
An Application Interface for UCHILSIM and the Arrival
of New Challenges

Juan Cristóbal Zagal, Iván Sarmiento, and Javier Ruiz-del-Solar

Department of Electrical Engineering, Universidad de Chile,
Av. Tupper 2007, 6513027 Santiago, Chile

{jzagal, isarmien, jruizd}@ing.uchile.cl
http://www.robocup.cl

Abstract. UCHILSIM is a robot simulator recently introduced in the RoboCup
Four Legged League. A main attractive of the simulator is the possibility of re-
producing with accuracy the dynamical behavior of AIBO1 robots as well as
providing good graphical representations of their surroundings on a soccer sce-
nario. Learning over virtual environments can be performed with successful
transfers of resulting behaviors to real environments. Previous version of the
simulator had a major drawback: Only the UChile1 team could make use of it
since the developed system had high dependency on the team code. In this pa-
per we present results of a development work which was envisioned on the first
presentation of UCHILSIM; an application interface for allowing any OPEN-R
software code to be directly used over the UCHILSIM simulator. The possibil-
ity of having this kind of tool opens a great field of developments and chal-
lenges since more people will develop OPEN-R software, even without having
the robotic hardware but the simulator. Other recent improvements on our simu-
lator are briefly presented here as well.

1 Introduction

Simulation is becoming a hot topic on robotics. An increase in the number of simula-
tion related publications can be observed over the main journals of the field. New
robotics simulators are emerging into the field either for research or commercial ap-
plications, ranging from general purpose simulators to specifics to certain robotic
task, such as grasping or arm soldering trajectory design. New developments on ro-
botic simulators are being recognized by the research community, examples of these
are the robotic grasping simulator GraspIt! [7] that won the NASA Space Telerobotics
Cool Robot of the week prize on February 2002, the general purpose robotic simulator
WebBots [6] that recently won the second place on of EURON2 Technology Transfer
Award, and a publication related to our UCHILSIM simulator won the RoboCup En-
gineering Challenge Award on RoboCup 20043.

1 AIBO and OPEN-R is a trademark or registered trademark of Sony Corporation.
2 EURON is the European Robotics Research Network, http://www.euron.org
3 The robot soccer world federation http://www.robocup.org

 An Application Interface for UCHILSIM and the Arrival of New Challenges

Under our perspective the main attractive of simulation in robotics is to enhance
learning, although this doesn’t seems to be the main reason for its current expansion
on the field. Industrial robots on the automotive industry for example offer simulators
of their products which allow users to get familiar with them by practicing their kine-
matics before running the real hardware. Researchers use simulators for testing new
approaches on arbitrary scenarios and to use multiple robot agents without having the
actual hardware. Applications of simulation on this field are very broad, and the gen-
eration of good simulators is being enforced by the increase on computer power as
Moore’s law establish [8], as well as the exponential improvements on graphics
hardware power [4]. Main criticism to robot development under simulation given by
Brooks [2] several years ago cannot still be defended while facing the current
achievements of computer simulations. But overall a main justification to fight to-
wards simulation on robotics is given by the emerging supporting theories such as the
Theory of Mind [9]. The authors have also proposed some theoretical basis such as
Back to Reality [14].

Towards Improving Our Simulator

UCHILSIM [12] is a dynamics robotic simulator introduced for the RoboCup Four
Legged League; the simulator reproduces with high accuracy the dynamics of AIBO
motions and its interactions within a soccer scenario. The simulator has shown to be a
useful tool for learning into virtual environments with successful behavioral transfers
to reality. In [13] experiments are shown on the generation of dynamics AIBO gaits
form simulation to reality, in [14] experiments are presented about learning to kick
the ball using the Back to Reality approach and the UCHILSIM simulator.

We believe that this is a relevant kind of tool to promote on future developments of
RoboCup. Aiming at improving further our simulator such that it can become a gen-
eral use platform for the four legged league, we have generated a list of main re-
quirements to fulfill by a simulator: (1) Use a generic and flexible definition of robots,
(2) allow to incorporate other user defined objects into the simulation, (3) allow mul-
tiple robots to share a common virtual environment, (4) use of different robotics plat-
forms, (5) use a fast and realistic dynamics engine, (6) provide good graphics and
visualization methods for the desired task, (7) use a fast and robust collision detection
system, (8) provide good programmatic interfaces in order for anybody to use the
system, and (9) run over multiple host platforms. Prior to this publication UCHILSIM
satisfied points 1 to 7, however there was no programmatic interface for allowing any
generic OPEN-R software to run over UCHILSIM. This paper deals precisely with
this point. Here we present an application interface for the UCHILSIM simulator
which will allow spreading the use of this tool.

The reminder of this paper is as follows, section 2 present the implemented inter-
face for UCHILSIM, section 3 present examples of using and testing this interface,
section 4 discuss possible applications of this tool, on section 5 we describe briefly
some recent improvements on the simulator and finally on section 6 we present con-
clusions and envision future challenges for this system.

J.C. Zagal, I. Sarmiento, and J. Ruiz-del-Solar

2 An Application Interface for UCHILSIM

The UCHILSIM simulator has been restricted to the use of the UChile1 RoboCup
four legged team. This restriction was expressed on the form of several code depend-
encies among the simulator and the team source code. In order for any OPEN-R de-
veloper to make use of the simulator it would have involved rewriting a large amount
of code for each particular application.

The idea of building an interface for the simulator was announced on the first
UCHILSIM publication [12], however there were just some ideas at that time. Among
these ideas we considered first to construct a simulator programmatic interface by
writing a large number of primitive functions for accessing the simulated hardware
similarly as one does when using the OPEN-R Sony Software Development Kit [10].
Writing such programmatic interface would have been almost equivalent to generate a
complete SDK for our simulator. A main drawback of this approach is that it would
involve for any user to rewrite its particular application using the set of functions
provided by a parallel SDK. Fortunately we found another alternative at a lower
level, before going into its details we should describe briefly the OPEN-R SDK for
which it was implemented.

Fig. 1. Diagram showing how the OUChilSimComm and the UChilSimComm interface objects
exchange command, sensor and image data trough the network

2.1 Description of the Target SDK

The OPEN-R SDK is an interface proposed by Sony in order to promote the devel-
opments of robots software and hardware, refer to [10]. The interface enhances the
development of modularized pieces of software which are called OPEN-R objects.

 An Application Interface for UCHILSIM and the Arrival of New Challenges

The objects are implemented as independent processes which run concurrently and
intercommunicate by means of messages. The connections among objects are de-
scribed by communication services described on a boot time readable file. This is a
very important characteristic since it allows objects to be replaceable components at
an operative level.

Under OPEN-R the interface to the system layer is also implemented by means of
inter object communication. There is a specific object provided on OPEN-R called
OVirtualRobotComm which is in charge of providing a low level driver interface of
data with the robot hardware by means of exchanging command, sensor and image
data with other objects, this relation is established trough the same configurable
communication service file.

2.2 Description of the New Interface

The idea is to replace the low level object interface OVirtualRobotComm provided
under OPEN-R by another OPEN-R object designed for interfacing data with a simu-
lated robot under UCHILSIM instead of a real robot. The interface object that we
have developed is called OUChilSimComm. This object is designed to run either over
an AIBO robot or on a host computer by using OPEN-R Remote Processing [10].
Although this object runs embedded in the space of OPEN-R objects, it should inter-
change data with the UCHILSIM simulator which runs on a host computer. This
communication is performed by network TCP/IP connection among OUChilSim-
Comm and an interface developed at the simulator side. We call this interface as
UChilSimComm. Figure 1 shows a diagram of the relations among these interface
modules. Command data is collected at the OUChilSimComm module and then dis-
patched to the simulator across the network; similarly sensor data and image data are
packed by the UChilSimComm interface at the simulator side using fixed sized data
structures. Then data is exchanged using TCP/IP connections either across platforms
or over the same host machine (using the local host IP). There are many choices for
implementing that since OUChilSimComm runs over the robot or on a host computer
as well as the other OPEN-R modules.

Data Structures and Packets: The interface between the module and the simulator
uses two different and independent network connections, one for the sensor and image
data and another for the command data. Data packets used for image and sensor data
are of fixed length while packets used for transmitting command data are of variable
length. OUChilSimComm maintains a buffer of sensor and image data which is con-
stantly updated with data coming from the simulator. This data is dispatched to the
calling objects as requested. The command data which is received from the objects is
immediately dispatched to the simulator. The following is a description of each data
flow and how the structures are arranged. This structures slightly differ depending on
the robot model being used (ERS7/ERS210).

Sensor Data: The digital sensor data is generated at UCHILSIM with a similar rate as
the existing on the real robot. After each dynamic integration step, the actual joint
sensor values are collected from the virtual robot joints. Simplistic values are given to
the acceleration sensors, as well as for the switch sensors. A data transmission packet

J.C. Zagal, I. Sarmiento, and J. Ruiz-del-Solar

is filled with all these values containing a header with timestamps related to the data.
When the packet is received by the OUChilSimComm object a OSensorFrameVec-
torData OPEN-R structure [10] is constructed by calling the corresponding data con-
structor provided with OPEN-R, and then filling the corresponding fields with the
incoming data. If this data structure is requested by other objects then it is dispatched,
otherwise the data is stored into a limited size buffer.

Image Data: The digital image data is generated at UCHILSIM with a similar rate as
the existing on the robot camera. After each new YUV image frame is acquired from
the simulator a data structure equal to OFbkImage [10] is generated, and then the data
is split into three packets for the simplicity of network transmission, each packet con-
tains their corresponding time stamps and sequence identifiers. When the packet is
received by the OUChilSimComm object the OFbkImage structure is reconstructed
and then the OFbkImageVectorData [10] structure is updated by directly incorporat-
ing OFbkImage data. The OFbkImageVectorData is constructed by using an existing
OPEN-R constructor.

Command Data: The commands are generated by any running OPEN-R object and
then transmitted to the OUChilSimComm module. The OPEN-R data structure which
contains these data is OCommandVectorData [10]. Once this structure is received the
task of OUChilSimComm is to extract the joint command reference values and timing
data, disregarding any LED command. Then a transmission packet is generated con-
taining a header which indicates command type, number of data frames and timing
data. When the packet arrives UCHILSIM (trough UChilSimComm interface), the
corresponding joint commands are executed as position references for the motors
located at each joint, these reference values are taken by the corresponding PID con-
troller located at each simulated joint.

3 Using and Testing the Interface

As it can be seen the interface is implemented at the system level rather than at the
programmatic level, and therefore the developers don’t need to perform modifications
on their code, just to re define the communication services and to recompile their own
code to the host computer in case this is desired to be used. The user should modify
the stub.cfg file replacing the OVirtualRobotComm service connections with the
OUChilSimComm service. Then on the target directory it should make sure that
CONECT.CFG file contains the right connections.

From the interface side, a configuration file should be updated indicating the corre-
sponding network connections where the robot and UCHILSIM process are located. It
should also be specified the corresponding robot model.

The presented interface has been successfully tested with the simple source code
examples provided with OPEN-R, such as MovingLegs7 [10]. The test was performed
running all processes on a single host computer (2.5 GHz processor, 512 Mb ram, no
graphics accelerator). We have also tested our own source code by applying simple
vision related tasks such as ball following behaviors.

 An Application Interface for UCHILSIM and the Arrival of New Challenges

4 Possible Applications of This Tool

We believe that one of the major applications of this type of tool is that it will allow
more developers to enter RoboCup and in general to program software for robots by
directly using OPEN-R without having to access directly the robot. Another main
advantage of this tool is to accelerate developments into the four legged league by
providing a standard test bed for new ideas. Certainly with this simulator it is no
longer necessary to worry about destroying the hardware or even about the long time
required for specific experiments. Since any OPEN-R code can be used, with this
application interface team code can be evaluated using more statistically proven
strategies such like making two teams to compete for very long trials, this kind of
tool can be established as a standard way of testing code prior to real competitions for
example. It is also important to test and to compare specific parts of team code espe-
cially given the trend of the league on the modularization and specialization on the
functions of vision, localization and strategy. Since the interface is based on the idea
of modular objects which can communicate along a network it is possible to have
extensive distributed systems which share a common dynamical environment. This
can be even extended to the use of Internet. The idea of parallelism can be exploited
further and we can use parallel computing for example for evolving team behaviors.

5 Other Recent Improvements on UCHILSIM

Multitasking and Task Scheduling: An important limitation of the simulator was
the high processor consumption due to graphics. Therefore we have implemented
separated processing threads on the simulator, one is specific for the graphics and the
other is specific for the dynamical computations. This allows us to have always fast
dynamics while having just a best effort result over the graphical representation. A
consequence of this is that the graphics seen by the user might appear blinking when
the window size is too large; however there is always good speed for the dynamics.
Eventually the graphic representation can be totally disconnected from the simulation;
this might be useful for experiments on which there is no need of having the robot
camera, such as offline locomotion learning tasks. Another implemented alternative is
to have hard control of the different tasks such as graphics and dynamics computa-
tions which should be executed. In this respect we have implemented a task scheduler
which allows us to control specific timings for the different tasks.

Graphics and Mesh Improvements: We have incorporated the computer graphics
technique of Shadow Volumes [11]. The attractive of this technique is that it allows
producing precise shadows on real time. Since overlapping shadows generate areas of
varying intensities this allows to reproduce the effect that can be observed when we
have strong sources of light over the soccer scenario; the robot produce shadows in
the directions opposite to the different sources of light. Figure 2 shows some exam-
ples of using this technique. Other improvements that we have introduced, proposed
in [1], are CMOS filters and introduction of camera aberration over the AIBO lenses.

J.C. Zagal, I. Sarmiento, and J. Ruiz-del-Solar

We have implemented an tested also a set of offline tools for optimizing the robot
meshes which are provided by Sony. In particular the interest for the simulator is to
have representative and simple shapes for collision detection. By using the quick hull
algorithm4 in conjunction with the GLOD library [3] we are able to considerably
reduce the amount of points which are used for describing a given shape. Figure 2
shows result of applying this tool, a given limb segment originally consist of 178
vertex, after applying convex hull we get a model of 84 vertex, finally after applying
GLOD tools we get just 68 vertex on our model.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Mesh improvements on a portion of the ERS-7 robot leg, on (a) the original mesh is
presented, (b) is the result of computing the convex hull of the mesh and finally (c) shows the
result of reducing the level of detail by using GLOD library tools. On (d) and (e) examples are
shown of the implementation of the Shadow Volumes CG technique. On (f) a screenshot of the
new website of UCHILSIM is shown.

6 Conclusions and Further Challenges

It was presented an application interface for the UCHILSIM simulator. We envision
the arrival of new challenges related to the optimization of this tool and the use that
other teams might give to it. From our team perspective there are still some tasks to
fulfill; these are the development of a networking interface, improvement of sensor
models and probably a sound interface. People at our group for example is currently
quite motivated on performing experiments with distributed simulation using parallel
computing for producing behavioral learning over large search spaces.

4 please refer to http://www.qhull.org

 An Application Interface for UCHILSIM and the Arrival of New Challenges

Acknowledgements

We thank Paul Vallejos, Carlos Gortaris and Alvaro Neira for their collaboration.
This research was partially supported by Departamento de Investigación y Desarrollo
(Universidad de Chile) under project ENL 05/03.

References

1. Asanuma, K., Umeda, K., Ueda, R., Arai, T.:Development of a Simulator of Environment
and Measurement for Autonomous Mobile Robots Considering Camera Characteristics In:
7th International Workshop on RoboCup 2003, Lecture Notes in Artificial Intelligence,
Springer, Padua, Italy (2003)

2. Brooks, R.A.: Flesh and Machines: How Robots will Change Us. Phanteon, USA, Febru-
ary (2002)

3. Cohen, J., Luebke, D. Duca, N., Schubert, B.: GLOD: A Geometric Level of Detail Sys-
tem at the OpenGL API Level. IEEE Visualization 2003, Seattle, WA (2003).

4. Kelly, F., Kokaram, Anil.: Graphics hardware for gradient-based motion estimation. Em-
bedded Processors for Multimedia and Communications, San Jose, California (2004)
92-103

5. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn.
Springer-Verlag, Berlin Heidelberg New York (1996)

6. Michel, O.: Webots: Professional Mobile Robot Simulation. In: International Journal of
Advanced Robotic Systems, Vol. 1, Num. 1 (2004) 39-42

7. Miller, A., Allen, P.: GraspIt! A versatile simulator for Robotic Grasping, IEEE Robotics
and Automation Magazine, December (2004) 110 -122

8. Moore, G.E.: Cramming More Components Onto Integrated Circuits. Electronics Journal,
April 19 (1965)

9. Scassellati, B.: Theory of Mind for a Humanoid Robot. First IEEE/RSJ International Con-
ference on Humanoid Robotics (2000)

10. Sony Corporation.: OPEN-R SDK Programer’s Guide and Level2 Reference Guide. Pub-
lished by Sony Corporation (2004)

11. Watt, A., Watt, M.: Advanced Animation and Rendering Techniques, Theory and Practice.
Addison-Wesley, New York (1994)

12. Zagal J.C., Ruiz-del-Solar J.: UCHILSIM: A Dynamically and Visually Realistic Simula-
tor for the RoboCup Four Legged League. In: 8th International Workshop on RoboCup
2004, Lecture Notes in Artificial Intelligence, Springer, Lisbon, Portugal, (2004)

13. Zagal J.C., Ruiz-del-Solar J.: Learning to Kick the Ball Using Back to Reality.
In: 8th International Workshop on RoboCup 2004, Lecture Notes in Artificial Intelligence,
Springer, Lisbon, Portugal (2004)

14. Zagal J.C., Ruiz-del-Solar J., Vallejos, P.: Back to Reality: Crossing the Reality Gap in
Evolutionary Robotics. IAV 2004 the 5th IFAC Symposium on Intelligent Autonomous
Vehicles, Lisbon, Portugal (2004)

	Introduction
	An Application Interface for UCHILSIM
	Description of the Target SDK
	Description of the New Interface

	Using and Testing the Interface
	Possible Applications of This Tool
	Other Recent Improvements on UCHILSIM
	Conclusions and Further Challenges
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

