order entropy overall.

THEOREM 4. Given T1,n over an alphabet of size σ , if we divide T bwt into (at most) σ k

pieces according to the text context that follows each character in T, and then compress
each piece T s corresponding to context s using c|T s|H0(T s) + f (|T s|) bits, where the
f is a concave function,5 then the representation for the whole T bwt requires at most
cnHk(T ) + σ k f (n/σ k) bits.

To see that the theorem holds, it is enough to recall Equation (1), as we are represent-
ing the characters T s followed by each of the contexts s ∈ �k using space proportional
to |T s|H0(T s). The extra space, σ k f (n/σ k), is just the worst case of the sum of σ k values
f (|T s|) where the values |T s| add up to n.

Thus, T bwt is the concatenation of all the T s. It is enough to encode each such portion
of T bwt with a zero-order compressor to obtain a kth-order compressor for T , for any
k. The price of using a longer context (larger k) is paid in the extra σ k f (n/σ k) term.
This can be thought of as the price to manage the model information, and it can easily
dominate the overall space if k is not small enough.

Let us now consider the number of equal-letter runs in T bwt. This will be related
both to self-repetitions in suffix arrays and to the empirical entropy of T [Mäkinen and
Navarro 2004a, 2005a, 2005b].

Definition 15. Given T bwt, the BWT of a text T , nbw is the number of equal-letter runs
in T bwt, that is, n minus the number of positions j such that T bwt

j+1 = T bwt
j .

There is a close tie between the runs in � (or self-repetitions in A), and the equal-
letter runs in T bwt [Mäkinen and Navarro 2004a, 2005a, 2005b].

LEMMA 5. Let nsr be the number of runs in � (or self-repetitions in A), and let nbw be
the number of equal-letter runs in T bwt, all with respect to a text T over an alphabet of
size σ . Then it holds nsr ≤ nbw ≤ nsr + σ .

To see why the lemma holds, consider Figures 3 and 7. Let us focus on the longest self-
repetition, A[10, 13] = {1, 13, 5, 17}. All those suffixes (among others) start with "a".
The self-repetition occurs in �([10, 13]) = [18, 21], that is, A[18, 21] = {2, 14, 6, 18}. All
those suffixes are preceded by "a", because all {1, 13, 5, 17} start with "a". Hence there
is a run of characters "a" in T bwt

18,21.
It should be obvious that in all cases where all the suffixes of a self-repetition

start with the same character, there must be an equal-letter run in T bwt: Let

5That is, its second derivative is never positive.



A[ j + r] = A[i + r] + 1 and TA[i+r] = c for 0 ≤ r ≤ �. Then T bwt
j+r = TA[ j+r]−1 = TA[i+r] = c

holds for 0 ≤ r ≤ �. On the other hand, because of the lexicographical ordering, con-
secutive suffixes change their first character at most σ times throughout A[1, n]. Thus,
save at most σ exceptions, every time �(i + 1) − �(i) = 1 (that is, we are within a self-
repetition), there will be a distinct j = �(i) such that T bwt

j+1 = T bwt
j . Thus nbw ≤ nsr + σ .

(There is one such exception in Figure 7, where the self-repetition A[16, 17]+1 = A[5, 6]
does not correspond to an equal-letter run in T bwt

5,6 .)
On the other hand, every time T bwt

j+1 = T bwt
j , we know that suffix TA[ j ],n = X is followed

by TA[ j+1],n = Y , and both are preceded by the same character c. Hence suffixes cX and
cY must also be contiguous, at positions i and i+1 so that �(i) = j and �(i+1) = j +1;
thus it holds that �(i + 1) − �(i) = 1 for a distinct i every time T bwt

j+1 = T bwt
j . Therefore,

nsr ≤ nbw. These observations prove Lemma 5.
We finally relate the kth-order empirical entropy of T with nbw [Mäkinen and Navarro

2004a, 2005a, 2005b].

THEOREM 5. Given a text T1,n over an alphabet of size σ , and given its BWT T bwt, with
nbw equal-letter runs, it holds that nbw ≤ nHk(T ) + σ k for any k ≥ 0. In particular, it
holds that nbw ≤ nHk(T )+o(n) for any k ≤ logσ n−ω(1). The bounds are obviously valid
for nsr ≤ nbw as well.

We only attempt to give a flavor of why the theorem holds. The idea is to partition
T bwt according to the contexts of length k. Following Equation (1), nHk(T ) is the sum of
zero-order entropies over all the T s strings. It can then be shown that, within a single
T bwt

i, j = T s, the number of equal-letter runs in T s can be upper bounded in terms of
the zero-order entropy of the string T s. A constant f (|S|) = 1 in the upper bound is
responsible for the σ k overhead, which is the number of possible contexts of length k.
Thus the rest is a consequence of Theorem 4.

6. BASIC COMPACT DATA STRUCTURES

We will learn later that nearly all approaches to represent suffix arrays in compressed
form take advantage of compressed representations of binary sequences. That is, we are
given a bit vector (or bit string) B1,n, and we want to compress it while still supporting
several operations on it. Typical operations are as follows:

—Bi. Accesses the ith-element.
—rankb(B, i). Returns the number of times bit b appears in the prefix B1,i.
—selectb(B, j ). Returns the position i of the j th appearance of bit b in B1,n.

Other useful operations are prevb(B, i) and nextb(B, i), which give the position of
the previous/next bit b from position i. However, these operations can be expressed
via rank and select, and hence are usually not considered separately. Notice also that
rank0(B, i) = i−rank1(B, i), so considering rank1(B, i) is enough. However, the same du-
ality does not hold for select, and we have to consider both select0(B, j ) and select1(B, j ).
We call a representation of B complete if it supports all the listed operations in constant
time, and partial if it supports them only for 1-bits, that is, if it supports rankb(B, i)
only if Bi = 1 and it only supports select1(B, j ).

The study of succinct representations of various structures, including bit vectors, was
initiated by Jacobson [1989]. The main motivation to study these operations came from
the possibility to simulate tree traversals in small space: It is possible to represent the
shape of a tree as a bit vector, and then the traversal from a node to a child and vice
versa can be expressed via constant number of rank and select operations. Jacobson



[1989] showed that attaching a dictionary of size o(n) to the bit vector B1,n is sufficient
to support rank operation in constant time on the RAM model. He also studied select
operation, but for the RAM model the solution was not yet optimal. Later, Munro [1996]
and Clark [1996] obtained constant-time complexity for select on the RAM model, using
also o(n) extra space.

Although n+ o(n) bits are asymptotically optimal for incompressible binary se-
quences, one can obtain more space-efficient representations for compressible ones.
Consider, for example, select1(B, i) operation on a bit vector containing κ = o(n/ log n)
1-bits. One can directly store all answers in O(κ log n) = o(n) bits.

Pagh [1999] was the first to study compressed representations of bit vectors sup-
porting more than just access to Bi. He gave a representation of bit vector B1,n that
uses 
log

(n
κ

)� + o(κ) + O(log log n) bits. In principle this representation supported
only Bi queries, yet it also supported rank queries for sufficiently dense bit vectors,
n = O(κ polylog(κ)). Recall that log

(n
κ

) = nH0(B) + O(log n).
This result was later enhanced by Raman et al. [2002], who developed a representa-

tion with similar space complexity, nH0(B) + o(κ) + O(log log n) bits, supporting rank
and select. However, this representation is partial. Raman et al. [2002] also provided a
new complete representation requiring nH0(B) + O(n log log n/ log n) bits.

Recent lower bounds [Golynski 2006] show that these results can hardly be improved,
as �(n log log n/ log n) is a lower bound on the extra space of any rank/select index
achieving O(log n) time if the index stores B explicitly. For compressed representations
of B, one needs �((κ/τ ) log τ ) bits of space (overall) to answer queries in time O(τ ). This
latter bound still leaves some space for improvements.

In the rest of this section, we explain the most intuitive of these results, to give a
flavor of how some of the solutions work. We also show how the results are extended to
nonbinary sequences and two-dimensional searching. Most implementations of these
solutions sacrifice some theoretical guarantees but work well in practice [Geary et al.
2004; Kim et al. 2005b; González et al. 2005; Sadakane and Okanohara 2006].

6.1. Basic n + o(n)-Bit Solutions for Binary Sequences

We start by explaining the n+o(n) bits solution supporting rank1(B, i) and select1(B, j )
in constant time [Jacobson 1989; Munro 1996; Clark 1996]. Then we also have
rank0(B, i) = i − rank1(B, i), and select0(B, j ) is symmetric.

Let us start with rank. The structure is composed of a two-level dictionary with
partial solutions (directly storing the answers at regularly sampled positions i), plus a
global table storing answers for every possible short binary sequence. The answer to a
rank query is formed by summing values from these dictionaries and tables.

For clarity of presentation we assume n is a power of four. The general case is handled
by considering floors and ceilings when necessary. We assume all divisions x/ y to give
the integer �x/ y	.

Let us start from the last level. Consider a substring smallblock of B1,n of length
t = log n

2 . This case is handled by the so-called four-Russians technique [Arlazarov
et al. 1975]: We build a table smallrank[0,

√
n − 1][0, t − 1] storing all answers

to rank queries for all binary sequences of length t (note that 2t = √
n). Then

rank1(smallblock, i) = smallrank[smallblock, i] is obtained in constant time. To in-
dex smallrank, smallblock is regarded as an integer in the usual way. Note that this
can be extended to substrings of length c log n, which would be solved in at most
2c accesses to table smallrank. For example, if smallblock is of length log n, then
rank1(smallblock, t + 3) = smallrank[half1, t] + smallrank[half2, 3], where half1 and
half2 are the two halves of smallblock.



Fig. 9. An example of constant-time rank computation using n+
o(n) bits of space.

We could complete the solution by dividing B into blocks of length, say, 2t, and explic-
itly storing rank answers for block boundaries, in a table sampledrank[0, n

log n −1], such
that sampledrank[q] = rank1(B, q log n) for 0 ≤ q < n

log n . Then, given i = q log n + r,
0 ≤ r < log n, we can express rank1(B, i) = sampledrank[q] + rank1(B[q log n +
1, q log n+ log n], r). As the latter rank1 query is answered in constant time using table
smallrank, we have constant-time rank queries on B.

The problem with sampledrank is that there are n
log n blocks in B, each of which

requires log n bits in sampledrank, for n total bits. To obtain o(n) extra space, we
build a superblock dictionary superblockrank[0, n

log2 n
− 1] such that superblockrank

[q′] = rank1(B, q′ log2 n) for 0 ≤ q′ < n
log2 n

. We replace structure sampledrank with
blockrank, which stores relative answers inside its superblock. That is, blockrank[q] =
sampledrank[q] − superblockrank[ q

log n ] for 0 ≤ q < n
log n . Then, for i = q′ log2 n + r ′ =

q log n + r, 0 ≤ r ′ < log2 n, 0 ≤ r < log n, rank1(B, i) = superblockrank[q′] +
blockrank[q] + rank1(B[q log n + 1, q log n + log n], r), where the last rank1 query is
answered in constant time using table smallrank.

The values stored in blockrank are in the range [0, log2 n−1]; hence table blockrank
takes O(n log log n/ log n) bits. Table superblockrank takes O(n/ log n) bits, and finally
table smallrank takes O(

√
n log n log log n) bits. We have obtained the claimed n + o(n)

bits representation of B1,n supporting constant time rank. Figure 9 illustrates the
structure.

Extending the structure to provide constant-time select is more complicated. We ex-
plain here a version simplified from Munro [1996] and Clark [1996].

We partition the space [1, n] of possible arguments of select (that is, values j of
select1(B, j )) into blocks of log2 n arguments. A dictionary superblockselect[ j ], re-
quiring O(n/ log n) bits, answers select1(B, j log2 n) in constant time.

Some of those blocks may span a large extent in B (with many 0-bits and just log2 n
1-bits). A fundamental problem for using blocks and superblocks for select is that there
is no guarantee that relative answers inside blocks do not require log n bits anyway. A
block is called long if it spans more than log4 n positions in B, and short otherwise. Note
that there cannot be more than n/ log4 n long blocks. As long blocks are problematic,
we simply store all their log2 n answers explicitly. As each answer requires log n bits,
this accounts for other n/ log n bits overall.

The short blocks contain κ = log2 n 1-bits (arguments for select1) and span at most
log4 n bits in B. We divide them again into miniblocks of log2

κ = O((log log n)2)
arguments. A miniblock directory miniblockselect[ j ] will store the relative answer
to select1 inside the short block, that is, miniblockselect[ j ] = select1(B, j log2

κ) −
superblockselect[ j log2

κ

log2 n
]. Values in miniblockselect are in the range [1, log4 n] and

thus require O(log log n) bits. Thus miniblockselect requires O(n/ log log n) bits.



A miniblock will be called long if it spans more than log n bits in B. For long
miniblocks, we will again store all their answers explicitly. There are at most n/ log n
long miniblocks overall, so storing all the log2

κ answers of all long miniblocks re-
quires O(n(log log n)3/ log n) bits. Finally, short miniblocks span at most log n bits
in B, so a precomputed table analogous to smallrank gives their answers using
O(

√
n log n log log n) bits. This completes the solution, which has to be duplicated for

select0(B, j ).

THEOREM 6. Bit vector B1,n can be represented using n+ o(n) bits of space so that Bi,
rankb(B, i), and selectb(B, j ), can be answered in constant time.

6.2. More Sophisticated nH0-Bit Solutions

We explain now how to improve the representation of the previous section for compress-
ible sequences, so as to obtain complete representations requiring nH0(B) + o(n) bits of
space [Raman et al. 2002].

We cut B into blocks of fixed length t = log n
2 . Each such block I = Bti+1,ti+t with κ

bits set will belong to class κ of t-bitmaps. For example, if t = 4, then class 0 is {0000},
class 1 is {0001, 0010, 0100, 1000}, class 2 is {0011, 0101, 0110, 1001, 1010, 1100}, and
so on until class t = 4, {1111}. As class κ contains

(t
κ

)
elements, an index to identify a

t-bitmap within its class requires only log
(t
κ

)
bits. Instead of using t bits to represent

a block, we use the pair (κ, r): the class identifier 0 ≤ κ ≤ t, using 
log(t + 1)� bits, and
the index r within class κ, using 
log

(t
κ

)� bits. Then B is represented as a sequence of

n/t� such pairs.

The class identifiers amount to O(n log(t)/t) = O(n log log n/ log n) bits overall. The
interesting part is the sequence of indexes. Let smallblocki, be the ith block, with κi
bits set. The number of bits required by all the blocks is [Pagh 1999]

⌈
log

(
t
κ1

)⌉
+ · · · +

⌈
log

(
t

κ
n/t�

)⌉
≤ log

((
t
κ1

)
× · · · ×

(
t

κ
n/t�

))
+ n/t

≤ log
(

n
κ1 + · · · + κ
n/t�

)
+ n/t = log

(
n
κ

)
+ n/t ≤ nH0(B) + O(n/ log n),

where the second inequality holds because the ways to choose κi bits from each block
of t bits are included in the ways to choose κ = κ1 + · · · + κ
n/t� bits out of n. Thus, we
have represented B with nH0(B) + o(n) bits.

We need more structures to answer queries on B. The same superblockrank and
blockrank directories used in Section 6.1, with block size t, are used. As the descriptions
(κ, r) have varying length, we need position directories superblockpos and blockpos,
which work like superblockrank and blockrank to give the position in the compressed
B where the description of each block starts.

In order to complete the solution with table smallrank, we must index this table
using the representations (κ, r), as bitmap smallblock is not directly available. For
each class κ we store a table smallrankκ [r, i], giving rank1(smallrank, i) for the block
smallrank identified by pair (κ, r). In our example, smallrank2[4, 2] = 1 as pair (2, 4)
identifies bitmap 1001 and rank(1001, 2) = 1. Those smallrankκ tables need together
O(

√
n log n log log n) bits, just as the original smallrank. Thus all the extra structures

still require o(n) bits. This is illustrated in Figure 10.
For select, the solution is again more complicated, but it is essentially as in the

previous section.



Fig. 10. Constant-time rank computation using nH0(B) + o(n)
bits. B′ is the sequence of pairs (κ, r), each occupying a variable
number of bits. The values in superblockpos and blockpos (rep-
resented here by the arrows) point to the corresponding positions
in the binary representation of B′. The arguments to smallrank
show in parentheses the corresponding bit sequences.

THEOREM 7. Bit vector B1,n can be represented using nH0(B) + O(n log log n/ log n)
bits of space so that Bi, rankb(B, i), and selectb(B, j ) can be answered in constant time.

6.3. Handling General Sequences and Wavelet Trees

Consider now a sequence (or string) S1,n from an alphabet of size σ ≥ 2. We wish to
support rankc(S, i) and selectc(S, j ) for all alphabet symbols c: rankc(S, i) gives the
number of times character c appears in S1,i and selectc(S, j ) gives the position of the
j th c in S. Analogously to the binary case, we call a representation of S complete if it
supports queries Si, rankc(S, i), and selectc(S, j ), in constant time for all symbols c.

We can easily obtain a complete representation for S using the results from the pre-
vious section: consider indicator bit vectors Bc

1,n such that Bc
i = 1 iff Si = c. Then

rankc(S, i) = rank1(Bc, i) and selectc(S, j ) = select1(Bc, j ). Using Theorem 7., the rep-
resentations of vectors Bc take overall

∑
c∈�(nH0(Bc)+o(n)) = ∑

c∈�(nc log n
nc

+ O(nc)+
o(n)) = nH0(S) + O(n) + o(σn) bits (end of Section 5.1).

The O(n) extra term can be removed with a more careful design [Ferragina et al.
2006]. Essentially, one can follow the development leading to Theorem 7. on a gen-
eral sequence. Now binomials become multinomials and the scheme is somewhat more
complicated, but the main idea does not change.

LEMMA 6. Sequence S1,n over an alphabet of size σ can be represented using
nH0(S) + O(σn log log n/ logσ n) bits of space so that Bi, rankc(S, i), and selectc(S, j )
can be answered in constant time. Note that the extra space on top of nH0(S) is o(n log σ )
only if the alphabet is very small, namely, σ = o(log n/ log log n).

A completely different technique is the wavelet tree [Grossi et al. 2003]. Figure 5
illustrates this structure. The wavelet tree is a perfect binary tree of height 
log σ�,
built on the alphabet symbols, such that the root represents the whole alphabet and
each leaf represents a distinct alphabet symbol. If a node v represents alphabet symbols
in the range �v = [i, j ], then its left child vl represents �vl = [i, i+ j

2 ] and its right child
vr represents �vr = [ i+ j

2 + 1, j ].
We associate to each node v the subsequence Sv of S formed by the symbols in �v.

Yet, Sv is not really stored at the node. We just store a bit sequence Bv telling whether
symbols in Sv go left or right: Bv

i = 1 iff Sv
i ∈ �vr (i.e., Sv

i goes right).
All queries on S are easily answered in O(log σ ) time with the wavelet tree, provided

we have complete representations of the bit vectors Bv. To determine Si, we check



Broot
i to decide whether to go left or right. If we go left, we now seek the character at

position rank0(Broot , i) in the left child of the root; otherwise we seek the character at
position rank1(Broot , i) in its right child. We continue recursively until reaching a leaf
corresponding to a single character, which is the original Si.

Similarly, to answer rankc(S, i), we go left or right, adapting i accordingly. This time
we choose left or right depending on whether character c belongs to �vl or �vr . Once
we arrive at a leaf, the current i value is the answer. Figure 5 gives an example for
ranka(S, 16) = 5.

Finally, to answer selectc(S, j ), we start at the leaf corresponding to c and move
upward in the tree. If the leaf is a left child, then the position corresponding to j in
its parent v is select0(Bv, j ); otherwise it is select1(Bv, j ). When we reach the root, the
current j value is the answer. For example, in Figure 5, selecta(S, 5) starts with the leaf
for "a". It is a left child, so in its parent the position is select0(00011000000, 5) = 7. This
in turn is a right child, so in its parent the position is select1(111000111101111, 7) = 10.
We finish with answer 15 at the root.

If we use the complete representation of Theorem 6. for the bit vectors Bv, the overall
space is n log σ (1+o(1)), that is, essentially the same space to store S (and we do not need
to also store S). Yet, by using the representation of Theorem 7., the sum of entropies of
all bit vectors simplifies to nH0(S) and the extra terms add up O(n log log n/ logσ n) =
o(n log σ ) [Grossi et al. 2003].

THEOREM 8. Sequence S1,n over an alphabet of size σ can be represented using the
wavelet tree in nH0(S) + O(n log log n/ logσ n) bits of space, so that Si, rankc(S, i), and
selectc(S, j ) can be answered in O(log σ ) time.

It is possible to combine the representations of Lemma 6 and Theorem 8. The former
gives a complete representation (constant query time) with sublinear extra space, for
σ = o(log n/ log log n). The latter works for any alphabet σ but it pays O(log σ ) query
time. The idea is to use r-ary wavelet trees. Instead of storing bitmaps at each node, we
now store sequences over an alphabet of size r to represent the tree branch chosen by
each character. Those sequences are handled with Lemma 6 [Ferragina et al. 2006]. By
carefully choosing r, one gets constant access time for σ = O(polylog(n)), and improved
access time for larger alphabets.

THEOREM 9. Sequence S1,n over an alphabet of size σ = o(n), can be represented
using a multi-ary wavelet tree in nH0(S)+o(n log σ ) bits of space, so that Si, rankc(S, i),
and selectc(S, j ) are answered in O(1 + log σ/ log log n) time.

Finally, some very recent work [Golynski et al. 2006] obtains O(log log σ ) time for
queries Si and rank, and constant time for select, using n log σ (1 + o(1)) bits.

6.4. Two-Dimensional Range Searching

As we will see later, some compressed indexes reduce some search subproblems to two-
dimensional range searching. We present here one classical data structure by Chazelle
[1988]. For simplicity, we focus on the problem variant that arises in our application:
one has a set of n points over an n× n grid, such that there is exactly one point for each
row i and one for each column j .

Let us regard the set of n points as a sequence S = i(1)i(2) · · · i(n), so that i( j ) is
the row of the only point at column j . As all the rows are also different, S is actually
a permutation of the interval [1, n]. More complex scenarios can be reduced to this
simplified setting.

The most succinct way of describing Chazelle’s data structure is to say that it is the
wavelet tree of S, so the tree partitions the point set into two halves according to their



row value i. Thus the structure can be represented using n log n(1 + o(1)) bits of space.
Yet the query algorithms are rather different.

Let us focus on retrieving all the points that lie within a two-dimensional range
[i, i′] × [ j , j ′]. Let B1,n be the bitmap at the tree root. We can project the range [ j , j ′]
onto the left child as [ jl , j ′

l ] = [rank0(B, j − 1) + 1, rank0(B, j ′)], and similarly onto
the right child with rank1. We backtrack over the tree, abandoning a path at node v
either when the local interval [ jv, j ′

v] is empty, or when the local interval [iv, i′
v] does

not intersect anymore the original [i, i′]. If we arrive at a leaf [i, i] without discarding
it, then the point with row value i is part of the answer. In the worst case, every answer
is reported in O(log n) time, and we need O(log n) time if we want just to count the
number of occurrences.

There exist other data structures [Alstrup et al. 2000] that require O(n log1+γ n) bits
of space, for any constant γ > 0, and can, after spending O(log log n) time for the query,
retrieve each occurrence in constant time. Another structure in the same article takes
O(n log n log log n) bits of space and requires O((log log n)2) time for the query, after
which it can retrieve each answer in O(log log n) time.

7. COMPRESSED SUFFIX ARRAYS

The first type of compressed indexes we are going to review can be considered as the
result of abstract optimization of the suffix array data structure. That is, the search
algorithm remains essentially as in Algorithm 1, but suffix array A is taken as an ab-
stract data type that gives access to the array in some way. This abstract data type is
implemented using as little space as possible. This is the case of the Compact Suffix
Array of Mäkinen [2000, 2003] (MAK-CSA) and the Compressed Suffix Array of Grossi
and Vitter [2000, 2006] (GV-CSA). Both ideas appeared simultaneously and indepen-
dently during the year 2000, and they are based on different ways of exploiting the
regularities that appear on the suffix arrays of compressible texts. Those structures
are still not self-indexes, as they need the text T to operate.

The MAK-CSA is mainly interesting by its property of using only structural com-
pression, where one seeks the minimum size representation under a given family. For
example, minimization of automata is structural compression. The MAK-CSA is basi-
cally a minimized array, where self-repetitions A[i, i + �] are replaced by a link to the
corresponding area A[ j , j + �] (recall Definition 9). From Theorem 5, it is easy to see
that the size of the index is O(nHk(T ) log n) bits, which makes it the first compressed
full-text index that existed. We will not detail it here, as the forthcoming results build
on nonstructural compression and supersede this one.

7.1. GV-CSA: Grossi and Vitter’s Compressed Suffix Array

The Compressed Suffix Array of Grossi and Vitter [2000, 2006] (GV-CSA) is a succinct
index based on the idea of providing access to A[i] without storing A, so that the search
algorithm is exactly as in Algorithm 1. The text T is maintained explicitly.

The GV-CSA uses a hierarchical decomposition of A based on function � (Defini-
tion 11). Let us focus on the first level of that hierarchical decomposition. Let A0 = A
be the original suffix array. A bit vector B0[1, n] is defined so that B0[i] = 1 iff A[i] is
even. Let also �0[1, 
n/2�] contain the sequence of values �(i) for arguments i where
B0[i] = 0. Finally, let A1[1, �n/2	] be the subsequence of A0[1, n] formed by the even
A0[i] values, divided by 2.

Then A = A0 can be represented using only �0, B0, and A1. To retrieve A[i],
we first see if B0[i] = 1. If it is, then A[i] is (divided by 2) somewhere in A1. The
exact position depends on how many 1’s are there in B0 up to position i, that is,
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Fig. 11. The first level of the GV-CSA recursive structure, for the text "alabar a la alabarda$".
We show the original suffix array A = A0 and structures B0, �0, and A1. We show �0 and A1 in
scattered form to ease understanding but they are obviously stored contiguously. Recall that A0 is
not really stored but replaced by the other three structures.

A[i] = 2 · A1[rank1(B0, i)]. If B0[i] = 0, then A[i] is odd and not represented in A1.
However, A[i] + 1 = A[�(i)] has to be even and thus represented in A1. Since �0 col-
lects only the � values where B0[i] = 0, we have A[�(i)] = A[�0[rank0(B0, i)]]. Once
we compute A[�(i)] (for even �(i)), we simply obtain A[i] = A[�(i)] − 1.

Figure 11 illustrates this. For example, to obtain A[11], we verify that B0[11] = 0;
thus it is not represented in A1. So we need to obtain �(11), which is �0[rank0(B0, 11)] =
�0[8] = 19. We must then obtain A[19]. Not surprisingly, B0[19] = 1, so A[19] is at
A1[rank1(B0, 19)] = A1[8] = 7. Thus A[19] = 2 · 7 = 14 and finally A[11] = A[19] − 1 =
13. (Note the exception that A[1] is odd and A[�(1)] = A[10] is odd too, but this is not
a problem because we know that A[1] = n always.)

The idea can be used recursively: instead of representing A1, we replace it with B2,
�2, and A2. This is continued until Ah is small enough to be represented explicitly.
Algorithm 2 gives the pseudocode to extract an entry A[i] from the recursive structure.
The complexity is O(h) assuming constant-time rank (Section 6.1).

It is convenient to use h = 
log log n�, so that the n/2h entries of Ah, each of which
requires O(log n) bits, take overall O(n) bits. All the B� arrays add up at most 2n bits (as
their length is halved from each level to the next), and their additional rank structures
add o(n) extra bits (Section 6.1). The only remaining problem is how to represent the
�� arrays.

For a compact representation of �0, we recall that � is increasing within the area
of A that points to suffixes starting with the same character (Lemma 1). Although
Grossi and Vitter [2000] did not detail how to use this property to represent � in
little space, an elegant solution was given in later work by Sadakane [2000, 2003].
Essentially, Sadakane showed that � can be encoded differentially (�(i + 1) − �(i))
within the areas where it is increasing, using Elias-δ coding [Elias 1975; Witten
et al. 1999] (recall Section 4.5). The number of bits this representation requires is
nH0 + O(n log log σ ). For �0, since only odd text positions are considered, the result is

Algorithm 2. Obtaining A[i] from GV-CSA recursive structure with h levels. It is invoked as
GV-CSA-lookup(i,0).

Algorithm GV-CSA-lookup(i, �)
(1) if � = h then return Ah[i];
(2) if B�[i] = 1
(3) then return 2 · GV-CSA-lookup(rank1(B�, i), � + 1);
(4) else return GV-CSA-lookup(��[rank0(B�, i)], �) − 1;



the same as if we had a text T ′
1,n/2 formed by bigrams of T , T ′

i = T2i−1,2i. Since
the zero-order entropy of T taken as a sequence of 2�-grams is H (2�)

0 ≤ 2�H0 [Sadakane
2003], �0 requires |T ′|H (2)

0 + O(|T ′| log log(σ 2)) ≤ (n/2)(2H0)+ O((n/2)(1+ log log σ )). In
general, �� requires at most (n/2�)(2�H0) + O((n/2�)(� + log log σ )) = nH0 + O(n�/2�) +
O((n log log σ )/2�) bits. Overall, the h levels require hnH0 + O(n log log σ ) bits.

In order to access the entries of these compressed �� arrays in constant time
[Sadakane 2003], absolute �� values are inserted at entry boundaries every �(log n)
bits (not �(log n) entries, as in the simplified solution of Section 4.5), so this adds O(n)
bits. To extract an arbitrary position ��[i], we go to the nearest absolute sample before
i and sequentially advance summing up differences until reaching position i. To know
which is the nearest sample position preceding i, one can have bit arrays posSamp1,n
telling which entries are sampled, and startSamp1,|��| marking the positions in the bit
stream representing �� where absolute samples start. Then the last sampled position
before i is i′ = select1(posSamp, rank1(posSamp, i)). The absolute value of ��[i′] starts
at bit position select1(startSamp, rank1(posSamp, i)) in ��. By using the techniques of
Section 6.2, these two arrays require O((n + |��|) log log n/ log n) extra bits of space,
which is negligible.

We must also be able to process all the bits between two samples in constant time. By
maintaining a precomputed table with the total number of differences encoded inside
every possible chunk of log n

2 bits, we can process each such chunk in constant time, so
the �(log n) bits of differences can also be processed in constant time. The size of that
table is only O(

√
n log2 n) = o(n) bits. Note the similarity with the other four-Russians

technique for constant time rank (Section 6.1).
What we have, overall, is a structure using nH0 log log n+ O(n log log σ ) bits of space,

which encodes A and permits retrieving A[i] in O(log log n) time.
A tradeoff with 1

ε
nH0 + O(n log log σ ) bits of space and O(logε n) retrieval time, for

any constant ε > 0, can be obtained as follows. Given the h = 
log log n� levels, we only
keep three levels: 0, �h/2	, and h. Bit vectors B0 and B�h/2	 indicate which entries are
represented in levels �h/2	 and h, respectively. The space for �0, ��h/2	, and Ah is at
most 2nH0 + O(n log log σ ) bits. However, we cannot move from one level to the next in
constant time. We must use �� several times until reaching an entry that is sampled
at the next level. The number of times we must use �� is at most 2h/2 = O(

√
log n). If,

instead of three levels, we use a constant number 1 + 1/ε of levels 0, hε, 2hε, . . . , h, the
time is O(logε n). By applying the usual algorithms over this representation of A we
get the following results.

THEOREM 10 [GROSSI AND VITTER 2000; SADAKANE 2000]. The Compressed Suffix Array
of Grossi and Vitter (GV-CSA) offers the following space/time tradeoffs.

Space in bits nH0 log log n + O(n log log σ ) + n log σ
Time to count O(m log n log log n)
Time to locate O(log log n)
Time to display � chars O(�) (text is available)
Space in bits 1

ε
nH0 + O(n log log σ ) + n log σ

Time to count O(m log1+ε n)
Time to locate O(logε n)
Time to display � chars O(�) (text is available)
Conditions 0 < ε ≤ 1 is an arbitrary constant

We have described the solution of Sadakane [2000, 2003] to represent � in little
space and constant access time. The solution of the original authors has just appeared



[Grossi and Vitter 2006] and it is slightly different. They also used the fact that � is
piecewise increasing in a different way, achieving 1

2 n log σ bits at each level instead of
nH0. Furthermore, they took T as a binary string of n log σ bits, which yields essentially
n log σ log logσ n bits for the first version of Theorem 7.1 and 1

ε
n log σ bits for the second

version. They actually used h = 
log logσ n�, which adds up n log σ extra space for Ah
and slightly reduces the time to access A[i] in the first variant of the above theorem to
O(h) = O(log logσ n).

Grossi and Vitter [2000, 2006] showed how the occ occurrences can be located more
efficiently in batch when m is large enough. They also showed how to modify a com-
pressed suffix tree [Munro et al. 2001] so as to obtain O(m/ logσ n+ logε n) search time,
for any constant 0 < ε < 1, using O(n log σ ) bits of space. This is obtained by modifying
the compressed suffix tree [Munro et al. 2001] in two ways: first, using perfect hashing
to allow traversing O(logσ n) tree nodes downward in one step, and second, replacing
the suffix array required by the compressed suffix tree with the GV-CSA. We do not
provide details because in this article we focus on indexes taking o(n log σ ) bits. In this
sense, we are not interested in the GV-CSA by itself, but as a predecessor of other
self-indexes that appeared later.

A generalization of this structure (but still not a self-index) is presented by Rao
[2002], who indexed a binary text using O(nh log1/h n) bits and retrieved A[i] in O(h)
time, for any 1 ≤ h ≤ log log n.

8. TURNING COMPRESSED SUFFIX ARRAYS INTO SELF-INDEXES

Further development of the techniques of Section 7 lead to self-indexes, which can
operate without the text. The first index in this line was the Compressed Suffix Array
of Sadakane [2000, 2002, 2003] (SAD-CSA). This was followed by the Compressed Suffix
Array of Grossi et al. [2003, 2004] (GGV-CSA), and by the Compressed Compact Suffix
Array of Mäkinen and Navarro [2004a] (MN-CCSA). The latter, which builds on the
MAK-CSA is not covered here.

8.1. Sad-CSA: Sadakane’s Compressed Suffix Array

Sadakane [2000, 2003] showed how the GV-CSA can be converted into a self-index,
and at the same time optimized it in several ways. The resulting index was also called
Compressed Suffix Array and will be referred to as SAD-CSA in this article.

The SAD-CSA does not give, as the GV-CSA, direct access to A[i], but rather to any
prefix of TA[i],n. This still suffices to use the search algorithm of Algorithm 1. The SAD-
CSA represents both A and T using the full function � (Definition 11), and a few extra
structures (recall Section 4.4).

Imagine we wish to compare P against TA[i],n. For the binary search, we need to
extract enough characters from TA[i],n so that its lexicographical relation to P is clear.
Since TA[i] is the first character of the suffix pointed to by A[i], we have TA[i] = Fi in
Figure 8. Once we determine TA[i] = c in this way, we need to obtain the next character,
TA[i]+1. But TA[i]+1 = TA[�(i)], so we simply move to i′ = �(i) and keep extracting charac-
ters with the same method, as long as necessary. Note that at most |P | = m characters
suffice to decide a comparison with P .

In order to quickly find c = TA[i], we store a bit vector newF1,n, so that newFi = 1 iff
i = 1 or Fi �= Fi−1, and a string charT where the (at most σ ) distinct characters of T are
concatenated in alphabetical order. Then we have c = charT[rank1(newF, i)], which can
be computed in constant time using only n + o(n) bits for newF (Section 6.1) and σ log σ
bits for charT.



Fig. 12. The main components of the SAD-CSA structure, for the text "alabar a la alabarda$".
We show T and A for illustrative purposes, yet these are not stored in the structure.

Figure 12 illustrates this. To obtain TA[11],n we see that charT[rank1(newF, 11)] =
charT[3] = "a". Then we move to 19 = �(11), so that the second character is
charT[rank1(newF, 19)] = charT[6] = "l". We now move to 9 = �(19) and get the
third character charT[rank1(newF, 9)] = charT[3] = "a", and so on. Note that we are,
implicitly, walking the text in forward direction. Note also that we do not know where
we are in the text: we never know A[i], just TA[i],n.

Thus the SAD-CSA implements the binary search in O(m log n) worst-case time, which
is better than in the GV-CSA structure. Algorithm 3 gives the pseudocode to compare
P against a suffix of T .

Up to now we have used n + o(n) + σ log σ bits of space for newF and charT, plus the
representation for � described in Section 7.1, nH0 + O(n log log σ ) bits. Note that, since
the SAD-CSA does not give direct access to A[i], it needs more structures to solve a
locating query. That is, although the index knows that the answers are in A[sp, ep] and
thus that there are occ = ep − sp + 1 answers, it does not have enough information
to know the text positions pointed to by A[i], sp ≤ i ≤ ep. For this sake, the SAD-CSA
includes the hierarchical GV-CSA structure (without the text and with � instead of �0,
as we already have the more complete �). Let us choose, from Theorem 10, the version
requiring 1

ε
nH0 + O(n log log σ ) bits of space and computing A[i] in O(logε n) time, for

any constant 0 < ε < 1.
The remaining functionality a self-index must provide is to retrieve Tl ,r without

having access to T . We already know how to retrieve any prefix of TA[i],n given i. Note
that, if we had the inverse of permutation A, A−1[ j ], we could first find i = A−1[l ] and
then retrieve Tl ,r = TA[i], A[i]+(r−l ) in O(r − l + 1) additional time.

Sadakane noticed that the same hierarchical GV-CSA structure can serve to compute
A−1[ j ] in time O(logε n), provided we also store explicitly A−1

h in the last level. The

Algorithm 3. Comparing P against TA[i],n using �, newF, and charT.

Algorithm Sad-CSA-compare(P , m, i, �, newF, charT)
(1) j ← 1;
(2) do c ← charT[rank1(newF, i)];
(3) if Pj < c then return “<”;
(4) if Pj > c then return “>”;
(5) i ← �(i);
(6) j ← j + 1;
(7) while j ≤ m;
(8) return “=”;



reason is that A−1[ j ] = �(A−1[ j − 1]), which is easy to verify. Iterating, A−1[ j ] =
�k(A−1[ j − k]). Hence, to compute A−1[ j ] = A−1

0 [ j ] we take the largest j ′ ≤ j that is
represented in the next level hε (i.e., j ′ is the largest multiple of 2hε not larger than
j ), and obtain i′ = A−1

0 [ j ′] = select1(B0, A−1
hε [� j/(hε)	] recursively (or directly when we

reach level h). Now we apply � successively over i′ to obtain A−1
0 [ j ] = �

j− j ′
0 [i′]. This

takes O((1 + 1
ε
)2hε) = O(logε n) time.

THEOREM 11 SADAKANE [2003]. The Compressed Suffix Array of Sadakane (SAD-CSA)
offers the following space/time tradeoff.

Space in bits 1
ε

nH0 + O(n log log σ ) + σ log σ

Time to count O(m log n)
Time to locate O(logε n)
Time to display � chars O(� + logε n)
Conditions 0 < ε ≤ 1 is an arbitrary constant

We note that the combination absolute samples and the four-Russian technique to
access � works with many other compression methods. In particular, if we compress
runs in � (Definition 12) with run-length compression (see Section 9.5), we can achieve
nHk(T )(log σ + log log n) + O(n) bits of space, for k ≤ logσ n − ω(1) (recall Theorem 5),
while retaining the same search times [Mäkinen and Navarro 2004b]. This tradeoff
is the same of the MN-CCSA [Mäkinen and Navarro 2004a]. We show an even better
tradeoff, unnoticed up to now, at the end of Section 8.2.

In Practice. The implementation of SAD-CSA differs in several aspects from its theo-
retical description. First, it does not implement the inverse suffix array to locate occur-
rences. Rather, it samples A at regular intervals of length D, explicitly storing A[i · D]
for all i. In order to obtain A[ j ], we compute � repeatedly over j until obtaining a value
j ′ = �r ( j ) that is a multiple of D. Then A[ j ] = A[ j ′] − r. Similarly, constant access to
� is not provided. Instead, absolute � values are sampled every D′ positions. To obtain
�(i), we start from its closest previous absolute sample and decompress the differential
encoding until position i. Finally, instead of the classical suffix array searching, back-
ward searching is used [Ferragina and Manzini 2000; Sadakane 2002]. This avoids any
need to obtain text substrings, and it is described in Section 9.2. Thus, D and D′ give
practical tradeoffs between index space and search time.

8.2. GGV-CSA: Grossi, Gupta, and Vitter’s Compressed Suffix Array

The Compressed Suffix Array of Grossi et al. [2003, 2004] (GGV-CSA) is a self-index
whose space usage depends on the kth-order entropy of T . It is an evolution over the
GV-CSA and the SAD-CSA, based on a new representation of � that requires essentially
nHk bits rather than nH0, mainly using Theorem 4.

Consider Figures 3 and 12, and the text context s = "la". Its occurrences are pointed
from A[17, 19] = {10, 2, 14}. The � values that point to that interval are �(4) = 17,
�(10) = 18, and �(11) = 19. The first corresponds to character TA[4] = " " preceding
"la", while the other two correspond to "a" preceding "la".

Figure 13 illustrates how the sequence of � values is partitioned into lists (�(i) be-
longs to list TA[i], that is, the character preceding position �(i) in T ) and contexts (�(i)
belongs to context TA[�(i)], A[�(i)]+k−1 = TA[i]+1, A[i]+k , that is, the text starting at �(i) in
T ). The � values are increasing within a cell. Seen another way, suffix array position
j (= �(i)) belongs to list TA[ j ]−1 and context TA[ j ], A[ j ]+k−1. For example, with k = 2,
suffix array position 17 (= �(4)) points to TA[17],n = TA[4]+1,n = T10,n, so it belongs to
list T9 = TA[17]−1 = TA[4] = " " and context T10,11 = TA[17], A[17]+1 = TA[4]+1, A[4]+2 = "la",



Fig. 13. Partition of � into lists (columns) and contexts (rows) in the GGV-CSA, for the
text "alabar a la alabarda$". Array � is read columnwise left to right, each column top
to bottom.

whereas position 18 (= �(10)) belongs to list TA[10] = T1 = "a" and context
TA[18], A[18]+1 = T2,3 = "la".

The duality we have pointed out is central to understand this index: the table of lists
and contexts is arranging the numbers in the interval [1, n]. Those numbers can be
regarded in two ways. The main one is that they are the values �(1), �(2), . . . , �(n),
that is, we are storing vector �. The secondary one is that these � values are indexes
to array A, thus we are storing the indexes of A.

If we sort the sequence of values in the table by list, and by context inside each list,
then we have the entries �(i) sorted by TA[i], A[i]+k , that is, in increasing order of i.
Thus we recover the original sequence � in good order if we read the table column-
wise (left to right), and each column top to bottom (as we ordered lists and contexts
lexicographically). The order within each cell (same TA[i], A[i]+k) is also correct because
� is increasing in there, and we store the values that way within cells. Actually, the �
values are increasing along any whole column, as �(i) values are increasing as long as
TA[i] (the column) does not change (Lemma 1).

Now regard the numbers as indexes j (= �(i)) of A. The row where each j value
lies corresponds to the context its pointed suffix starts with, s = TA[ j ], A[ j ]+k−1 =
TA[�(i)], A[�(i)]+k−1. Thus, the j values found in a row form a contiguous subinterval of
[1, n] (indexes of A). Each cell in the row corresponds to a different character preceding
the context (that is, to a different column).

If we identify each j value in the row with the character of the column it belongs
to (TA[ j ]−1), then the set of all characters form precisely T s (Definition 8), of length
ns = |T s|. Thus, if we manage to encode each row in ns H0(T s) bits, we will have nHk(T )
bits overall (recall Equation (1) and Theorem 4). In our previous example, considering
context s = "la", we have to represent all the j values that lie inside that context
([17, 19]) in space proportional to the zero-order entropy of the characters TA[ j ]−1, j ∈
[17, 19], that is, T s = T bwt

17,19 = " aa".
To obtain �(i) from this table we first need to determine the row and column i be-

longs to, and then the position inside that cell. To know the column c, bitmap newF of
Figure 12 (Gk in Grossi et al. [2003]) suffices, as c = rank1(newF, i) (for simplicity we
are identifying characters and column numbers). Using the techniques of Section 6.2,
newF can be represented in nH0(newF) + o(n) ≤ σ log n + o(n) bits (as it has at most
σ bits set; recall the end of Section 5.1), so that it answers rank1 queries in constant
time. The relative position of i inside column c is i′ = i − select1(newF, c) + 1. In the



example, to retrieve �(10) = 18 (thus i = 10), we find c = rank1(newF, 10) = 3 (third
column in the table, symbol "a"). Inside the column, we want the sixth value, because
i′ = 10 − select1(newF, 3) + 1 = 6.

A similar technique gives the right cell within the column. Two bit arrays newRowc and
isRowc (L y

k and by
k in Grossi et al. [2003]) are maintained for each column c. newRowc is

aligned to the area of � that belongs to column c. It has a 1-bit every time we enter a new
row as we read the values in column c. In our example, newRowa = 111101011, which is
aligned to �[5, 13]. isRowc, instead, stores 1 bit per context indicating whether the row
for that context is nonempty in column c. In our example, isRowa = 1110000010111.

It is easy to see that the relative index i′ within column c corresponds to the r ′th
nonempty cell of column c, where r ′ = rank1(newRowc, i′), and the r ′ nonempty cell
has global row number r = select1(isRowc, r ′). Finally, the position we want inside
the r ′th nonempty cell is p = i′ − select1(newRowc, r ′) + 1. In our example, the cell
is at the fifth nonempty row, as r ′ = rank1(newRowa, 6) = 5. Its global row number
is r = select1(isRowa, 5) = 11. Its position within the cell is the first, as p = 6 −
select1(newRowa, 5) + 1 = 1.

Using again Section 6.2, each newRowc can be stored in nc H0(newRowc)+o(nc) bits (note
that nc is the number of elements in column c), and answer those queries in constant
time. As there are at most σ k bits set in newRowc, the space is at most σ k log(nc) +
o(nc) bits. Added over all columns, this is at most σ k+1 log n + o(n) (Grossi et al. [2003]
concatenated all newRowc vectors for technical reasons we omit). In turn, isRowc vectors
add up σ k+1(1 + o(1)) bits using Section 6.1.

We also need to know which is the range of suffix array indexes j handled by the row.
For example, for s = "la", row 11, we must know that this context corresponds to the
suffix array interval [17, 19]. We store a bitmap newCtx (Fk in Grossi et al. [2003]) whose
positions are aligned to A, storing a 1 each time a context change occurs while traversing
A. This is the global version of newRowc bit vectors (which record context changes within
column c). In our example, newCtx = 110111010011010110011. If we know we are in
global row r, then select1(newCtx, r) tells the first element in the interval handled by
row r. In our example, r = 11 and select1(newCtx, 11) = 17. We will add this value
to the result we obtain inside our cell. Using Section 6.2 once more, newCtx requires
σ k log n + o(n) bits.

The final piece is to obtain the pth element of cell (r, c). At this point there are different
choices. One, leading to Theorem 12, is to store a bitmap Br,c (Z in Grossi et al. [2003])
for each cell (r, c), indicating which elements of the row interval belong to the cell. This
is necessary because any permutation of the row interval can arise among the cells (e.g.,
see row "ab"). In our example, for row 11, the interval is [17, 19], and we have B11,” ” =
100 and B11,a = 011 (0s and 1s can be interleaved in general). With select1(Br,c, p)
we obtain the offset of our element in the row interval. Therefore, we finally have
�(i) = select1(newCtx, r) + select1(Br,c, p) − 1. In our example, select1(011, 1) = 2, and
thus �(10) = 17 + 2 − 1 = 18. Algorithm 4 gives the pseudocode.

Algorithm 4. Computing �(i) using the GGV-CSA.

Algorithm GGV-CSA-�(i, newF, newRow, isRow, newCtx, B)
(1) c ← rank1(newF, i);
(2) i′ ← i − select1(newF, c) + 1;
(3) r ′ ← rank1(newRowc, i′);
(4) p ← i′ − select1(newRowc, r ′) + 1;
(5) r ← select1(isRowc, r);
(6) return select1(newCtx, r) + select1(Br,c, p) − 1;



We consider now the space required by the bit vectors B. Using again the techniques
of Section 6.2, those can be stored in |B|H0(B)+ O(|B| log log |B|/ log |B|) bits. Note that
|Br,c| = ns for each cell in row r corresponding to context s. Summed over all the lists of
row r, this is ns H0(T s)+ns log e+O(ns log log ns/ log ns), and added over all the contexts
s, we get nHk(T ) + n log e + O(n log log n/ log(n/σ k)) (Equation (1) and Theorem 4). To
see that the sum of the H0(B) entropies over the different columns adds up to H0(T s),
let us call bc the number of entries in cell (r, c). Then, recalling the end of Section 5.1,
H0(B) ≤ bc log b

bc
+ bc log e, which add up

∑
c∈�(bc log b

bc
+ bc log e). But bc is also the

number of occurrences of c in T s, so the sum is ns H0(T s) + ns log e.
Let us assume k ≤ α logσ n for some constant 0 < α < 1. This ensures that our overall

space requirement up to now is nHk(T ) + n log e + o(n).
However, we are not representing �, but �� for 0 ≤ � ≤ h (Section 7.1). The structure

above works verbatim for �0, but it also can be used for any level �. The difference
is that at level � there are not σ lists, but rather σ 2�

. Recalling the space analysis in
Section 7.1, the space requirement at level � turns out to be nHk(T ) + (n/2�) log e + o(n)
bits as long as k + 2� ≤ α logσ n. For this we need two conditions: (1) k ≤ α′ logσ n for
some constant 0 < α′ < 1, so we can choose any α ∈ (α′, 1); (2) to stop the recursive
structure at level h′ = log((α − α′) logσ n) = �(log logσ n), so that 2� ≤ (α − α′) logσ n
when � ≤ h′. The levels between h′ and h = 
log log n� (where we store Ah explicitly)
must be omitted, and this means that we must jump directly from level h′ to level h,
just as when we used a constant number of levels in Theorem 10. The number of steps
for that jump is 2h−h′ = O(log σ ).

As we can access each �� in constant time, we first pay O(h′) time to reach level h′
and then pay O(log σ ) to reach level h. This is O(log logσ n+ log σ ) = O(log log n+ log σ )
time to access A[i]. For the space, we have h′ levels taking nHk(T ) + (n/2�) log e + o(n)
each, plus the final level containing A and its inverse. This yields the first result of
Grossi et al. [2003].

THEOREM 12 [GROSSI ET AL. 2003]. The Compressed Suffix Array of Grossi, Gupta,
and Vitter (GGV-CSA) offers the following space/time tradeoffs.

Space in bits nHk log logσ n + 2(log e + 1)n + o(n)
Time to count O(log n(m/ logσ n + log log n + log σ ))
Time to locate O(log log n + log σ )
Time to display � chars O(�/ logσ n + log log n + log σ )
Space in bits 1

ε
nHk + 2(log e + 1)n + o(n)

Time to count O(log n(m/ logσ n + logε n + log σ ))
Time to locate O(logε n + log σ )
Time to display � chars O(�/ logσ n + logε n + log σ )
Conditions for all 0 < ε ≤ 1 is an arbitrary constant;

k ≤ α logσ n, for some constant 0 < α < 1

Note that, compared to Theorem 11, m and � are now divided by logσ n. This is because
Grossi et al. [2003] noted that the process carried out by the SAD-CSA to extract the
text using � character by character can actually be carried out at �h′ , where 2h′ =
O(logσ n) characters are obtained in each step. Thus the counting time is O(m log σ +
polylog(n)). The O(log n) factor multiplying m in previous approaches becomes now
O(log σ ), although new polylogarithmic terms in n appear. On the other hand, the
version using 1

ε
nHk bits is obtained just as with the GV-CSA, using a constant number

1 + 1/ε of levels in [0, h′].
We observe that there is still an O(n) term in the space complexity, which is a conse-

quence of representing each Br,c individually. An alternative is to represent the whole



row using a wavelet tree (Section 6.3, invented by Grossi et al. [2003] for this purpose).
The idea is that, for each row of context s, we encode sequence T s with the binary
wavelet tree of Theorem 8. In our example, for row s = "la", we encode T s = " aa". In
order to retrieve element p from cell (r, c), we just compute selectc(T s, p), adding it to
select1(newCtx, r)−1 to return the value in the final line of Algorithm 4. In our example,
selecta(" aa", 1) = 2 replaces select1(011, 1) = 2.

The binary wavelet tree requires ns H0(T s) + o(ns log σ ) bits of space and answers
the queries in O(log σ ) time. Adding over all the contexts s we get nHk(T ) + o(n log σ )
bits, for k ≤ α logσ n. In exchange, the time increases by an O(log σ ) factor. In level �,
the log σ terms become log(σ 2�

) = 2� log σ . To ensure the extra space stays o(n log σ ) we
must ensure 2h′ = o(log n/ log log n), for example, h′ ≤ (α − α′) log logσ n − 2 log log log n.
Yet, we still have another space problem, namely, the extra O(n) bits due to storing Ah

and A−1
h . These are converted into o(n log σ ) by setting, for example, h = log logσ n+

log log log n.
The search time added over 1 + 1/ε levels in 0 ≤ � ≤ h′ is O(log1+ε n/(log log n)2),

while the time to move from level h′ to h is O(2h−h′ · 2h′
log σ ) = O(log n log log n).

THEOREM 13 [GROSSI ET AL. 2003]. The Compressed Suffix Array of Grossi, Gupta,
and Vitter (GGV-CSA) offers the following space/time tradeoffs.

Space in bits 1
ε

nHk + o(n log σ )
Time to count O(m log σ + log2+ε n)
Time to locate O(log1+ε n)
Time to display � chars O(�/ logσ n + log1+ε n)
Conditions 0 < ε ≤ 1 is an arbitrary constant;

k ≤ α logσ n, for some constant 0 < α < 1

More complicated tradeoffs were given by Grossi et al. [2003]. The most relevant
ones obtain, roughly, O(m/ logσ n + log

2ε
1−ε n) counting time with 1

ε
nHk + o(n log σ ) bits

of space, for any 0 < ε < 1/3; or O(m log σ + log4 n) counting time with almost optimal
nHk + o(n log σ ) space.

In Practice. Some experiments and practical considerations were given by Grossi
et al. [2004]. They showed that bit vectors B can be represented using run-length
encoding and then Elias-γ [Elias 1975; Witten et al. 1999], so that they take at most
2|B|H0(B) bits (and they may take less if the bits are not uniformly distributed). Note
that this result was partially foreseen by Sadakane [2000, 2003] to achieve zero-order
encoding of � in the SAD-CSA (Section 7.1). Grossi et al. [2004] did not explain how to
do rank and select in constant time on this representation, but Grossi and Vitter [2006]
explored binary-searchable gap encodings as a practical alternative.

An interesting result of Grossi et al. [2004] is that, since the sum of all the γ -encodings
across all the cells adds up 2nHk(T ) bits, we could use the same encoding to code each
column in Figure 13 as a whole. The values within a column are increasing. The total
space for this representation is that of the γ -encoding inside the cells (which overall
amounts to 2nHk bits) plus that of the γ -encoding of the jumps between cells. The latter
is o(n) as long as k ≤ α logσ n for some constant 0 < α < 1. Thus, we obtain 2nHk + o(n)
bits. Note, and this is the key part, that the sequence of differences we have to represent
is the same no matter how the values are split along the rows. That is, the sequence
(and its space) is the same � independently of how long the contexts are. Therefore,
this encoding achieves 2nHk + o(n) implicitly and simultaneously for any k ≤ α logσ n.
This is in contrast with their original work [Grossi et al. 2003], where k had to be
chosen at indexing time. Interestingly, this also shows that the Elias-δ representation



of the SAD-CSA (where in fact a column-wise differential representation is used for �)
actually requires nHk +O(n log log σ ) bits of space, improving the analysis by Sadakane
[2000, 2003] (contrast with the other nHk-like solution at the end of Section 8.1).

9. BACKWARD SEARCHING AND THE FM-INDEX FAMILY

Backward searching is a completely different approach to searching using suffix arrays.
It matches particularly well with the BWT (Section 5.3), but it can also be applied with
compressed suffix arrays based on the � function, using the fact that � and LF are the
inverse of each other (Lemma 4). The first exponent of this idea was the FM-Index of
Ferragina and Manzini [2000], and many others followed. We first present the idea and
then describe its different realizations (see also Section 4.1).

9.1. The Backward Search Concept

Consider searching for P in A as follows. We first determine the range [spm, epm] in A
of suffixes starting with Pm. Since Pm is a single character, function C of Lemma 3 can
be used to determine [spm, epm] = [C(Pm) + 1, C(Pm + 1)] (we use c + 1 to denote the
character that follows c in �). Now, given [spm, epm], we want to compute [spm−1, epm−1],
the interval of A corresponding to suffixes starting with Pm−1,m. This is of course a
subinterval of [C(Pm−1) + 1, C(Pm−1 + 1)]. In the general case, we know the interval
[spi+1, epi+1] of A corresponding to suffixes that start with Pi+1,m and want [spi, epi],
which is a subinterval of [C(Pi)+1, C(Pi +1)]. At the end, [sp1, ep1] is the answer for P .

The LF-mapping (Definition 14) is the key to obtain [spi, epi] from [spi+1, epi+1]. We
know that all the occurrences of Pi in L[spi+1, epi+1] appear contiguously in F , and they
preserve their relative order. Let b and e be the first and last position in [spi+1, epi+1]
where Lb = Le = Pi. Then, LF(b) and LF(e) are the first and last rows of M that
start with Pi,m. Recall from Lemma 3 that LF(b) = C(Lb) + Occ(Lb, b) and LF(e) =
C(Le)+Occ(Le, e). The problem is that we do not know b and e. Yet, this is not necessary.
Since b is the position of the first occurrence of Pi in L[spi+1, epi+1], it follows that
Occ(Lb, b) = Occ(Pi, b) = Occ(Pi, spi+1 − 1) + 1. Likewise, Occ(Le, e) = Occ(Pi, e) =
Occ(Pi, epi+1) because e is the last occurrence of Pi in L[spi+1, epi+1]. The final algorithm
is rather simple and is shown in Algorithm 5.

Function C is implemented as an array, using just σ log n bits. All the different vari-
ants of backward searching aim basically at implementing Occ in little time and space.
If we achieve constant time for Occ, then the backward search needs just O(m) time,
which is better than any compressed suffix array from Section 8.

9.2. Backward Searching Using Ψ

Before reviewing the more typical BWT-based implementations, we show that backward
searching can be implemented using function � [Sadakane 2002].

Algorithm 5. Backward searching for the interval in A of the suffixes that start with P1,m.

Algorithm FM-search(P , m, n, C, Occ)
(1) sp ← 1; ep ← n;
(2) for i ← m to 1
(3) sp ← C(Pi) + Occ(Pi , sp − 1) + 1;
(4) ep ← C(Pi) + Occ(Pi , ep);
(5) if sp > ep then return ∅;
(6) i ← i − 1;
(7) return [sp, ep];



Since � and LF are inverse functions, we might binary search values LF(b) and LF(e)
using �. Imagine we already know [spi+1, epi+1] and [C(Pi) + 1, C(Pi + 1)]. Function �
is increasing in the latter interval (Lemma 1). Moreover, [spi, epi] is the subinterval of
[C(Pi) + 1, C(Pi + 1)] such that �( j ) ∈ [spi+1, epi+1] if j ∈ [spi, epi]. Hence, two binary
searches permit obtaining [spi, epi] in O(log n) time.

Backward search then completes in O(m log n) time using the SAD-CSA, just as clas-
sical searching. An advantage of backward searching is that it is not necessary at all to
obtain text substrings at search time. Sadakane [2002] also showed how the backward
search can be implemented in O(m) time if σ = O(polylog(n)), essentially using the
same idea we present in Section 9.4.

As mentioned at the end of Section 8.1, this is how the SAD-CSA is actually im-
plemented. Also, recall that � is implemented via sampling. The binary searching is
performed first over the samples and then completed with a sequential decompression
between two samples. If the sampling step is D = �(log n) (to maintain the space cost
of the samples within O(n) bits), then the binary search complexity remains O(log n)
time and the overall search time O(m log n), even if we do not use four-Russian tech-
niques for fast decompression. If we used normal suffix array searching, we would
access O(m log n) arbitrary positions of �, so the use of four-Russian techniques would
be mandatory to avoid a total search cost of O(m log2 n).

9.3. FMI: Ferragina and Manzini’s Implementation

The first implementation of backward searching was proposed, together with the con-
cept itself, by Ferragina and Manzini [2000]. We call it FMI in this article.

Ferragina and Manzini [2000] showed that Occ can be implemented in constant time,
using O(nHk) bits of space (the FMI was the first structure achieving this space). Es-
sentially, Occ is implemented as the compressed BWT transformed text T bwt plus some
directory information.

They compress T bwt by applying move-to-front transform, then run-length com-
pression, and finally a variable-length prefix code. Move-to-front [Bentley et al. 1986]
consists of keeping a list of characters ranked by recency, that is, the last character seen
is first in the list, then the next-to-last, and so on. Every time we see a new character
c, which is at position p in the list, we output p and move c to the beginning of the list.
This transform produces small numbers over text zones with few different characters.
This is precisely what happens in T bwt. In particular, there tend to appear runs of equal
characters in T bwt (precisely, nbw runs, recalling Definition 15), which become runs of
1s after move-to-front. These runs are then captured by the run-length compression.
Finally, the prefix code applied is a version of Elias-γ with some provisions for the
run lengths. Overall, they show that this representation compresses T bwt to at most
5nHk(T ) + O(σ k log n) bits. This is 5nHk(T ) + o(n log σ ) for k ≤ logσ (n/ log n) − ω(1).

The directories to answer Occ(c, i) resemble the solutions for rank in Sections 6.1
and 6.2. We cut the range [1, n] into blocks of length t, grouped in superblocks of length
t2. Let us define bit vectors Bc[i] = 1 iff T bwt

i = c so that Occ(c, i) = rank1(Bc, i)
(these vectors will not be stored). We use the same superblockrankc and blockrankc

directories of Section 6.1: if i = qt + r = q′t2 + r ′, 0 ≤ r < t, 0 ≤ r ′ < t2, then
Occ(c, i) = superblockrankc[q

′] + blockrankc[q] + rank1(Bc[qt + 1, qt + t], r). This final
rank query is solved by fetching the compressed T bwt stream and processing it using
four-Russians techniques. To find the proper block in the compressed T bwt, we use
directories superblockpos and blockpos, as in Section 6.2. All these tables add up
O((nσ log n)/t2 + (nσ log t)/t) bits.

To process the bits of a compressed block in constant time, we must store the state
of the move-to-front transformation (that is, the recency rank of characters) at the



beginning of each block. This table, mtf[q], requires O((nσ log σ )/t) additional bits. The
four-Russians table is then smallOcc[c, o, B, V ], indexed by a character c ∈ �, an offset
o ∈ [1, t] inside a block, the compressed content B of a block (a bit stream) whose length
is in the worst case t ′ = (1+2 log σ )t, and the state V of the move-to-front transformation
(an entry of mtf, which is a permutation of [1, σ ]). The content of smallOcc[c, o, B, V ]
is Occ(c, o) for the text obtained by decompressing B starting with a move-to-front
transform initialized as V . Thus, rank1(Bc[qt + 1, qt + t], r) = smallOcc[c, r, B, mtf[q]]
is computed in constant time, where B is the piece of the compressed T bwt starting at
position superblockpos[q′] + blockpos[q].

Note, however, that the table entries can be manipulated in constant time on a RAM
machine only if |B| = t ′ = O(log n) and |V | = O(log n). The first restriction yields t =
O(logσ n), whereas the second becomes σ = O(log n/ log log n). The space requirement
of smallOcc is O(σ t2t ′

σ ! log t) bits. If we choose t = x logσ n for constant 0 < x < 1/3,
then 2t ′ ≤ n3x = o(n). Under this setting the overall extra space is o(n log σ ) for σ =
o(log n/ log log n).

In order to locate occurrences, Ferragina and Manzini [2000] sampled text positions
at regular intervals. They marked one text position out of log1+ε n, for some ε > 0, and
collected the A values pointing to those marked positions in an array A′. To know A[i],
they found the smallest r ≥ 0 such that LF r (i) is a marked position (and thus A[LF r (i)]
is known), and then A[i] = A[LF r (i)] + r. This way, they paid O(n/ logε n) extra space
for A′ and could locate the occurrences in O(occ log1+ε n) steps. To determine in constant
time whether some A[ j ] value is marked or not, a bit vector mark1,n tells which entries
are marked. If mark j = 1, then A[ j ] is sampled and stored at A′[rank1(mark, i)]. By using
the techniques of Section 6.2, mark can be stored in O((n/ log1+ε n) log n) = O(n/ logε n)
bits as well (as it has n/ log1+ε n bits set). A similar approach permits displaying Tl ,r in
O(r − l + log1+ε n) steps.

The remaining problem is that there is no easy way to know T bwt
i in order to com-

pute LF(i) = C(T bwt
i ) + Occ(T bwt

i , i). Ferragina and Manzini [2000] gave an O(σ ) time
solution (they assumed constant σ ), but a truly constant-time solution is easily ob-
tained with a table similar to smallOcc: getChar[o, B, V ] returns the oth character of
the corresponding block. So each step above takes constant time.

THEOREM 14 [FERRAGINA AND MANZINI 2000]. The FM-Index (FMI) offers the following
space/time tradeoff.

Space in bits 5nHk + o(n log σ )
Time to count O(m)
Time to locate O(log1+ε n)
Time to display � chars O(� + log1+ε n)
Conditions σ = o(log n/ log log n); k ≤ logσ (n/ log n) − ω(1);

ε > 0 is an arbitrary constant

We note that 5nHk is actually a rather pessimistic upper bound, and that the tech-
nique works with essentially any compressor for T bwt. Thus the FMI obtains unbeaten
counting complexity and attractive space complexity. Its real problem is the alphabet
dependence, as in fact the original proposal [Ferragina and Manzini 2000] was for a
constant-size alphabet. Further work on the FMI has focused on alleviating its depen-
dence on σ .

Some more complicated techniques [Ferragina and Manzini 2000], based on using
alphabet �q instead of �, permit reducing the O(log1+ε n) time factor in the locating



and displaying complexities to O(logε n), yet this makes the alphabet dependence of the
index even sharper.

In Practice. An implementation of the FMI could not follow the idea of table
smallOcc (S in Ferragina and Manzini’s [2000] notation). Ferragina and Manzini [2001]
replaced smallOcc with a plain decompression and scanning of block B, which (accord-
ing to the theoretical value of t) takes O(log n) time and raises the counting complexity
to O(m log n). Some heuristics have also been used to reduce the size of the directories
in practice. Also, instead of sampling the text at regular intervals, all the occurrences
of some given character are sampled. This removes the need to store mark, as it can be
deduced from the current character in T bwt.

Finally, Ferragina and Manzini [2001] considered alternative ways of compressing
the text. The most successful one was to compress each block with a Huffman variant
derived from bzip2, using a distinct Huffman tree per block. If we recall Theorem 4, this
does not guarantee O(nHk) bits of space, but it should be close (actually, the practical
implementations are pretty close to the best implementations of bzip2). The O(nHk)
space is not guaranteed because T bwt is partitioned into equal-size blocks, not according
to contexts of length k. Such a partitioning will be considered in Section 9.6.

9.4. WT-FMI: An O(nH0) Size Implementation

We present now an alternative implementation of the backward search idea that
is unable to reach the O(nHk) size bound, yet is an interesting way to remove the
alphabet dependence. It is called Wavelet Tree FM-Index (WT-FMI). The essential idea
was introduced by Sadakane [2002], when wavelet trees [Grossi et al. 2003] did not
yet exist. Sadakane used individual indicator arrays instead (as those proposed in the
beginning of Section 6.3). The use of wavelet trees was proposed later [Ferragina et al.
2004] as a particular case of the AF-FMI (Section 9.6), and even later [Mäkinen and
Navarro 2005a, 2005b] as a particular case of the RL-FMI (Section 9.5). The same
idea, in the form of indicator vectors, also reappeared for the case of binary alphabets
[He et al. 2005].

The idea of the WT-FMI is extremely simple, once in context (recall Theorem 3).
Just use the wavelet tree of Section 6.3 over the sequence T bwt. Hence, Occ(c, i) =
rankc(T bwt, i) can be answered in O(log σ ) time using the basic wavelet tree (Theorem 8),
and in O(1) time for σ = O(polylog(n)) using the multi-ary one (Theorem 9). The method
for locating the occurrences and displaying the text is the same as for the FMI, yet this
time we also find T bwt

i in O(log σ ) or O(1) time using the same wavelet tree. Algorithm 6
gives the pseudocode.

Depending on which wavelet tree we use, different tradeoffs are obtained. We give a
simplified general form that is valid for all cases. Despite its simplicity, the WT-FMI is
the precursor of further research that lead to the best implementations of the backward
search concept (Sections 9.5 and 9.6).

Algorithm 6. Computing Occ(c, i) on a binary wavelet tree. It is invoked as WT-Occ(c, i, 1, σ, root).
We call Bv the bit vector at tree node v, vl its left child, and vr its right child.

Algorithm WT-Occ(c, i, σ1, σ2, v)
(1) if σ1 = σ2 then return i;
(2) σm = �(σ1 + σ2)/2	;
(3) if c ≤ σm

(4) then return WT-Occ(c, rank0(Bv, i), σ1, σm, vl );
(5) else return WT-Occ(c, rank1(Bv, i), σm + 1, σ2, vr );



THEOREM 15. The Wavelet Tree FM-Index (WT-FMI) offers the following space/time
tradeoffs. Note that log σ/ log log n = O(1) if σ = O(polylog(n)), in which case all the
times are as for the FMI.

Space in bits nH0 + o(n log σ )
Time to count O(m(1 + log σ/ log log n))
Time to locate O(log1+ε n log σ/ log log n)
Time to display � chars O((� + log1+ε n) log σ/ log log n)
Conditions σ = o(n); ε > 0 is an arbitrary constant

In Practice. The implementation of the WT-FMI uses the binary wavelet tree, pre-
processed for rank using the simple techniques of Section 6.1, and gives the wavelet
tree the shape of the Huffman tree of the text. This way, instead of the theoretical
nH0 + o(n log σ ) bits, we obtain n(H0 + 1) + o(n log σ ) bits with much simpler means
Grossi et al. [2003, 2004]. In addition, the Huffman shape gives the index O(mH0)
average counting time. The worst-case time is O(m log n), but this can be reduced to
O(m log σ ) without losing the O(mH0) average time. The idea is to force the Huffman
tree to balance after depth (1+ x) log σ , for some constant x > 0 [Mäkinen and Navarro
2004b].

The Huffman FM-Index by Grabowski et al. [2004, 2006] (HUFF-FMI) obtains com-
parable performance and removes the alphabet dependence in another way: sequence
T bwt is Huffman-compressed, and Occ is implemented using rank over the binary output
of Huffman. Another related approach [Ferragina 2007] uses a word-based Huffman
compression (where words, not characters, are the text symbols) with byte-aligned code-
words. The sequence of codewords is then indexed with an FM-Index, which is able to
efficiently search for word-based queries. The space is much lower than inverted lists,
which nonetheless need to store the text.

9.5. The Run-Length FM-Index of Mäkinen and Navarro (RL-FMI)

The Run-Length FM-Index of Mäkinen and Navarro [2004b, 2004c, 2005a, 2005c]
(RL-FMI) is an improvement over the WT-FMI, which exploits the equal-letter runs
of the BWT (Theorem 5) to achieve O(nHk(T ) log σ ) bits of space. It retains the good
search complexities of the FMI, but it is much more resistant to the alphabet size. Ac-
tually this was the first index achieving O(m) search time for σ = O(polylog(n)) and
taking simultaneously space proportional to the kth-order entropy of the text. The idea
is to compute Occ(c, i) = rankc(T bwt, i) using a wavelet tree built over the run-length
compressed version of T bwt.

In Figure 5 we built the wavelet tree of T bwt = "araadl ll$ bbaar aaaa". Assume
that we run-length compress T bwt to obtain the run heads R = "aradl l$ bar a". By
Theorem 5, we have the limit |R| ≤ nHk(T ) + σ k for any k. Therefore, a wavelet tree
built over R would require (nHk(T ) + σ k)H0(R) + o(n log σ ) bits (Section 6.3). The only
useful bound we have for the zero-order entropy of R is H0(R) ≤ log σ ; thus the space
bound is nHk(T ) log σ + o(n log σ ) for any k ≤ logσ n − ω(1).

The problem is that rank over R does not give the answers we need over T bwt. For ex-
ample, assume we want to compute ranka(T bwt, 19) = 7. We need to know that T bwt

19 lies
at R14. This is easily solved by defining a bitmap newL1,n indicating the beginnings of the
runs in L = T bwt. In our case, newL = 111011110111010111000. We know that the posi-
tion of T bwt

19 in R is rank1(newL, 19) = 14. Yet, this is not sufficient, as ranka(R, 14) = 4
just tells us that there are 4 runs of "a"s before and including that of T bwt

19 . What we
need is to know the total length of those runs, and in which position of its run is T bwt

19
(in our case, second).



Fig. 14. The main RL-FMI structures for the text "alabar a la alabarda$".
The transformed text T bwt is shown only for clarity. The wavelet tree on the
right, built for R, stores only the bitmaps, not the texts at each node.

For this sake, we reorder the runs in newL alphabetically, accordingly to the char-
acters that form the run. Runs of the same character stay in the same relative or-
der. We form bit array sNewL[1, n] with the reordered newL. In our case, sNewL =
111111010100010111011. We also compute array CR indexed by �, so that CR[c] tells
the number of occurrences in R (runs in T bwt) of characters smaller than c (thus CR

plays for R the same role C plays for L in the FMI). In our example, CR["a"] = 4. This
means that, in sNewL, the first CR["a"] = 4 runs correspond to characters smaller than
"a", and then come those of "a", of which T bwt

19 is in the fourth because ranka(R, 14) = 4.
This is illustrated in Figure 14.

To compute rankc(T bwt, i), we first find i′ = rank1(newL, i), the position of the run
T bwt

i belongs to in R. Thus there are j ′ = rankc(R, i′) runs of c’s in T bwt
1,i . In sNewL, the

runs corresponding to c start at j = select1(sNewL, CR[c] + 1). Now there are two cases.
If Ri′ �= c, then the run of T bwt

i does not belong to c, and thus we must accumulate
the full length of the first j ′ runs of c, select1(sNewL, CR[c] + 1 + j ′) − j . If, on the
other hand, Ri′ = c, then the run of T bwt

i does belong to c, and we must count part of
the last run. We are sure that the first j ′ − 1 runs must be fully counted, so we have
select1(sNewL, CR[c] + j ′) − j , and we must add the corresponding part of the last run,
i − select1(newL, i′) + 1. Algorithm 7 gives the pseudocode.

Algorithm 7. Computing Occ(c, i) with the RL-FMI.

Algorithm RLFM-Occ(c, i, R, newL, sNewL, CR)
(1) i′ ← rank1(newL, i);
(2) j ′ ← rankc(R, i′);
(3) j ← select1(sNewL, CR [c] + 1);
(4) if Ri′ = c then
(5) j ′ ← j ′ − 1;
(6) ofs ← i − select1(newL, i′) + 1;
(7) else ofs ← 0;
(8) return select1(sNewL, CR [c] + 1 + j ′) − j + of s;



Thus the RL-FMI solves Occ(c, i) = rankc(Tbwt, i) in the time necessary to perform rankc

over R. The rest is handled just like the WT-FMI.

THEOREM 16 [MÄKINEN AND NAVARRO 2005c]. The Run-Length FM-Index (RL-FMI) offers the
following space/time tradeoffs.

Space in bits nHk log σ + 2n + o(n log σ )
Time to count O(m(1 + log σ/ log log n))
Time to locate O(log1+ε n log σ/ log log n)
Time to display � chars O((� + log1+ε n) log σ/ log log n)
Conditions σ = o(n); k ≤ logσ n − ω(1);

ε > 0 is an arbitrary constant

In Practice. The implementation of the RL-FMI, just as that of the WT-FMI (end of
Section 9.4), uses binary wavelet trees with Huffman shape, with the bitmaps using
the techniques of Section 6.1. This gives at most nHk(T )(H0(R) + 1)(1 + o(1)) space, which
in the worst case is nHk(T )(log σ + 1) + o(n log σ ) bits, close to the theoretical version but
much simpler to implement. In practice, H0(R) is much closer to H0(T ) than to log σ .

9.6. The Alphabet-Friendly FM-Index of Ferragina et al. (AF-FMI)

The Alphabet-Friendly FM-Index of Ferragina et al. [2004, 2006] (AF-FMI) is another im-
provement over the WT-FMI of Section 9.4. The AF-FMI combines the WT-FMI technique
with Theorem 4 to achieve nHk(T ) + o(n log σ ) bits of space and the same search time of
the WT-FMI.

Theorem 4 tells that, if we split Tbwt into substrings T s according to its contexts
s of length k, and manage to represent each resulting block T s, of length ns = |T s|,
in ns H0(T s) + f (ns) bits, for any convex function f , then the sum of all bits used is
nHk(T ) + σ k f (n/σ k). In particular, we can use the binary wavelet tree of Section 9.4 for
each block. It requires ns H0(T s) + O(ns log log ns/ logσ ns) bits (Theorem 6.3), so we need
overall nHk(T )+O(n log log(n/σ k)/ logσ (n/σ k)) bits, for any k. If k ≤ α logσ n, for any constant
0 < α < 1, this space is nHk(T ) + O(n log log n/ logσ n).

Assume s is the j th nonempty context (block) in Tbwt. The wavelet tree of T s allows
us to solve Occ j (c, i), which is the number of occurrences of c in T s

1,i. To answer a global
Occ(c, i) query, we must be able to (1) determine to which block j does i belong, so as to
know which wavelet tree to query, and (2) know how many occurrences of c there are
before T s in Tbwt.

We store bit vector newCtx1,n (recall Section 8.2) marking the block beginnings in Tbwt,
so that j = rank1(newCtx, i). The j th block starts at i′ = select1(newCtx, j ).

We also store a table blockOcc[ j , c], which tells the number of occurrences of c in
Tbwt

1,i′−1, that is, before block j (or before substring T s). Since blockOcc[ j , c] = Occ(c, i′ − 1),
it follows that Occ(c, i) = blockOcc[ j , c] + Occ j (c, i − i′ + 1). Similarly, to determine Tbwt

i ,
we obtain j and i′, and query the wavelet tree of the j th block to find its (i − i′ + 1)th
character.

We saw in Section 8.2 that newCtx uses O(σ k log n) bits of space. Table blockOcc requires
σ k+1 log n bits. As we already have k ≤ α logσ n, this extra space is o(n).

Figure 15 illustrates this, for k = 1. To determine Occ("l", 8), we first find that j =
rank1(newCtx, 8) = 3 is the block number where i = 8 belongs. The first position of block 3
is i′ = select1(newCtx, 3) = 5. The number of occurrences of "l" in Tbwt

1,i′−1, that is, before block
j = 3, is blockOcc[3, "l"] = 0. Inside block 3, corresponding to substring T s = "dl ll$ bb"

of Tbwt, we need the number of "l"s in T s
1,i−i′+1 = T s

1,4. This is given by the wavelet tree,
which gives Occ3("l", 4) = 2. Thus the answer is 0 + 2 = 2.

Yet Ferragina et al. [2004] went further. Instead of choosing a fixed k value in advance,
they used a method by Ferragina et al. [2005] that, given a space overhead function f (ns)



Fig. 15. The main AF-FMI structures for the text "alabar a la alabarda$" con-
sidering contexts of length k = 1. Matrix M of the BWT is shown only for clarity.
We show only one of the wavelet trees, corresponding to context "a", and only a
couple of its Occ j values. Note that this wavelet tree corresponds to a substring of
that in Figure 5.

on top of ns H0(T s), finds the partition of Tbwt that optimizes the final space complexity.
Using blocks of fixed context length k is just one of the possibilities considered in the
optimization, so the resulting partition is below nHk(T ) + σ k f (n/σ k) simultaneously for all
k (and it is possibly better than using any fixed k). That is, although we have made
the analysis assuming a given k, the construction does not have to choose any k but
it reaches the space bound for any k of our choice. Thus this index also achieves the
independence of k mentioned at the end of Section 8.2, yet it obtains at the same time
the minimum space nHk, using significantly simpler means.

The locating of occurrences and displaying of text is handled just as in Section 9.4.

THEOREM 17 [FERRAGINA ET AL. 2006]. The Alphabet-Friendly FM-Index (AF-FMI) offers the
following space/time tradeoffs.

Space in bits nHk + o(n log σ )
Time to count O(m(1 + log σ/ log log n))
Time to locate O(log1+ε n log σ/ log log n)
Time to display � chars O((� + log1+ε n) log σ/ log log n)
Conditions σ = o(n); ε > 0 is an arbitrary constant;

k ≤ α logσ n, for some constant 0 < α < 1

10. LEMPEL-ZIV-BASED INDEXES

Up to now we have considered different ways of compressing suffix arrays. While this
is clearly the most popular trend on compressed indexing, it is worthwhile to know that
there exist alternative approaches to self-indexing, based on Lempel-Ziv compression.
In particular, one of those requires O(m + occ) time to locate the occ occurrences of P in
T . This has not been achieved with other indexes.



Fig. 16. On the bottom right, the LZ78 parsing of the text "alabar a la alabarda$". The rest are
some structures of the KU-LZI: sparseST and revTrie. We use phrase identifiers as node labels.
The smaller numbers in italics outside the nodes are the lexicographic ranks of the corresponding
strings.

10.1. Lempel-Ziv Compression

In the seventies, Lempel and Ziv [1976] presented a new approach to data compression.
It was not based on text statistics, but rather on identifying repeated text substrings and
replacing repetitions by pointers to their former occurrences in T . Lempel-Ziv methods
produce a parsing (or partitioning) of the text into phrases.

Definition 16. The LZ76 parsing [Lempel and Ziv 1976] of text T1,n is a sequence Z [1, n′]
of phrases such that T = Z [1] Z [2] · · · Z [n′], built as follows. Assume we have already
processed T1,i−1 producing sequence Z [1, p − 1]. Then we find the longest prefix Ti,i′−1

of Ti,n which occurs in T1,i−1.6 If i′ > i, then Z [p] = Ti,i′−1 and we continue with Ti′,n.
Otherwise Ti has not appeared before and Z [p] = Ti, continuing with Ti+1,n. The process
finishes when we obtain Z [n′] = “$”.

When phrase Ti,i′−1 is found within T1,i−1, say at Tj , j+(i′−1−i), we say that Tj , j+(i′−1−i)

is the source of phrase Ti,i′−1. The output of an LZ76-based compressor is essentially
the sequence of pairs ( j , i′ − i) (new characters in � that appear are exceptions in this
encoding). An important property of LZ76 is that every phrase has already appeared
before, unless it is a new character of �.

We will also use a Lempel-Ziv parsing called LZ78, where each phrase is formed by
an already known phrase concatenated with a new character at the end.

Definition 17. The LZ78 parsing [Ziv and Lempel 1978] of text T1,n is a sequence Z [1, n′]
of phrases such that T = Z [1] Z [2] · · · Z [n′], built as follows. The first phrase is Z [1] = ε.
Assume we have already processed T1,i−1 producing a sequence Z [1, p−1] of p−1 phrases.
Then, we find the longest prefix of Ti,n which is equal to some Z [p′], 1 ≤ p′ < p. Thus
Ti,n = Z [p′] c Ti′,n, c ∈ �. We define Z [p] = Z [p′] c and continue with Ti′,n. The process
finishes when we get c = “$”.

The output of an LZ78 compressor is essentially the sequence of pairs (p′, c) found at
each step p of the algorithm. Note two facts: (1) all the phrases in an LZ78 parsing are
different from each other; (2) the prefixes of a phrase are phrases.

Figure 16 shows the LZ78 parsing of our example text (among other structures we
review soon). For example, Z [9] = "lab". See also Figure 17, which illustrates a structure
that is conceptually important for LZ78: The Lempel-Ziv trie is the trie storing the set

6The original definition [Lempel and Ziv 1976] actually permits the former occurrence of Ti,i′−1 to extend
beyond position i − 1, but we ignore this feature here.



of strings Z . This trie has exactly n′ nodes (one per string in Z ). If Z [p] = Z [p′] c, then
node p is a child of p′ by edge labeled c.

An important property of both Lempel-Ziv parsings is the following.

LEMMA 7. Let n′ be the number of phrases produced by LZ76 or LZ78 parsing of text T1,n over
an alphabet of size σ . Then n′ = O(n/ logσ n).

To show that the lemma holds for LZ78 it suffices to notice that all the phrases are
different, and therefore we can have only σ � phrases of length �. If we try to maximize
n′ by using first the phrases of length 1, then length 2, and so on, we use O(n/ logσ n)
phrases to cover n characters. In LZ76 we can have repeated phrases, but no phrase Z [p]
can repeat more than σ times before all the longer phrases Z [p] c are already known.
From then on, Z [p] cannot appear alone again.

Furthermore, the size of the Lempel-Ziv compressed text (slowly) converges to the
entropy of the source [Cover and Thomas 1991]. Of more direct relevance to us is that
n′ is related to the empirical entropy Hk(T ) [Kosaraju and Manzini 1999; Ferragina and
Manzini 2005].

LEMMA 8. Let n′ be the number of phrases produced by LZ76 or LZ78 parsing of text T1,n. Then
n′ log n = nHk(T )+ O((k +1)n′ log σ ). As n′ ≤ n/ logσ n, this is nHk(T )+o(n log σ ) for k = o(logσ n).

Lemma 8 implies that a tree with n′ nodes can be stored, even using pointers, in
O(nHk) bits of space. We can even store a constant number of integers per node.

The pioneer work in Lempel-Ziv-based indexes, and also the first compressed index
we know of (albeit not a self-index), was due to Kärkkäinen and Ukkonen [1996a]. It
derived from their earlier work on sparse suffix trees [Kärkkäinen and Ukkonen 1996b],
which we briefly review before entering into Lempel-Ziv based methods. The sparse
suffix tree, which is in turn the first succinct index we know of, is a suffix tree indexing
every h-th text position. It easily finds the aligned occurrences in O(m) time. The others
can start up to h−1 positions after a sampled position. Thus we search for all the patterns
of the form �i P , 0 ≤ i < h. Overall this requires O(σ h−1(h + m) + occ) time. By choosing
h = 1+ε logσ n we get O(nε(m+ logσ n)+occ) search time and O((n log n)/h) = O(n log σ ) bits.

10.2. The LZ-Index of Kärkkäinen and Ukkonen (KU-LZI)

The LZ-Index of Kärkkäinen and Ukkonen [1996a] (KU-LZI) uses a suffix tree that in-
dexes only the beginnings of phrases in a LZ76-like parsing of T . Although they only
proved (using Lemma 7) that their index is succinct, taking O(n log σ ) bits of space,
Lemma 8 shows that it actually requires O(nHk) bits of space (plus text). We present
the results in their definitive form [Kärkkäinen 1999]. As the exact parsing is not
essential in their method, we use the LZ78 parsing to exemplify it.

The LZ76 parsing has the property that each new phrase has already appeared in
T , or it is a new character in �. Thus the first occurrence of any pattern P cannot be
completely inside a phrase; otherwise it would have appeared before (the exception is
m = 1, which is easy to handle and we disregard here). This is also true in LZ78 parsing.
Kärkkäinen and Ukkonen [1996a] divided occurrences among primary (spanning two
or more phrases) and secondary (completely inside a phrase). Secondary occurrences are
repetitions of other primary or secondary occurrences. Assume there are occp primary
and occs secondary occurrences, so that occ = occp + occs.

Figure 16 illustrates two main structures of the KU-LZI. The suffix tree indexing only
phrase beginnings is sparseST; and revTrie is a trie storing the reverse phrases (un-ary
paths are compressed in revTrie; recall Definition 5.



Primary occurrences are found as follows. For some 1 ≤ i < m, P1,i is the suffix
of a phrase and Pi+1,m starts at the next phrase. To ensure that each occurrence is
reported only once, we require that P1,i is completely included in a phrase, so that the
partitioning (P1,i , Pi+1,m) is unique. The (phrase-aligned) occurrences of Pi+1,m are found
using sparseST. The occurrences of P1,i within (and at the end of) a phrase are found by
searching revTrie for Pi Pi−1 . . . P1. For example, P ="labar" appears in phrase 2 split as
("l","abar") and in phrase 9 as ("lab","ar").

Each of those two searches yields a lexicographical range in [1, n′]. Tree sparseST

yields the range [l2, r2] of the phrase-aligned suffixes that start with Pi+1,m, whereas
revTrie gives the range [l1, r1] of phrases that finish with P1,i. Consider now the pth
phrase. Assume Z [p] reversed is ranked xpth among all reversed phrases, and that
the suffix starting at phrase p + 1 is ranked ypth among all phrase-aligned suffixes.
Then we wish to report a primary occurrence (with Pi aligned at the end of Z [p])
iff (xp, yp) ∈ [l1, r1] × [l2, r2]. We use a two-dimensional range search structure range

(Section 6.4) to store the n′ points (xp, yp) and search for the range [l1, r1] × [l2, r2]. For
example, for P ="labar" and i = 3, revTrie finds range [l1, r1] = [8, 8] for "bal" (as
only the eighth reverse phrase starts with "bal", see Figure 16) and sparseST finds
range [l2, r2] = [7, 8] for "ar" (as the seventh and eighth suffixes starting phrases start
with "ar"). Then the search for [8, 8] × [7, 8] in range finds point (7, 8) corresponding to
p = 9.

Secondary occurrences are obtained by tracking the source of each phrase Z [p]. Given
a primary occurrence Tj , j+m−1, we wish to find all phrases p whose source contains
[ j , j + m − 1]. Those phrases contain secondary occurrences Tj ′, j ′+m−1, which are again
tracked for new copies. With some slight changes to the LZ76 parsing, it can be ensured
that no source contains another and thus source intervals can be linearly ordered (by
their start or end positions, both orders coincide). An array source[i] of the phrases sorted
by their source interval position in T , plus a bit array newSrc1,n indicating which text
positions start phrase sources, permits finding each phrase that copies area [ j , j +m−1]
in constant time. We want those sources that start not after j and finish not before
j + m − 1: source[rank1(newSrc, j )] is the last phrase in source whose source starts not
after j . We traverse source backward from there until the source intervals finish before
j + m − 1. Each step in this traversal yields a new secondary occurrence. Algorithm 8
gives the pseudocode.

The index space is O(n′ log n) = O(nHk(T )) for sparseST and revTrie, as both have O(n′)
nodes. Among the range search data structures considered by Kärkkäinen [1999], we
take those requiring O( 1

ε
n′ log n′) bits of space (the one we reviewed in Section 6.4 corre-

sponds to ε = 1). Array source also needs the same space, and bit array newSrc requires
O(n′ log n) bits using the techniques of Section 6.2. Thus the overall space is O( 1

ε
nHk(T ))

bits, in addition to the text.

Algorithm 8. Reporting occurrence [ j , j + m − 1] and all the secondary occurrences that copy
it. We assume that entries sources[i] have fields start and end (where the source of the phrase
starts and ends), and tar get (start position where the phrase is copied to).

Algorithm LZ-Report( j , m, sources, newSrc)
(1) output j ;
(2) i ← rank1(newSrc, j );
(3) while i > 0 ∧ sources[i].end ≥ j + m − 1 do
(4) LZ-Report (sources[i].target + ( j − sources[i].start), m, sources, newSrc);
(5) i ← i − 1;



We note that this index carries out counting and locating simultaneously. The m − 1
searches in revTrie and sparseST add up O(m2) time. Primary occurrences are found
with range, which takes O(log n) time per search plus O( 1

ε
logε n) time per occurrence.

Secondary occurrences are found in constant time.

THEOREM 18 [KÄRKKÄINEN AND UKKONEN 1996A]. The LZ-Index of Kärkkäinen and Ukkonen
(KU-LZI) offers the following space/time tradeoff.

Space in bits O( 1
ε
nHk) + o(n log σ ) + n log σ

Time to count O(m2 + m log n + 1
ε
occ logε n)

Time to locate free after counting
Time to display � chars O(�) (text is available)
Conditions k = o(logσ n); 0 < ε < 1

The first term of the counting complexity can be made O(m2/ logσ n) by letting the
tries move by O(logσ n) characters in one step, yet this raises the space requirement
to O(n log σ ) unless we use much more recent methods [Grossi et al. 2003]. By using
range search data structures that appeared later [Alstrup et al. 2000], the index would
require O(nHk logγ n) bits and count in O(m2 +m log log n+occ) time. Also, a variant of this
index [Kärkkäinen and Sutinen 1998] achieves O(m) counting time and O(occ) locating
time, but only for short patterns (m < logσ n).

The LZ-Index of Navarro [2002, 2004] (NAV-LZI) is an evolution on the KU-LZI. It im-
proves the space complexity by converting the index into a self-index. The counting
time complexity is not competitive, but the locating and displaying times are good. The
NAV-LZI unbeaten in this aspect in terms of empirical performance.

10.3. The LZ-Index of Ferragina and Manzini (FM-LZI)

The LZ-Index of Ferragina and Manzini [2005] (FM-LZI) is the only existing self-index
taking O(m) counting time and constant time to locate each occurrence. It is based on
the LZ78 parsing of T (Definition 17) and requires O(nHk logγ n) bits of space for any
constant γ > 0.

Let us define T # as the text T where we have inserted special characters “#” after
each phrase (so |T #| = n+n′). For our example text T = "alabar a la alabarda$" we have
T # = "a#l#ab#ar# #a #la# a#lab#ard#a$#". We also define T R as text T # read backward,
T R = "#$a#dra#bal#a #al# a# #ra#ba#l#a". Let A be the suffix array of T and AR that of
T R . Finally, let P R = #Pm Pm−1 · · · P1.

The FM-LZI consists of four components: (1) the FMI of text T ; (2) the FMI of text
T R ; (3) lzTrie, the Lempel-Ziv trie of T ; (4) range, a structure similar to that of the
KU-LZI. The first three structures require O(nHk(T )) bits of space, yet this time range

will dominate the space complexity. As the FMI of T is enough for counting in O(m)
time, we will focus in locating the occ occurrences in O(m + occ) time. Occurrences of P
are divided into primary and secondary as in Section 10.2 (they are called “external”
and “internal” by Ferragina and Manzini [2005]).

Let us first consider secondary occurrences. Since every prefix of a phrase is also a
phrase, every secondary occurrence which is not at the end of its phrase p occurs also
in the phrase p′ referenced by p (that is, the parent of p in lzTrie). Figure 17 depicts
the lzTrie. For example, pattern P ="a" occurs in phrase 10. Since it does not occur
at the end of Z [10] ="ard", it must also occur in its parent 4, Z [4] ="ar" and in turn
in its parent 1, Z [1] ="a". Let us call a trie node p a pioneer for P if P is a suffix of
Z [p]. In Figure 17 the pioneer nodes for P ="a" are 1, 7, and 8. Then all secondary
occurrences correspond to lzTrie subtrees rooted at pioneer nodes. Thus, to find those
occurrences, we obtain the pioneer nodes and traverse all their subtrees reporting all
the text positions found (with the appropriate offsets).



Fig. 17. Parts of the FM-LZI. We show T #, T R , and AR (none of which is explicitly represented),
as well as vector lzNode and lzTrie. Only the part of AR pointing to suffixes starting with “#” is
shown in detail. This is the part lzNode is aligned to. For legibility, lzNode shows phrase numbers
instead of pointers to lzTrie. The result of the search for "#a" is illustrated with the actual pointers
from AR to T R and from lzNode to lzTrie.

The pioneer nodes are found with the FMI of T R . We search for P R , which corresponds
to occurrences of P# in T #, that is, occurrences of P that are phrase suffixes. For example,
if we search for P R ="#a" in T R we will find occurrences at positions 12, 15, and 31 of T R

(see Figure 17). This corresponds to the occurrences of "a#" in T #, at positions 20, 17,
and 1, respectively. Aligned to the (contiguous) area of AR corresponding to suffixes that
start with “#”, we store a vector lzNode of pointers to the corresponding lzTrie nodes. As
the range for P R is always contained in the area covered by lzNode, this permits finding
the pioneer nodes of the results of the search. Thus the occs secondary occurrences are
reported in O(m + occs) time. As lzNode has n′ entries, it occupies nHk(T ) + o(n log σ ) bits.

Let us now consider the primary occurrences. The same idea of Section 10.2, of search-
ing for P1,i at the end of a phrase and Pi+1,n from the next phrase, is applied. Yet the
search proceeds differently, and the FMI is shown to be a very fortunate choice for this
problem. We first search for P using the FMI of T . This single search gives us all the
ranges [spi+1, epi+1] in A corresponding to the occurrences of Pi+1,m, 1 ≤ i < m (recall
Section 9.1). We now search for P R in the FMI of T R . After we have each range [sp′

i , ep′
i]

corresponding to the occurrences of Pi Pi−1 · · · P1 in AR , we add character “#”, obtaining
the range [spR

i , epR
i ] of the occurrences of #Pi Pi−1 · · · P1 in AR , 1 ≤ i < m. This corresponds

to occurrences of P1,i# in T #. Note that the search in T R ensures that P1,i is completely
contained in a phrase (and is at the end of it), while the search in T permits Pi+1,m to
span as many phrases as necessary. All this process takes O(m) time.

Consider searching for P ="bar". There are m − 1 = 2 possible partitions for P ,
("b","ar") and ("ba","r"). Those appear in T # as "b#ar" and "ba#r". Using the FMI of
T we get [sp3, ep3] = [20, 21] (A range for "r"), and [sp2, ep2] = [12, 13] (A range for "ar");
see Figures 3 and 8. Using the FMI of T R we get [spR

3 , epR
3 ] = [8, 9] (AR range for "#b", cor-

responding to "b#" in T #), and we get that [spR
2 , epR

2 ] (AR range for "#ab", corresponding
to "ba#" in T #) is empty; see Figure 17. Thus, we know that it is possible to find primary
occurrences corresponding to partition ("b","ar"). The first part corresponds to AR [8, 9]
and the second to A[12, 13]. Looking at Figures 3 and 17, we see that AR [8] = 26 in T R

continues with A[12] = 5 in T and AR [9] = 8 in T R continues with A[13] = 17 in T . The
mapping of positions is as follows: position r in T , belonging to the pth phrase, maps to
rev(r) = (n + n′ + 1) − (r + p − 1) in T R .

Structure range, storing n′ points in [1, n] × [1, n], is used to find those matching pairs.
Let j = A−1[r] be the position in A pointing to Tr,n, where r starts the pth phrase



in T . Similarly, let j R = (AR )−1[rev(r) + 1] be the position in AR pointing to T R
rev(r)+1,n

(which represents T1,r−1). We store pairs ( j R , j ) in range. A range search for [spR
i , epR

i ] ×
[spi+1, epi+1] retrieves all those phrase positions r such that P1,i is a suffix of the phrase
preceding position r and Pi+1,m follows in Tr,n. Thus we report text positions r − i + 1,
where each occurrence P starts. In our example, two points we would store are (8, 12)
and (9, 13), corresponding to r = 5 and r = 17 in T . These will be retrieved by range
query [8, 9] × [12, 13].

Ferragina and Manzini [2005] used for range the structure of Alstrup et al. [2000]
(see Section 6.4) that can store n′ points in [1, n′] × [1, n′] using O(n′ log1+γ n′) bits for
any γ > 0, so that they answer a query with res results in time O(log log n′ + res). In
our case, we must query the structure once per each partition 1 ≤ i < m, so we pay
overall O(m log log n + occp). Note that our points are actually in [1, n] × [1, n]. Those can
be mapped to [1, n′] × [1, n′] using rank and select on bitmaps of length n with n′ bits set.
Using the techniques of Section 6.2, those bitmaps require O(n′ log n) = O(nHk(T )) bits.
Note that the space of the structure, O(n′ log1+γ n′) bits, is O(nHk(T ) logγ n)+o(n log σ logγ n)
if k = o(logσ n).

The O(m log log n) time can be improved as follows. Basically, instead of storing only
the positions r that start a phrase in range, we add all positions [r − log log n + 1, r]. Now
each cut (P1,i , Pi+1,m) would be found log log n times, not once. Thus we can search only
for those i that are multiples of log log n. As we perform only m/ log log n queries, the
overall time is O(m + occp). Although now we store n′ log log n points in range, the space
complexity stays the same. We omit some technical details to handle borders between
phrases.

For patterns shorter than log log n, we must use a different approach. Those patterns
are so short that we can precompute all their primary occurrences with a four-Russians
technique. There are at most σ log log n = (log n)log σ different short patterns, each requiring
a pointer of log n bits to its occurrence list, and the total number of primary occurrences
for all short patterns is at most n′(log log n)2 (as they must start at most log log n positions
before a phrase border, and finish at most log log n positions after it), each requiring log n
bits as well. The overall space for short patterns is o(n log σ logγ n) if σ = o(n1/ log log n). For
example, this is valid whenever σ = O(nβ ) for any 0 < β < 1.

Text contexts are displayed using the same FMI. By using the AF-FMI rather than
the original FMI, we obtain the following result, where counting time is O(m) for σ =
O(polylog0(n)).

THEOREM 19 [FERRAGINA AND MANZINI 2005]. The LZ-Index of Ferragina and Manzini (FM-
LZI) offers the following space/time tradeoffs.

Space in bits O(nHk logγ n) + o(n log σ logγ n)
Time to count O(m(1 + log σ/ log log n))
Time to locate O(1)
Time to display � chars O(� + log1+ε n)
Condition γ > 0 is any constant
Space in bits O(nHk log log n) + o(n log σ log log n)
Time to count O(m(1 + log σ/ log log n))
Time to locate O(log log n)
Time to display � chars O(� + log1+ε n)
Conditions for all σ = o(n1/ log log n); k = o(logσ n);

0 < ε < 1 is any constant

The second version uses other results by Alstrup et al. [2000], which search in time
O((log log n)2 + res log log n) using O(n′ log n′ log log n′) bits. We retain our counting time by
indexing (log log n)2 positions per phrase instead of log log n.



Table I. Simplified Space and Time Complexities for Compressed Full-Text Indexes (For space
complexities, we present only the main term related to entropies and seek to minimize space.

For time complexities, we present bounds that hold on some representative inputs, assuming for
example that the alphabet is small enough. We refer to the theorems given earlier for accurate

statements and boundary conditions. Recall that γ and ε are small positive constants.)
Self Index Entropy Term Time to Count + Locate Theorem Section
N GV-CSA nH0 O(m log2 n + occ log n) 10 7.1
Y SAD-CSA nH0 O(m log n + occ log n) 11 8.1
Y GGV-CSA nHk O(m log σ + log3 n + occ log2 n) 13 8.2
Y FMI 5nHk O(m + occ log1+ε n) 14 9.3
Y WT-FMI nH0 O(m + occ log1+ε n) 15 9.4
Y RL-FMI nHk log σ O(m + occ log1+ε n) 16 9.5
Y AF-FMI nHk O(m + occ log1+ε n) 17 9.6
N KU-LZI O(nHk) O(m2 + (m + occ) log n) 18 10.2
Y FM-LZI O(nHk logγ n) O(m + occ) 19 10.3

The two-dimensional range search idea has inspired other solutions to achieve con-
stant time per occurrence on compressed suffix arrays [He et al. 2005], yet those work
only for sufficiently large m.

11. DISCUSSION

We have presented the main ideas of several compressed indexes as intuitively as
possible, yet with an accuracy enough to understand the space/time tradeoffs they
achieve. In many cases, these depend on several parameters in a complex way, which
makes a fair comparison difficult. Table I provides a rough summary.

It is interesting at this point to discuss the most important common points in these
approaches. Common points within the CSA family and within the FMI family are pretty
obvious, namely, they are basically different implementations of functions � and Occ,
respectively. There is also an obvious relation among these two families, as � and LF
are the inverse of each other (Lemma 4).

What is more subtle is the relation between the different ways to achieve O(nHk)
space. Let us exclude the Lempel-Ziv-based methods, as they are totally different. For
this discussion, the table of Figure 13 is particularly enlightening. Each number j ∈
[1, n] can be classified according to two parameters: the list (or table column) TA[ j ]−1 and
the context (or table row) TA[ j ], A[ j ]+k−1 where j belongs. Within a given cell, numbers j
(sharing TA[ j ]−1, A[ j ]+k−1), are classified according to TA[ j ]+k,n.

As A is sorted by TA[ j ],n (a refinement of the kth context order), all the j values in each
table row form a contiguous subinterval of [1, n], which advances with the row number.
How the j values within each row (corresponding to contexts TA[ j ], A[ j ]+k−1) distribute
across columns, depends on TA[ j ]−1, the characters preceding the occurrences of the
context in T .

Instead of row-then-column, consider now a column-then-row order. Now j values
are collected in the order given by TA[ j ]−1,n, or renaming j = �(i) (as � is a permutation),
�(i) values are collected in the order given by TA[�(i)]−1,n = TA[i],n. This order is of course
i = 1, 2, and so on, thus we are in fact reading array �. Numbers j are increasing inside
each column because they are ordered by TA[ j ],n.

The SAD-CSA structure stores � in order, that is, it stores the table in column-wise or-
der, and then row-wise inside each column. Being σ increasing lists, this leads to O(nH0)
space. The GGV-CSA, instead, stores � in row-wise order. For this sake, it needs to record
how the values inside each row distribute across columns. According to Theorem 4, it is
sufficient to store that distribution information in space close to its zero-order entropy,



Table II. Classifying the Suffix Array Indexes with Size Related to Hk

(Names are followed by a pair indicating (main space term, simplified
counting time) complexities.)

Local Entropy Run Lengths
Using � SAD-CSA (nHk , m log n) MAK-CSA (2nHk log n, m log n)

GGV-CSA (nHk , m log σ ) MN-CCSA (nHk log n, m log n)
Using Occ AF-FMI (nHk , m) FMI (5nHk , m)

RL-FMI (nHk log σ , m)

to achieve nHk overall space. The GGV-CSA uses one wavelet tree per row to represent
the column each element belongs to.

In a widely different view, the AF-FMI structure stores Tbwt context-wise (that is,
row-wise in the table). For each context, it stores the characters of Tbwt, which are
precisely Tbwt

j = TA[ j ]−1, that is, the column identifiers of the positions j lying within
each context (row). The AF-FMI uses the same wavelet tree to represent basically the
same data within the same zero-order entropy space. Thus both structures are using
essentially the same concept to achieve nHk space.

The differences are due to other factors. While the GGV-CSA structure still adheres
to the idea of abstract optimization of A, so that it must provide access to A[ j ] and
use the normal binary search on A, the FMI family uses a completely different form of
searching, which directly builds on Tbwt.

The final practical twist of the GGV-CSA is the discovery that γ - or δ-encoding of
consecutive j values within each cell of the table yields O(nHk) space, independently
of whether one uses row-wise or column-wise order (as there are not too many jumps
across table cells if k is small enough). This permits a much simpler implementation of
the structure, which turns out to be close to the SAD-CSA, initially believed to require
O(nH0) space.

The other indexes use a widely different mechanism to achieve O(nHk) space. They
rely on compressing the runs that appear in �, or similarly those in Tbwt. The former
(MAK-CSA and MN-CCSA, not covered in this survey) achieve O(nHk log n) space by emu-
lating the binary search on A through �, whereas the latter achieve O(nHk log σ ) space
by emulating backward search strategy.

Table II classifies the approaches that reach Hk-related space according to their ap-
proach. In one dimension, we have those based on local entropy (Theorem 4) versus
those based on run lengths (Theorem 5). In the other dimension, we have those based
on � or on Occ. We have included SAD-CSA as having size nHk according to our findings in
this article (yet, remind it needs O(n log log σ ) extra space). We classify the FMI as using
run lengths because this is the key property ensuring its O(nHk) size, although it also
uses some local entropy optimization. Recall that we left aside Lempel-Ziv methods in
this discussion and in the table.

12. CONCLUSIONS

We have given a unified look at the state of the art in compressed full-text indexing.
We focused on the essential ideas relating text compressibility and regularities on
indexes built on it, and uncovered fundamental relations between seemingly disparate
approaches. Those efforts have led to a rich family of results, whose most important
consequence is a surprising fact of text compressibility:

Fact. Instead of compressing a text into a representation that does not reveal anything
from the original text unless decompressed, one can obtain an almost equally space-
efficient representation that in addition provides fast searching on the text.



In other words, the indexes we have reviewed take space close to what can be obtained
by the best possible compressors, both in theory and in practice. In theory, the leading
term in the space complexities of the best indexes is nHk(T ), which is a lower-bound
estimate for many text compression techniques. For substring searches, the same best
indexes are practically optimal, obtaining O(m) counting query time. This remarkable
discovery is without any doubt one of the most important achievements ever obtained
in text compression and text indexing.

However, there are some open questions to be answered. A first one is whether one
can obtain nHk(T ) space and O(m) query time on any alphabet size, and in general which
is the lower bound relating these parameters. Recently, Gagie [2006] showed that, as
soon as σ k+1/c−3ε = �(n), it is not possible to represent T using cnHk(T ) + εn log σ bits
of space. This implies, for example, that in Theorem 17 (and others alike) one could
not loosen the condition on k to k ≤ logσ n − O(1). Other bounds apply to the sublinear
space complexities, which might be bigger than the entropy-related part. Recent lower
bounds [Miltersen 2005; Golynski 2006] on rank and select dictionaries show that only
limited progress can be expected in this direction. On the other hand, kth-order entropy
might not be the best compressibility measure, as for example it can be beaten with
run-length compression.

Another open challenge is to obtain better output sensitivity in reporting queries
within little space. For this goal, there are some results achieving O(occ + o(n)) time for
large enough m [Grossi and Vitter 2000, 2006], O(occ) time for large enough m [He et al.
2005], and even O(occ) time without any restriction on m, for not very large alphabets,
using O(nHk(T ) logγ n) bits of space [Ferragina and Manzini 2005]. The technique by He
et al. [2005] is general and can be plugged into any of the indexes discussed before, by
adding some sublinear-size dictionaries.

In this survey we have focused on the most basic problem, namely, exact search
in main memory. There are many further challenges, with regard to more complex
searching, index construction and updating, secondary memory, and so on. A brief list
of other relevant problems beyond the scope of this survey follows.

—Secondary memory. Although their small space requirements might permit compressed
indexes to fit in main memory, there will always be cases where they have to operate
on disk. There is not much work yet on this important issue. One of the most attrac-
tive full-text indexes for secondary memory is the String B-tree [Ferragina and Grossi
1999], among others [Ko and Aluru 2006]. These are not, however, succinct structures.
Some proposals for succinct and compressed structures in this scenario exist [Clark
and Munro 1996; Mäkinen et al. 2004]. A good survey on full-text indexes in sec-
ondary memory can be found in Kärkkäinen and Rao [2003]. See also Aluru [2005],
Chapter 35.

—Construction. Compressed indexes are usually derived from an uncompressed one.
Although it is usually simple to build a classical index and then derive its com-
pressed version, there might not be enough space to build the uncompressed index
first. Secondary memory might be available, but many classical indexes are costly
to build in secondary memory. Therefore, an important problem is how to build com-
pressed indexes without building their uncompressed versions first. Several papers
have recently appeared on the problem of building the SAD-CSA in little space [Lam
et al. 2002; Hon et al. 2003a, 2003b; Na 2005], as well as the NAV-LZI [Arroyuelo and
Navarro 2005] and the WT-FMI [Mäkinen and Navarro 2006]. There is also some re-
cent work on efficient construction of (plain) suffix arrays (see Puglisi et al. [2007] for
a good survey). With respect to construction of (plain) indexes in secondary memory,
there is a good experimental comparison for suffix arrays [Crauser and Ferragina



2002], as well as some work on suffix trees [Farach et al. 2000; Clifford 2005]. For
further details on the topic, see Aluru [2005], Chapters 5 and 35.

—Dynamism. Most indexes considered are static, in the sense that they have to be rebuilt
from scratch upon text changes. This is currently a problem even on uncompressed
full-text indexes, and not much has been done. Yet there is some recent work on
compressed indexes [Ferragina and Manzini 2000; Hon et al. 2004; Chan et al. 2004;
Mäkinen and Navarro 2006].

—Extended functionality. We have considered only exact string matching in this survey,
yet classical full-text indexes permit much more sophisticated search tasks, such as
approximate pattern matching, regular expression matching, pattern matching with
gaps, motif discovery, and so on [Apostolico 1985; Gusfield 1997]. There has been a
considerable amount of work on extending compressed suffix arrays functionalities to
those of suffix trees [Grossi and Vitter 2000; Munro et al. 2001; Sadakane 2002, 2003;
Grossi et al. 2004; Kim and Park 2005; Grossi and Vitter 2006]. The idea in general is
to permit the simulation of suffix tree traversals using a compressed representation
of them, such as a compressed suffix array plus a parentheses representation of the
suffix tree shape [Munro and Raman 1997]. In addition, there has been some work
on approximate string matching over compressed suffix arrays [Huynh et al. 2006;
Lam et al. 2005; Chan et al. 2006]. Finally, it is also interesting to mention that the
idea of backward searching has been used to search plain suffix arrays in O(m log σ )
time [Sim et al. 2003].

—Technology transfer. An extremely important aspect is to make the transfer from theory
to technology. Already several implementations exist for most indexes surveyed in
this article, showing the proof-of-concept and the practicality of the ideas. It is matter
of more people becoming aware of the intriguing opportunities provided by these
new techniques, for a successful technology transfer to take place. To facilitate the
chance for smooth transfer from prototype implementations to real use, a repository
of standardized library implementations has been made available at the PizzaChili
site (see Section 1). Articles about the FM-Index have appeared in popular journals
such as DrDobbs Journal (December 2003) and in CT Magazine (January 2005). Also, the
bioinformatics community is becoming aware of the techniques [Healy et al. 2003].
Finally, several recent papers on the topic can be found in practical venues, such as
Efficient and Experimental Algorithms (WEA).

Overall, we believe that self-indexing is among the most exciting research areas in
text compression and text indexing, which in a few years has obtained striking results
and has a long way ahead, rich in challenges and possibly new surprises.

APPENDIX. TABLE OF SYMBOLS

Symbol Explanation Section
� Alphabet 2
σ Alphabet size, σ = |�| 2
c Arbitrary symbol from � 2
S Arbitrary string—sequence of symbols from � 2
T Text—(long) string to be indexed and queried 2
n Length of T , n = |T | 2
P Pattern—(short) string to search for 2
m Length of P , m = |P | 2
$ End marker, smaller than other symbols, $ ∈ � 2



Symbol Explanation Section
occ Number of occurrences of P in T 2
A Suffix array of T 3.3
sp, ep Start/end position of occurrences of P in A 3.3
H0(S) Zeroth order entropy of S, H0 = H0(T ) 5
Hk(S) kth-Order entropy of S, Hk = Hk(T ) 5
k Length of a text context 5
s Arbitrary text context in T , |s| = k 5
T s Characters preceding context s in T 5
ns Length of T s, ns = |T s| 5

(equals the number of occurrences of s in T )
nc Number of occurrences of symbol c in T 5
�(i) Permutation built on A, A[�(i)] = A[i] + 1 5
Tbwt Burrows-Wheeler transform of T , Tbwt

i = TA[i]−1 5.3
M Matrix of cyclic shifts of T in lexicographic order 5.3
F First column of M 5.3
L Last column of M , L = Tbwt 5.3
LF Mapping from L to F , LF(i) = C(Li) + Occ(Li , i) 5.3
C(c) Number of symbols smaller than c in T 5.3
Occ(c, i) Number of occurrences of symbol c up to position i 5.3

(usually within string Tbwt)
B Arbitrary bit vector 6
t Block size when cutting a bit vector into blocks 6
κ Number of bits set in a bit vector 6
Z Lempel-Ziv parsing of T , T = Z [1] Z [2] · · · Z [n′] 10
n′ Number of phrases in Z , n′ = |Z | 10
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KÄRKKÄINEN, J. AND RAO, S. 2003. Algorithms for Memory Hierarchies, Chapter 7: Full-text indexes in exter-
nal memory. Lecture Notes in Computer Science, vol. 2625. Springer-Verlag, Berlin, Germany, 149–170.
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MÄKINEN, V. AND NAVARRO, G. 2005a. Succinct suffix arrays based on run-length encoding. In Proceedings
of the 16th Annual Symposium on Combinatorial Pattern Matching (CPM). Lecture Notes in Computer
Science, vol. 3537. Springer-Verlag, Berlin, Germany, 45–56.
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