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Abstract: This paper investigates airport peak-load pricing using a vertical structure of airport and airlines. We 

consider a private, unregulated airport and a public airport that maximizes social welfare. We find that compared to 

the public airport which may or may not be budget-constrained, a profit-maximizing airport would charge higher peak 

and off-peak runway prices, as well as a higher peak/off-peak price differential. Consequently, airport privatisation 

would lead to both fewer total air passengers and fewer passengers in the peak period. Although peak-traveling 

passengers benefit from fewer delays, overall it is not efficient to have such a low level of peak congestion, suggesting 

that airport privatization cannot be judged based on its effect on congestion delays alone. We also examine pricing 

behaviour of a private airport strategically collaborating with the airlines, and of a public airport that is constrained to 

charge a time independent price. 
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1. INTRODUCTION 

During the last several years airlines and passengers have been suffering from runway congestion and delays at busy 

airports, and airport delays have become a major public policy issue. Since the early work of Levine (1969), Carlin 

and Park (1970) and Borins (1978), economists have approached runway congestion by calling for the use of price 

mechanism, under which landing fees are based on a flight’s contribution to congestion. While congestion pricing is 

economically desirable, it has not really been practiced. The existing landing fees depend on aircraft weight, and the 

fee rates are based on the accountancy principle of cost recovery required usually for a public enterprise.1 Airports 

have traditionally been owned by governments, national or local. This is changing, however. Starting with the 

privatization of seven airports in the UK to BAA plc. in 1987, many airports around the world have been, or are in the 

process of being, privatized.2 One of the leading arguments for airport privatization is that privatised airports might 

well shift toward peak-load congestion pricing of runway services they provide to airlines, thus reducing delays in 

peak travel times (Poole, 1990; Gillen, 1994; Vasigh and Haririan, 1996). For example, Gillen (1994) argues that 

privatization does a better job of producing efficient runway pricing mechanisms compared to public ownership. 

 

Taken together, today’s shortage of airport capacity has revived much of the recent discussions about peak-load 

congestion pricing and airport privatization. In this paper we carry out an analysis of peak-load congestion pricing for 

a private, profit-maximizing airport, for a public airport that maximizes social welfare, and for a public, welfare-

maximizing airport that is subject to a financial break-even constraint. The comparison then allows us to shed some 

light on their pricing policies and traffic allocations to the peak and off-peak periods. We find that compared to the 

two types of public airport, a profit-maximizing airport would charge higher peak and off-peak runway prices, as well 

as a higher peak/off-peak price differential. As a consequence, privatisation would lead to both fewer total air 

                                                 
1 Airport charges include landing fees, aircraft parking and hangar fees, passenger terminal fees and air traffic control 
charges (if the service is provided by the airport authority), with landing fees being most dominant. The revenues 
derived from these charges are referred to as aeronautical revenues. In addition, busy airports derive significant 
revenues from non-aeronautical business, such as concessions and other commercial activities. As Daniel (2001) 
pointed out, landing fees in the U.S. traditionally recovered the “residual” costs –those remaining after all other 
revenue sources are fully exploited– with the fee rate equalling the annual residual costs divided by the weight of all 
aircraft landing during the year. 
2 A number of major airports in Europe, Australia, New Zealand and Asia were recently privatized, or are in the 
process of being privatized. In the U.S., on the other hand, the airports that are used by scheduled airlines are virtually 
all publicly owned facilities run by the local (city) government or by an agency on behalf of the local government. 
Canada may represent a middle-of-the-road case in which airports recently devolved from direct Federal control to 
become autonomous entities and major airports, though still government-owned, are now managed by private not-for-
profit (but subject to cost recovery) corporations.  



 

passengers and fewer passengers using the peak hours of the day for their travel. Hence, the alleged benefits of 

privatization would appear to have been achieved, as those passengers who still use the peak period indeed face less 

congestion delays; but overall it is not economically efficient to have such a lower level of peak congestion. This 

suggests that airport privatization cannot be judged based on its effect on congestion delays alone. Our analysis also 

shows that whilst a private airport will always use peak-load pricing, somewhat surprisingly, a public airport may 

actually charge a peak price that is lower than the off-peak price. Here the public airport, on the surface, is not 

practicing the peak-load pricing, but such pricing structure is nevertheless socially optimal.  

 

We further investigate the case of a public airport that is constrained to charge a time independent landing fee. 

Somewhat surprisingly, such airport would not choose a fee that is in between the peak and off-peak prices –as the a 

priori intuition may have suggested– but would charge the off-peak price throughout the day. Thus if by external 

reasons a public airport cannot use PLP but a private airport can, privatization may indeed do a better job at solving 

the congestion problem. Further, if the problem of congestion is sufficiently important, the gain from reduced 

congestion might even outweigh the welfare loss from a privatized airport’s exploitation of market power, suggesting 

that moving public airports toward the use of PLP would be worthwhile. Also, we examine .a case where a private 

airport strategically collaborates with the airlines so that it maximizes the joint airport-airline profits, since it has been 

often argued that greater airlines’ countervailing power or more strategic collaboration between airports and airlines 

may improve efficiency of privatized airports by allowing a better alignment of incentives. The analysis shows that 

while the airport’s pricing practices would induce a collusive outcome in the airline market, they would also, owing to 

the elimination of “double marginalization,” induce greater total traffic and greater peak traffic than a pure (no-

collaboration) private airport. Nevertheless, assuming no differences in technical efficiency, both figures will still be 

smaller than those for a pure, or budget-constrained, public airport.  

 

As indicated above, the present paper investigates airport peak-load pricing (PLP) and analyzes both the price level 

and price structure (peak vs. off-peak). This is in contrast to the majority of airport pricing studies which did not 

address inter-temporal pricing across different travel periods. In these congestion pricing studies, there is only one 

demand function (i.e., a single-period model) for the airport, which is obtained by aggregating the demands of many 

agents –in this case, the airlines. Since runways are congestible, when an airline decides to schedule a new flight, it 

induces extra-delays on every other flight. The airline however would only internalize the delays it imposes on its own 



 

flights and not others. Congestion pricing then looks at the price the airport, or a regulatory authority, should charge to 

the airline for the new flight, in order for the airline to internalize all the congestion it produces (e.g., Morrison, 1987; 

Zhang and Zhang, 2003, 2006; Pels and Verhoef, 2004; Basso, 2005). Notice that under congestion pricing, since 

time-varying congestion is absent, there is only one way for either the airport or the airlines to internalize congestion: 

raising prices to suppress the demands. In a PLP framework, on the other hand, excess demand problems arise because 

of the variability of demands during the reference times of the day. If the same price was charged throughout the day, 

there would be peak periods at which the demand would be much higher than at off-peak periods. PLP looks at the 

optimal time-schedule of prices so as to flatten the demand curve and make better use of existing capacity. As 

discussed below, both airports and airlines may engage in such demand spreading by using PLP. Note that in this PLP 

framework, the airport is still a congestible facility, which implies that in the resulting optimal price-schedule, prices 

at peak periods would still have to correct for un-internalized congestion: peak-load prices will have a congestion 

pricing component. Moreover, as demonstrated in the text, the PLP/congestion pricing distinction is also important in 

that a single-period congestion toll is not optimal unless it is charged on top of the optimal charge in the off-peak 

period, which may not be the marginal cost. In other words, restricting the analysis to the toll that should be charged 

during the peak hours offers only a partial view of the problem. 

 

Another major feature of our analysis lies in the basic model structure used, which has strong implications for peak-

load pricing. Here an airport, as an input provider, makes its price decisions prior to the airlines’ output decisions. This 

vertical structure gives rise to sequential PLP: The PLP schemes implemented by the downstream airlines induce a 

different periodic demand for the upstream airport, with the shape of that demand depending, among other things, on 

the number of downstream carriers and the type of competition they exert. The airport then would have an incentive to 

use PLP as well, which in turn affects the way the downstream firms use PLP. Although several very useful models of 

airport peak-load congestion pricing have been developed (e.g., Morrison, 1983; Morrison and Winston, 1989; Oum 

and Zhang, 1990; Arnott, De Palma and Lindsey, 1993; Daniel, 1995, 2001), these studies considered PLP primarily at 

the airport level. Brueckner (2002, 2005), on the other hand, investigated PLP primarily at the airline level. Most of 



 

these studies considered only a public airport that maximizes social welfare, making no assessments about the effects 

of privatization on airport price structures.3 

 

There is an extensive body of literature on peak-load pricing. The classical papers (Boiteaux 1949; Steiner 1957; 

Hirschleifer 1958; Williamson 1966) focused on normative rules for pricing a public utility’s non-storable service 

subject to periodic demands. Some of the usual assumptions were: (i) demand is constant within each pricing period; 

(ii) demand in one period is independent of demand in other periods; (iii) constant marginal costs; (iv) the length of 

pricing periods is fixed and exogenous; (v) the number of pricing periods is exogenous; and (vi) peak time is known. 

Many authors have since contributed to the generalization of PLP results by relaxing one or a group of these 

assumptions, including Pressman (1970), Panzar (1976), Dansby (1978), Craven (1971, 1985), Crew and Kleindorfer 

(1986, 1991), Gersten (1986), De Palma and Lindsey (1998), Dana (1999), Laffont and Tirole (2000), Shy (2001) and 

Calzada (2003).4 However, the case of sequential peak-load pricing, be it for public or private utilities, has yet been 

analyzed. In the telecommunications research, for instance, Laffont and Tirole look at PLP only at the upstream level 

(the network access charge) whilst Calzada considers PLP only at the downstream level. Because of this, we think our 

paper could be a contribution to the general peak-load pricing literature as well.  

 

The paper is organized as follows: Section 2 sets up the model. Section 3 analyzes the output-market equilibrium, 

paying particular attention to the peak and off-peak derived demands for airport services. Section 4 examines the 

airport’s pricing behaviour and discusses how the airport ownership influences the peak and off-peak prices, traffic 

volumes, delays and welfare. Section 5 contains concluding remarks. 

  

2. THE MODEL 

We consider a two-stage model of airport and airline behavior, in which N air carriers service a congestible airport. In 

the first stage the airport decides on its runway charges on airlines, and in the second stage each carrier chooses its 

                                                 
3 As discussed in detail in the model section, we follow Brueckner (2002, 2005) in assuming a “single crossing 
property” when specifying consumers’ travel benefit functions (from where we derive consumer demands). Unlike 
Brueckner, who further imposes an interior crossing condition so that the peak and off-peak periods are not vertically 
differentiated for all consumers, however, we will consider both Brueckner’s interior-crossing case and the vertical-
differentiated case (i.e., peak travel is preferred to off-peak travel by all consumers if airfares and travel delays are 
equal). As shown in the paper, our results hold for both cases. 
4 See Crew, Fernando and Kleindorfer (1995) for an excellent survey of the peak-load pricing literature. 



 

output in terms of the number of flights. We shall consider a discrete choice model in which the consumer chooses 

between three mutually exclusive alternatives, namely: h=p, travel during peak hours of a day; h=o, off-peak period 

travel; and h=n, not traveling. There is a continuum of consumers labelled by θ. We denote )(θhB  the gross benefit 

for consumer θ from traveling in period h and Dh the flight delay associated with travel in period h. We assume that 

consumers’ utility functions are quasilinear, so that the direct utility functions are hh DBxU αθ −+= )( , where x 

is consumption expenditure and α is a consumer’s value of time, making hDα  the monetary costs of delays to 

passengers. Consumers maximize utility by choosing x and },,{ noph ∈  subject to the budget constraint 

)(θItx h ≤+ , where th is the ticket price (airfare) of traveling in period h, and I(θ) is consumer θ’s income. We can 

then focus on the part of the utility function that determines the discrete choice. This conditional indirect utility 

function is given by: 

hhhh tDBV −−= αθθ )()(                                                                     (1) 

 

The flight delay at period h, for h=p,o, may be given by ),;( KLQDD hhh = , where Qh is the total number of flights 

in the period, Lh is the length (duration) of the pricing period, and K is the airport’s runway capacity (measured in 

terms of the maximum number of flights that the airport’s runways can handle per hour). In this paper we consider that 

K and Lh are exogenously given.5 We further assume Lo is sufficiently long so that 0),;( =KLQD oo  throughout 

the relevant range of our analysis. In other words, whilst the narrow peak period is congestible, congestion never 

arises in the broader off-peak period. 6  For the peak delay function, we make the standard assumption that 

)( pp QDD =  is differentiable in pQ  and 

0'',0'
2

2

≥=>=
p

p
p

p dQ
DdD

dQ
dDD                                                     (2) 

This assumption is quite general, requiring only that for given airport capacity, increasing peak traffic will increase 

congestion of the peak period and the effect is more pronounced when there is more congestion; that is, for given 
                                                 
5 The case of variable and endogenous capacity is examined in Basso (2005) and Zhang and Zhang (2006) in a 
congestion-pricing framework. 
6 This is similar to the two-period (peak/off-peak) formulation developed in Brueckner (2002). If the off-peak period is 
also congestible (but not too serious to cause a “peak reversal”), the analysis will become more complicated although 
our main insights will continue to hold. We discuss the issue further in the concluding remarks. 



 

capacity, the peak delay is convex in traffic volume. The assumption is certainly satisfied under a linear delay 

function, )/(),;( KLQKLQD pppp ⋅= δ  –which has been used by, e.g., Pels and Verhoef (2004)– or under the 

functional form suggested by Lave and de Salvo (1968), that is, [ ] 1))/((),;( −−= pppppp LQKKLQKLQD .7   

 

To obtain the consumer demands for peak and off-peak travel, we first follow Brueckner (2002, 2005) in assuming 

that consumers’ benefits functions fulfill 0)()( '' >> θθ op BB . These three conditions say that no two passengers 

have the same peak or off-peak benefits, that consumers are ordered (according to θ) in increasing order of benefits, 

and that the peak benefit function is steeper than the off-peak benefit function everywhere. The latter is a single 

crossing property which holds if, for example, θ is seen as an index of the passenger’s tendency to travel in business 

(Brueckner, 2002). From (1), these conditions directly imply that 0)()( '' >> θθ op VV ; thus, setting 0=nB , the 

following characteristics about the allocation of consumers can be easily shown to hold : (i) if consumer θ1 flies, then 

consumers θ ≥ θ1 fly; (ii) if consumer θ1 does not fly, then consumers θ < θ1 do not fly; and (iii) if θ* denotes the 

consumer who is indifferent between traveling in the peak and off-peak periods, then passengers θ ≥ θ* choose peak 

travel whereas passengers θ < θ* choose off-peak travel or non-travel.8 Hence, if we denote θ f the consumer who is 

indifferent between flying and not flying, (i), (ii) and (iii) above imply, in the case of an interior solution, that 

θθθθ <<< *f . We assume for now the allocation is interior, but later shall find conditions on the parameters for 

this to hold.  

 

                                                 
7 This functional form was previously estimated from steady-state queuing theory and is further discussed in U.S. 
Federal Aviation Administration (1969) and Horonjeff and McKelvey (1983). It has been used by, e.g., Morrison 
(1987), Zhang and Zhang (2003), and Basso (2005). 
8 Proof: (i) θ1 flies if 0)( 1 ≥θhV  for h=p,o. If θ ≥ θ1, 0)()( 1 ≥≥ θθ hh VV  and so θ  flies. (ii) is analogous. (iii) Let 

)()()( θθθ op VVV −≡∆ , and suppose θ flies. Then if 0)( ≥∆ θV , θ chooses to fly in the peak period. If 0)( <∆ θV , 

θ chooses to fly in the off-peak period. Now, suppose that there exists *θ  such that 0*)( =∆ θV  (interior solution). 
Then it follows, since 0)(' >∆ θV ,that if *θθ ≥ , θ chooses peak travel and if *θθ < , θ chooses off-peak travel or 
non-travel. ■ 



 

For simplicity, we assume θ (>0) is distributed uniformly on [ ]θθ ,  and normalize the number of total consumers to 

θθ − , so the number of passengers with type belonging to ],[ 21 θθ  is directly given by 12 θθ − . We further 

assume that the benefit functions follow simple linear forms: 

γθθθθ −⋅=⋅= ppoo BBBB )(,)(                                   (3) 

with 0>> op BB  and 0≥γ . These obviously fulfill the assumed conditions for the benefit functions and it is also 

easy to see that, if θγγ )(1 op BB −≡< , then the peak benefit function is above the off-peak benefit function 

],[ θθθ ∈∀ . In this case, with identical airfares and delays, consumers always prefer traveling in the peak period to 

off-peak traveling. Thus, peak travel and off-peak travel would be vertically differentiated: Controlling for fares and 

delay costs, passengers regard a peak flight as a better product than an off-peak flight. This vertical-differentiation 

feature of air travel can arise if the peak period represents the day’s more desirable travel times. Since people want to 

travel in those “popular” hours, the (unfettered) demand approaches or exceeds the capacity of the existing 

infrastructure, thereby resulting in (potential) congestion during the peak hours. If, on the other hand, 

θγγγ )(21 op BB −≡<≤ , the benefit functions intersect at an intermediate value of θ , thus indicating that 

)()( θθ op BB >  for large values of θ but )()( θθ op BB <  for small values of θ . In this case, periods are not 

vertically differentiated for all consumers. This interior crossing case was the one considered by Brueckner (2002, 

2005), who imposed it to avoid a degenerate (corner) equilibrium in his analysis. Both cases are graphically 

represented in Figure 1. By keeping γ as a parameter we nest both the vertically differentiated case and Brueckner’s 

interior-crossing case in our model. As is to be seen below though, 1γγ <  does not necessarily lead to a degenerate 

equilibrium in our model and, in fact, the value of γ does not play an essential role in any of our results.9 

                                                 
9Note that the case of 2γγ ≥  is not relevant as it implies that with identical airfares and delays, consumers always 
prefer traveling in the off-peak period to peak traveling, violating our peak/off-peak formulation. We also note that our 
demand problem is identical to the one that will result if we fix θ but allow the value of time α to have a distribution 
among consumers (in simple models with endogenous hours of work, the consumers’ “opportunity cost” of time lost 
in delays is proportional to their wages). One could also argue that θ and α are related (Yuen and Zhang, 2005), but 
we do not do this here. 



 

 
 (a) Vertically differentiated periods case  (b) Brueckner (2002)’s interior crossing case 
 10 γγ <≤   21 γγγ <≤  

 
Figure 1: Cases for the benefit functions 

 

Using qh to denote the total number of passengers in period h, then *θθ −=pq  and f
oq θθ −= * . Since runway 

charges are imposed on aircraft (flights), we need to transform the passenger-based demands pq  and oq  into per-

flight demand functions. As in Brueckner (2002), Pels and Verhoef (2004), Basso (2005) and Zhang and Zhang 

(2006), we make a “fixed proportions” assumption, i.e., ≡S  Aircraft Size × Load Factor, is constant and the same 

across carriers. 10  It then follows immediately that *θθ −== SQq pp  and f
oo SQq θθ −== * , or 

equivalently,  

SQSQ o
f

p −=−= ** , θθθθ                                                       (4) 

From (1) and (3), the indifferent flyer *θ  is determined by popop DttBB αγθ +−=−− )()(*  (recall that 

0=oD ), i.e., a passenger’s gain of shifting from the off-peak to the peak period, is balanced by the fare differential 

and the congestion cost. The final flyer fθ  is determined by oo
f tB =θ . Replacing *θ  and fθ in (4) we obtain: 

poooopoo SQBSQBBQQt −−= θ),(                                         (5) 

)()(),( pppooppop QDSQBSQBBQQt αγθ −−−−=                                     (6) 

                                                 
10 That is, the number of passengers in each flight is constant. This assumption also allows us to abstract away from 
the issue of weight-based pricing as aircraft here have the same weight, and thereby focus on the main issue of peak-
load congestion pricing. 
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Equation (5) is the (inverse) consumer demand function faced by the airlines for the off-peak period, whereas (6) is 

the consumer demand function for the peak period. Note that this demand system is not linear if D is not. Further, the 

peak and off-peak flights are substitutes for the final passengers, which gives the room for airlines to “spread the 

demand” across the peak and off-peak periods by using peak-load airfares.  

 

We now turn to the airlines. They have identical cost functions, given by:  
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where i
hQ  is the number of airline i’s flights in period h, i

h
−Q  denotes the vector of flights of airlines other than i, c is 

the airline’s operating cost per flight, and Ph is the airport landing fee in period h.11 Further, parameter β (>0) 

measures the delay costs to an airline per flight, which may include wasted fuel burned while taxiing in line or 

holding/circling in the air, extra wear and tear on the aircraft, and salaries of flight crews. Airlines’ profit functions 

can then be written as: 
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Using these functions, we shall investigate the subgame perfect equilibrium of our two-stage airport-airlines game.  

 

3. ANALYSIS OF OUTPUT-MARKET EQUILIBRIUM 

To solve for the subgame perfect equilibrium we start with the analysis of the second-stage airline competition. Given 

the airport’s runway charges pP  and oP , the N carriers choose their quantities to maximize profits, and the Cournot 

equilibrium is characterized by the first-order conditions, 0/ =∂∂ i
h

i Qφ , h=p,o (note the second-order conditions 

are satisfied).12 Imposing symmetry, NQQ h
i
h /= , and re-arranging, the first-order conditions can be expressed as: 

0
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11 As indicated earlier, airport charges usually include landing and terminal charges (charges for aircraft parking are 
minor). While landing fees are based on aircraft movements, terminal charges are typically per-passenger based. Since 
the present paper is concerned with runway congestion, we shall focus on landing fees. 
12 We have assumed a Cournot game in the output-market competition. Brander and Zhang (1990, 1993), for example, 
find some empirical evidence that rivalry between duopoly airlines is consistent with Cournot behaviour. 
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A useful equation obtained from (9) and (10) is: 
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Since equation (11) depends on Qp but not on Qo, it implicitly defines Qp as a function of oP , pP  and N . 

Substituting this function into (9), we obtain oQ  as a function of oP , pP  and N , leading to: 

);,(),;,( NPPQQNPPQQ pooopopp ==     (12) 

 

Equations (12) are the airport’s demands for the use of its peak and off-peak periods, respectively. Here it is worth 

stressing that, while ),( poo QQt  and ),( pop QQt  –defined by equations (5) and (6)– capture the final consumer 

demands for air travel, );,( NPPQ poo  and );,( NPPQ pop  are the derived demands faced by the airport. As 

demonstrated in the Appendix (Proposition A.1), there exist conditions on the parameters that guarantee interior 

solutions, that is, θθθθ <<< *f  or equivalently, 0,, >nop QQQ . For example, the peak period is used if the 

per-passenger airport peak/off-peak price differential is smaller than the incremental gross benefit, for the highest 

consumer type θ , of shifting from off-peak travel to peak travel. In particular, when the airport does not practice 

peak-load pricing (so op PP = ), the peak period is always used as long as 2γγ < , that is, the benefit functions cross 

each other before θ . The proof also reveals that a smaller airport peak/off-peak price differential increases the 

likelihood of both the peak and off-peak periods being used, and that the off-peak period is always used if θ  is large 

enough.13 In the remainder of the paper we shall restrict our attention to interior allocations. 

                                                 
13 These results suggest that Brueckner (2002, 2005)’s condition of the benefit functions crossing at some point within 

),( θθ , which was introduced to guarantee the existence of a non-empty peak/off-peak interior solution, may not be 



 

 

We now characterize the airport’s demands );,( NPPQ pop  and );,( NPPQ poo . For example, totally differentiating 

(11) with respect to pP  yields: 
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where the inequality follows from (2) and (3). So the airport’s demand for the peak period is, as expected, downward-

sloping in the peak charge. Similarly, we can obtain: 
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We can see that, ceteris paribus, the airport peak charge does not influence total traffic but only the allocation of 

traffic to the peak and off-peak periods. Furthermore, from (11) and (13) we get:  
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where opop PPP −≡∆ − . Both the above results and straightforward comparative statics with respect to N lead to: 

Remark 1: The airport’s demands );,( NPPQ pop  and );,( NPPQ poo  have the following properties:  

(i) They are downward-sloping in own prices; 

(ii) The peak and off-peak periods are gross substitutes; 

(iii) The off-peak runway charge (Po) determines the amount of total traffic, while the difference between the 

peak and off peak charges ( opP −∆ ) determines the partition of that traffic into the two periods, with peak 

traffic declining with the charge differential. 

(iv) ( ))1(//0 +<∂∂< NNQNQ pp , so the number of peak-period passengers increases with N; 

                                                                                                                                                                
needed here. The peak benefit function may be above the off-peak benefit function everywhere, yet an interior 
equilibrium may still exist (see Figure 1).  



 

(v) ( ) 0)1(/)(/)( >++=∂+∂ NNQQNQQ popo , so the number of total passengers increases with N; 

(vi) ( ))1(// +>∂∂ NNQNQ oo , so if the off-peak period is used ( 0>oQ ) then the number of passengers 

traveling in the off-peak period increase with N. 

 

Notice that Part (ii) of Remark 1 shows that the airport has the room to “spread the flights” across the peak and off-

peak periods by using peak-load landing fees. Together with the discussion following equations (5) and (6), therefore, 

our vertical airport-airline structure gives rise to a possible sequential PLP: the PLP schemes implemented by the 

downstream airlines (higher peak airfare) induce a different periodic demand for the upstream airport. On the other 

hand, parts (iv)-(vi) show that the shape of the demands depend on the number of downstream carriers. Given that we 

consider interior solutions, conditional on runway fees pP  and oP , both the peak and off-peak traffic volumes 

increase with the number of firms in the output market.  

 

The final ingredient to characterize the Cournot equilibrium in the output market is related to the important issue of 

airfares: For given airport charges, how do the peak and off-peak airfares compare with each other? From (5) and (6) it 

follows that 

)()()( poppopopop QDBBSQBBttt αγθ −−−−−=−≡∆ −                           (16) 

From the equilibrium condition (11) we obtain an expression for  γθ −− )( op BB . Replacing that expression in 

(16) gives rise to the following airfare-differential formula, evaluated at the Cournot equilibrium: 

 

N
SBB

QQD
N
Q

QD
N
Q

S

QD
SS

PP
t

op
pp

p
p

p

p
op

op

)(
)(')('                          

)(
eqCournot 

−
+++

+
−

=∆ −

αβ

β

                 (17) 

It is clear from (17) that if op PP ≥ , then 0>∆ −opt , that is, if the airport uses peak-load pricing (in the sense that it 

charges a higher landing fee in the peak than in the off-peak), airlines will also use PLP (i.e., higher peak airfares) in 

equilibrium. More interesting perhaps is the fact that, even if the airport prices the periods backwards, i.e., op PP < , 

the airlines may still use peak-load pricing in equilibrium, because the remaining four terms in (17) are all positive. 

 



 

To further interpret (17), first note that holding pP  and oP  constant, Nt op ∂∆∂ − /  is negative, which can be seen by 

differentiating (16) and recalling, from Remark 1, that sub-game equilibrium Qp and Qo increase in N. This implies 

that a monopoly airline would have the largest airfare differential. Since, from (5) Nto ∂∂ /  is also negative, the 

lower the N, the larger the off-peak fare. These two observations are consistent with what we already have in Remark 

1 with respect to total peak and off-peak traffic. Next, it can be seen that for very large N, the airfare differential 

approaches to the difference between an airline’s peak and off-peak per-passenger average costs, i.e., the first and 

second terms on the right-hand side (RHS) of (17). When there is an oligopoly, however, three extra terms are added. 

Specifically, the third term on the RHS of (17) is the cost of extra congestion on an airline’s own flights and caused by 

an additional passenger flying in the peak period. Thus, the first three terms on the RHS of (17) represent the 

difference between an airline’s peak and off-peak marginal costs. The fourth term represents the money value of extra 

congestion to an airline’s passengers when a new passenger chooses to fly in the peak period, whereas the fifth term is 

the mark-up term that arises from the carriers’ exploitation of market power. Hence, as it is now known, oligopoly 

airlines only internalize (charge for) the congestion they impose on their own flights, which has two cost components: 

extra operating costs for the airline, and extra delay costs for its passengers (Brueckner, 2002). When there is a 

monopoly airline, congestion is perfectly internalized but exploitation of market power is at its highest degree. When 

N is large, exploitation of the market power is small but un-internalized congestion is large.  

 

These points can be made more clearly if the Cournot case is compared to the case in which a social planner 

maximizes total surplus in the second-stage game. To do this we first need a measure of consumer surplus (CS). Given 

the linearity of our conditional indirect utility function in (1), CS is given by: 
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where )(θf  is the density function. Using (5) and (6) for to and tp, solving the integrals and replacing *θ  and fθ  

with (4), we finally obtain: 
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The planner maximizes, for given airport charges, the sum of consumer surplus, given by (19), and airline profits: 
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where Φ denotes the aggregate airline (equilibrium) profits. The first-order conditions of (20) with respect to airline 

quantities together with the imposition of symmetry lead to two equations, analogous to (9) and (10), which 

characterize the optimum. Subtracting the two equations from each other yields: 

( ) 0)()()(')()()( 2 =+−−−++++− SBBSPPQDQQDSSBBQ opoppppopp γθβα         (21) 

Using (21) to obtain a new expression for SBB op γθ −− )(  and replacing the term in (16), we get: 
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Conditional on the airport charges and the airline market structure, (22) gives the socially efficient difference between 

the peak and off-peak airfares. This fare differential is equal to the difference between an airline’s peak and off-peak 

average costs (the first and second terms on the RHS of (22)), plus all the external costs associated with a new flyer in 

the peak period, with the latter being the extra congestion cost of all the airlines and passengers, not just that of the 

airline that carries the new peak passenger. Obviously, the last two terms represent the portion of the optimal airfare 

differential that is not directly affected by the airport’s pricing practices. 

 

4. AIRPORT PRICING, TRAFFIC, DELAY AND WELFARE COMPARISONS 

We have shown that the airport decisions, namely, pP  and oP , can influence the subsequent output-market 

competition among airlines. When deciding its runway charges in the first stage, therefore, the airport will take the 

second-stage equilibrium output into account. These decisions may in reality be set by a public airport or a privatized 

airport. Consequently, the objective of an airport may be to maximize welfare or to maximize profit. In this section, 

we first compare airport charges and consequent airfares for these two airport types. We then discuss three extensions, 

namely, the case of a budget-constrained public airport,, the case of a public airport that is constrained to charge a time 

independent fee, and airport-airlines collaboration in a private setting.  

 

4.1 Maximization of social welfare 

Consider first a public airport that chooses Pp and Po to maximize welfare. With three agents –namely, airport, 

airlines, and passengers– social welfare (SW) is the sum of their payoffs: 



 

Φ++= CSNPPNPPSW popo );,();,( π                                             (23) 

where the airport’s profit, π , is given by  

)();,( poppoopo QQCQPQPNPP +⋅−+=π                                    (24) 

In (23), );,( NPPQQ pooo =  and );,( NPPQQ popp =  are the airport’s peak and off-peak demands respectively 

(given by (12)) while C is the unit runway operating cost of the airport (recall we are considering a fixed capacity 

case, so the capacity cost is omitted here). Note that we have assumed that the marginal operating cost is constant, 

since the estimation of cost functions has shown that airport runways have relatively constant return to scale (e.g., 

Morrison, 1983; Pels, Nijkamp and Rietveld, 2003). Consumer surplus, CS, is given by (19), whereas each airline’s 

equilibrium profit is ( )hpoppooh
i

h
i
h

i PNPPQNPPQPQ ),;,(),;,(),,( 1φφ =−Q . Noting the downstream equilibrium 

is symmetric, the aggregate airline profit is given by );,();,( 1 NPPNNPP popo φ⋅=Φ , that is, 
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Substituting Φ, π , and CS into (23) we obtain: 
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Derivation of the pricing formulas then follows from the first-order conditions (details are in the Appendix; W
p

W
o PP ,  

denote the welfare-maximizing runway charges): 
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The above welfare-maximizing airport pricing may be seen as if the fees were determined in two phases. First, choice 

of an off-peak price W
oP  induces the (socially) right amount of total traffic; as can be seen from (27), W

oP  is below 

the airport’s marginal cost. This is needed because exploitation of market power in the airline market would induce 



 

allocative inefficiencies by producing too little output. A welfare-maximizing airport fixes this inefficiency by 

providing a “subsidy” to the airlines and hence lowering their marginal costs in the off-peak period. The exact amount 

of the subsidy depends in part on the extent of market power, which here is captured by N. Once the total traffic is set 

to its optimal level, the next phase is concerned with the optimal allocation of this traffic to the peak and off-peak 

periods, which is, as indicated earlier, determined by opP −∆ . In particular, the public airport sets the peak/off-peak 

price differential to W
opP −∆  that will induce the optimal airfare differential downstream. This is apparent from 

substituting (28) into (17), which yields 
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The RHS of (29) is equal to the optimal airfare differential that is not directly affected by the airport’s pricing 

practices, as discussed in (22). Hence, the outcome is the same as if the airport were to set po PP = , which is optimal 

because there are no differences in costs, and then social welfare is maximized in the airline market.  

 

Brueckner (2002) identified the first term in (28) as the per-flight toll that should be charged by the airport authorities 

to address the problem of un-internalized congestion (note that when N=1, this toll is equal to zero). Pels and Verhoef 

(2004), Basso (2005) and Zhang and Zhang (2006) pointed out that the optimal toll should also include the second 

term, the market-power effect;14 they did this, however, using models of congestion pricing (one period), while 

Brueckner (2002) and the present paper use models of peak-load pricing. This distinction is important because a toll 

equal to the two terms, thereby capturing both the congestion and market power effects, will not be optimal unless it is 

charged on top of the optimal charge in the off-peak period, which is not the marginal cost. In other words, restricting 

the analysis to the toll that should be charged during the peak hours offers only a partial view of the problem. 

 

Notice further that the charge differential, W
opP −∆ , given in (28), is not signed a priori. Hence, it may happen that the 

airport charge is smaller in the peak period than in the off-peak period. More specifically, the airport charge 

differential will be negative for small N. This is so because a “tight” airline oligopoly has an airfare differential that is 

too large due to strong market power, while congestion is largely internalized. As a consequence, the airport price 

                                                 
14 To be fair, although Brueckner did not formally consider the second term in the toll to be charged, he did point out 
that, depending on the size of the market-power term, a pure congestion toll could be detrimental for social welfare. 



 

differential is driven predominantly by the market-power effect. When N is large, on the other hand, the airport price 

differential will be positive. This is so because a “loose” oligopoly would have an airfare differential that is too small 

due to un-internalized congestion, whereas market power is relatively weak. The airport charge differential is then 

driven by the congestion effect. Note from (29) that although W
pP  (the welfare-maximizing peak charge) may be less 

than W
oP , final passengers will, nevertheless, always pay higher peak airfare than off-peak airfare. The above 

discussion may be summarised in the following proposition: 

Proposition 1: For a public, welfare-maximizing airport, (i) the off-peak runway charge is below its marginal cost; (ii) 

for small N, the off-peak runway charge may be greater than its peak runway charge; in this sense, it appears that the 

airport does not use peak-load pricing; (iii) although the airport’s peak charge may be less than its off-peak charge, 

final passengers will nevertheless always pay higher peak airfare than off-peak airfare. 

 

4.2 Maximization of airport profit 

Next, consider a private, unregulated airport. The airport’s profit is given by (24). The airport will choose Pp and Po to 

maximize its profit, and the first-order conditions lead to ( ππ
po PP ,  denoting the profit-maximizing airport charges): 
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where )/)(/( oooooo QPPQ ∂∂−≡ε  is the (positive) price elasticity of off-peak airport demand, 

)/)(/( pooppo QPPQ ∂∂≡ε  is a cross-price elasticity, and ppε  and opε  are defined analogously. Since 

0/ >∂∂ op PQ  and 0/ >∂∂ po PQ  –see (14) or Remark 1– both opε  and poε  are positive, implying that the 

airport charges are higher than would be if the peak and off-peak charges were chosen independently (in which case 

the mark-ups would be proportional to the inverse of own-price demand elasticities only). This is a well-known result 

for multi-product monopolies that produce substitutes. 

 

We can simplify the pricing equations: replacing the elasticities’ definitions and using the fact that 

pppo PQPQ ∂−∂=∂∂ //  in (14) and then equation (13) yield: 
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The RHS of (31) is, by (2) and (3), positive and hence ππ
op PP > : The private airport charges higher runway fees in 

the peak period than in the off-peak period, and this is true for any N. Thus, a profit-maximizing airport has an 

incentive to use peak-load pricing. Furthermore, since NNQS p /)1()( −+ βα  is the extra cost each airline 

induces by not fully internalizing congestion, the first term on the RHS of (31) shows that the private airport will 

overcharge for congestion. Moreover, notice from (30) that the off-peak charge, which determines the amount of total 

traffic, is above marginal cost. This is a result of monopoly power on the part of the airport. There is, therefore, a 

“double marginalization” problem, which is typical of an uncoordinated vertical structure. The discussion leads to the 

following proposition: 

Proposition 2: A private, profit-maximizing airport would use peak-load pricing but would charge more than the cost 

of un-internalized congestion. Further, it would charge an off-peak runway fee that is above its marginal cost. 

 

4.3 Performance comparisons between the private outcome and first-best  

Having derived and characterized the pricing structures for both the public and private airports, we now want to 

compare them. To have a clearer picture about their performance differences, we shall compare not only the off-peak 

runway fees and the peak/off-peak fee differentials, but also the induced traffic levels, delays and total surplus. 

Moreover, we want to assess how these differences (if any) change with the number of airlines, N, which is 

exogenously given and can be considered as a proxy for airline market structure. We summarize our findings in the 

following proposition (the proof is provided in the Appendix): 

Proposition 3: Comparisons of airport pricing, traffic, delay and welfare between the private and public airports are as 

follows: 
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From Proposition 3 we see that a private, profit-maximizing airport would induce too small total traffic as compared to 

the first-best outcome, thereby resulting in allocative inefficiencies. Additionally, a private airport has a greater 

peak/off-peak runway charge differential than a public airport. Hence, with a private airport, the peak period would be 

underused not only because the airport has smaller total traffic, but also because its charge differential is too large. 

Although those passengers who still use the peak period benefit from less delays as part (v) enounces, overall it is not 

economically efficient. Note that part of the welfare loss arises if the consumers (or some of them, with the number 

depending on γ) denied from peak travel view traveling in the peak times as a higher quality product than traveling in 

the off-peak times. To help better understand this proposition, we also offer a schematic representation of the findings 

in Figure 2. 

WWW
tp DSWQ ,,,  

N

opo PP −∆,  

ππ
opo PP −∆,

W
op

W
o PP −∆,

N

Qp,t , SW , D 

πππ DSWQ tp ,,,   

 
Figure 2: Schematic representation of the results in Proposition 3 

 



This discussion highlights an important issue: one of the main ideas behind airport privatization has been that it would 

allow airports to use peak-load pricing and thus help solve the congestion problems. But if privatization is measured 

solely by its effect on congestion delays, it may be seen as a better idea than it actually is and important deadweight 

losses may be overlooked. This result, which holds here for a fixed capacity–peak-load pricing model, was also found 

by Basso (2005) in a congestion pricing model with variable (endogenous) capacity. 

 

We have seen that the public airport is indifferent between values of N –although Basso (2005) showed that this may 

not be the case if airlines are not homogenous or if passengers are affected by schedule delay cost. Given that the 

(welfare) performance of a private airport improves as the number of airlines rises (see Figure 2), it seems important 

to know what would be the preferred N of a private airport itself. From (24) we have: 
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where the first equality follows from the envelope theorem and the inequality follows from Remark 1 and the fact that 

prices are above marginal costs. Thus, the private airport prefers a large N, which is a desirable property, given the 

findings of Proposition 3.  

 

4.4 Constrained public airport: the financial break-even case and the uniform pricing case 

In the above analysis of public airport’s pricing behaviour, we have not included a financial break-even constraint on 

the airport, which may represent a more realistic case nowadays. The unconstrained first-best solution may lead to 

budget inadequacy. One possible solution for this would be to use two-part tariff, that is, to charge a fixed fee in 

addition to the marginal (per flight) charge. However, the use of a fixed-fee may not be feasible for a number of 

reasons. One of them is the absence of symmetry at the airline level; as a consequence, the airport would need to 

charge differentiated fixed fees (depending on the airlines) in order to achieve the first-best, something that may 

encounter strong opposition and may even be unlawful. If lump-sum transfers are not possible, then Ramsey-Boiteaux 

prices should be considered. In general, as demonstrated analytically in Basso (2005) and Zhang and Zhang (2006), 

the pricing formula of a budget-constrained public airport varies between the formula for an unconstrained welfare-

maximizing airport and the formula for a profit-maximizing airport. Likewise, in terms of social welfare this second-

best situation would fall in between the first-best and the private outcome, and would move towards the latter when 



 

the severity of the budget constraint rises. Analytically, there is little more to say regarding this issue. A rudimentary 

numerical simulation shows that for N=4 (for example) whilst the private outcome would attain 71% of the first-best 

welfare level, the budget-constrained public airport would attain 99%, very close to the first-best outcome.15  

 

Another major concern of our public-private comparison in Section 4.3 is that such comparison may not be the most 

relevant one. As indicated in the introduction, public airports have not really practised peak-load pricing. For 

whatever reason, most public airports currently charge landing fees that are undifferentiated by time of day. We now 

consider pricing behaviour of a public airport that is constrained to use such a uniform pricing scheme. Formally, the 

airport’s problem is the maximization of social welfare (26), subject to the constraint op PP = . Derivation of the 

pricing rules follows from maximization of the corresponding Lagrangean function, yielding:16 
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op PP =  

Hence, if the public airport is constrained to charge a flat landing fee, it would not choose a fee that is in between the 

peak and off-peak prices –as the a priori intuition may have suggested– but would charge the off-peak price W
oP  

throughout the day! This implies that the airport would be doing nothing regarding congestion, irrespective of how 

acute the problem is. In particular, when N is large and hence un-internalized congestion is severe (while airlines’ 

market power is weak), the airport would still charge below marginal cost throughout the day, rather than charging 

for congestion. In other words, if the airport charges a flat fee, it would not be the case that it distorts the charging 

and meets “in the middle” of prices W
oP  and W

pP ; it is actually not taking congestion into account whatsoever. As a 

result, congestion would certainly worsen as the number of airlines increases.  

 

Now, because Po is below the marginal cost, in this case the airport would always run a deficit, even for large N, 

unless two-part tariff is feasible. However, adding a budget constraint to the problem does not change things much. 

From what we have just found, if the airport needs to break even but charges a flat fee, it would obviously raise the 

                                                 
15 Details of this and others illustrations (see below) are available upon request. 
16 The derivation of these pricing rules is quite similar to the derivation of equations (27) and (28), which is provided 
in the Appendix. It is sufficient to add )( op PP −µ  to SW in (26) in order to form the Lagrangean (where µ is the 
multiplier) and then proceed in a similar fashion.  



 

(uniform) price until it can cover its costs, something that happens when that the price equals marginal cost: 

po PCP ==  (this is indeed easy to show formally). So, again, the airport would not really be doing anything to 

deal with the congestion problem.  

 

These observations are important: on one hand, if by external reasons a public airport cannot use PLP but a private 

airport can, then privatization may indeed do a better job at solving the congestion problem. In terms of social 

welfare, the comparison of the two cases would obviously depend on several parameter values. For example, for 

N=50 in our numerical example, the private outcome attains 80% of the first-best welfare level, while a budget-

constrained public airport charging a uniform price attains 88%, a quite smaller gap than before. More generally, if 

the problem of congestion is sufficiently important and if N is large, the gain from reduced congestion could 

analytically outweigh the welfare loss from a privatized airport’s exploitation of market power. On the other hand, if 

public airports have no institutional reasons to avoid peak-load pricing, moving public airports toward the use of PLP 

is something that is worthwhile and urgent to do. 

 

4.5 Airport-airlines strategic collaboration 

Consider next an airport that has some sort of strategic agreements with the airlines using it. The reasons why it is 

interesting to look at this case are two-fold: on one hand, a simple pricing mechanism, two-part tariff, may be enough 

for the outcome of joint profit maximization to arise. On the other hand, it has been often argued that greater airlines’ 

countervailing power or more strategic collaboration between airlines and airports may improve efficiency of 

privatized airports by allowing a better alignment of incentives, and even may make price regulation unnecessary (see, 

e.g., Beesley, 1999; Condie 2000; Forsyth, 1997; Starkie, 2001; Productivity Commission, 2002; Civil Aviation 

Authority UK, 2004). The analysis of joint profit maximization may then serve as another benchmark case for our 

comparison. Formally, the objective faced by this airport is to maximize the sum of the airport’s profit and airlines’ 

profits, that is, maximize Φ+π  with respect to Po and Pp. The pricing formula then follow from the first-order 

conditions of the problem ( JP
oP  and JP

pP denoting the joint profit-maximizing airport charges): 
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The interpretation of the JP airport’s pricing rules (32) and (32) is as follows. As before, this airport may be seen as 

deciding its runway fees in two phases; first, it induces a contraction of total traffic by choosing an off-peak price 

JP
oP  above its marginal cost. It does so because the failure of coordination among the airlines results in their 

producing too much with respect to what would be best for them as a whole (referred to as the “business stealing 

effect”). The amount of excess production depends on how tight the oligopoly is, which is why the off-peak mark-up 

decreases with N. In particular, when the airline market is monopolized, (32) shows that CPJP
o =  so the airport does 

not need to charge the mark-up at all. Comparison of (32) and (30), however, shows that the total traffic contraction in 

the JP case is smaller than that in the pure private case; indeed, coordination of the vertical airport-airlines chain 

resolves the double-marginalization problem. In the second phase, the airport chooses the (non-negative) price 

differential JP
opP −∆  that will induce the airlines’ cartel outcome, destroying airline competition downstream. Hence, 

the outcome is the same as if the airport were to set po PP =  and a cartel were running the airline market.  

 

This result, which was obtained by Basso (2005) in a congestion pricing, two-part tariff setting, has different intuitions 

depending on why the maximization of joint profits is the relevant case. With two-part tariffs, the private airport uses 

the variable prices, peak and off-peak, to destroy competition downstream in order to maximize the airline profits, 

which are later captured by the airport through the fixed fee. When the joint profit maximization arises because of 

collaboration between airlines and the airport, what happens is that the airlines would like to collude in order to 

increase profits, but are unable to do so themselves. What they manage to do, however, is to “capture” an input 

provider (airport) to run the cartel for them. By altering the prices of the inputs (runway services) and hence the 

downstream marginal costs in both the peak and off-peak periods, the input provider induces both the collusive total 

output and the “right” (to the airlines) allocation of passengers to the peak and off-peak periods. The upstream firm is 

then rewarded with part of the collusive profits, which is where bargaining power enters the picture. Note that the 

airport pricing rules (32) and (33) take into account the congestion externality and the business-stealing effect at both 



 

pricing phases: the airport’s price differential has two parts.17 When N=1, there is no business-stealing effect and 

congestion is perfectly internalized by the monopolist. Consequently, both terms vanish: with a monopoly airline, this 

type of airport would not use peak-load pricing.  

 

Now, despite the fact that the result is as if airlines were colluding, this case is not worse, in terms of social welfare, 

than a private airport charging linear prices as in Section 4.2. This is because, here, the two other harmful externalities, 

namely, the vertical double marginalization and the congestion externality, have been dealt with. In effect, we can 

show that the JP case represents a middle-of-the-road case between the profit maximization and first-best: in 

Proposition 3, the runway fees, traffic volumes, delays and social welfare will be in between those of the private and 

public airport cases. And in Figure 2, the curves pertaining to the JP case would be parallel displacements of the 

public airport curves, lying in between the two existing public and private curves.18 Strategic collaboration between 

the airport and the airlines smoothes the airport-charge problem. But recall that the downstream airfares would be as if 

the airlines were colluding, so we cannot expect that the JP ends up being very close to the first-best. In effect, our 

numerical simulation has shown that the JP would correspond to 81% of the maximum social welfare attainable, 

which is better than the pure private outcome but is worse than the performance of a budget-constrained public airport. 

 

5. CONCLUDING REMARKS 

Our main objective in writing this paper is to analyze the sequential peak-load pricing (PLP) problem that arises when 

airports are recognized as input providers for final consumer markets facing periodic demands, and to contribute to the 

understanding of the effect of airport privatization on congestion delay and social welfare. We have analyzed this PLP 

problem for a private airport and a private airport that strategically collaborates with the airlines, as well as for various 

types of public airport. We found that privatization would not induce efficient PLP schemes as it has been argued in 

some studies. While a private airport always has an incentive to use PLP –higher runway fees in the peak than off-

                                                 
17 This idea of an upstream firm running the cartel for the downstream firms has been discussed in the vertical control 
literature and, particularly, in the input joint-venture case. For example, Chen and Ross (2003) formalized the 
conjecture that input joint-ventures can facilitate collusion and push a market toward the monopoly outcome. If airport 
provision was seen as an input joint-venture by the airlines, our results show three things in addition to what Chen and 
Ross have found. First, the results hold even in a peak-load pricing setting, i.e., when demand is periodic. Second, if 
there are externalities, the input prices are, additionally, used to force their internalization by downstream competitors. 
Third, when marginal costs downstream are not constant, the outcome is not as in a monopoly or a downstream 
merger, but as in a cartel. 
18 The proofs of the results discussed in this paragraph are available upon request. 



 

peak periods– irrespective of the number of airlines servicing the airport and even when the airlines have used PLP 

themselves, it would overcharge for congestion and its pricing structure would induce insufficient total traffic and 

peak traffic as compared to the socially optimal levels or the levels associated with a budget-constrained public 

airport. Somewhat surprisingly, depending on the degree of carriers’ market power, a public airport may choose a 

peak charge that is lower than the off-peak charge, so as to offset the market power downstream at the airline level. 

Here, the public airport, on the surface, is not practicing the peak-load pricing, but such pricing structure is 

nevertheless socially optimal. Another surprising new result is related to the case of a public airport that is constrained 

to charge a time independent landing fee. Such airport would not choose a fee that is in between the peak and off-peak 

prices –as the a priori intuition may have suggested– but would charge the off-peak price. Thus if by external reasons 

a public airport cannot use PLP but a private airport can, privatization may indeed do a better job at solving the 

congestion problem. Further, if the problem of congestion is sufficiently important, the gain from reduced congestion 

might even outweigh the welfare loss from a privatized airport’s exploitation of market power. This suggests that if 

public airports have no institutional reasons to avoid peak-load pricing, moving public airports toward the use of PLP 

would be worthwhile. Finally, a private airport that strategically collaborates with the airlines would induce greater 

total traffic and peak traffic than a pure private airport, but both figures will still be smaller than those for a pure 

public airport or a budget-constrained public airport. If the airport collaborates with a monopoly airline, it would not 

use peak-load pricing.  

 

The paper has raised several other issues and avenues for future research. First, while the model covers the monopoly 

and perfect competitive market structures (at the airline level), it limits the oligopoly analysis to a symmetric Cournot-

Nash equilibrium. As pointed out by an anonymous referee, assuming a symmetric airline equilibrium is most 

reasonable for airports like (in the U.S.) Los Angeles, LaGuardia, JFK, Boston, Washington National, and perhaps 

Chicago O’Hare and Dallas/Ft. Worth. A number of other hub airports however, typically have one airline with over 

half of the departure traffic. Here, the large airline is not a monopoly, and the many airlines with small market shares 

may be modelled as competitive fringe or as Stackelberg followers. In these cases, if the large airline moves a flight 

from the peak to off-peak periods, it may induce some fringe carriers’ flights to move from the off-peak to peak 

periods, especially if the off-peak period is also congestible. As demonstrated by Daniel and Harback (2007), when a 

Stackelberg dominant airline faces an equilibrium in which relative congestion levels are determined by the 

equilibrium behaviour of other airlines, its ability to internalize congestion is limited. Therefore, our assumptions 



 

(symmetric Cournot-Nash equilibrium) lead to a role of congestion which is less important than would be under 

Daniel and Harback’s assumptions. Further investigating how the dominant carrier interacts with the small carriers and 

the associated impacts on airport capacity, peak-load pricing and congestion would make the analysis and policy 

implications applicable to a larger number of hub airports. Second, we have assumed a monopoly airport. This 

assumption is quite common in the airport literature and is understandable given the local monopoly nature of an 

airport. The situation is changing, however, as a result of the continuing rapid growth in air transport demand and the 

dramatic growth of low cost carriers, which has enabled some secondary airports to cut into the catchment areas of 

large airports. Many of the major markets in the U.S. and elsewhere now have at least two commercial airports, e.g., 

New York, Los Angeles, Chicago, Washington DC, San Francisco, and London. Moreover, privatization would 

probably increase competition from regional airports. A recent analysis on pricing and capacity competition between 

two congestible airports was Basso and Zhang (2007), which casts the problem in a one-period congestion model. We 

see analysis of the two-period peak-load pricing with competing airports as a natural and important extension. 

 

Although the airline industry is chosen for analysis, our basic model structure, in which airports, as input providers, 

make their pricing decisions prior to airlines’ strategic interactions in the final output market, is highly relevant to 

several other industries including electricity, telecommunications, and transport terminals (e.g., the vertical chain of 

ports-shipping liners-shippers). In telecommunications, for example, at the upstream level there are the network 

owners, while downstream there are carriers who must use the network in order to produce the final good (telephone 

calls). Like airports, these industries are undergoing privatization in a number of countries. We note that the sequential 

PLP method used in the present paper may be useful in examining similar issues in those sectors as well, particularly 

when these industries are prone to have congestion problems. 
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APPENDIX 

 

• Proposition A.1: Conditions for an interior allocation of consumers  

(i) If SBBSPP opop γθ −−<− )(/)( , then the peak period is used, that is θθ <* . 

(ii) If SPcB oo /)( +<θ , then some consumers will not fly, that is θθ >f . 

(iii) If θ  is large enough, then the off-peak period is used, that is fθθ >* . 

 

Proof:  

First, equivalent conditions for interior allocations, but in terms of Qp and Qo are:  

The peak is used: 00/)( ** >⇔>−⇔< oQSθθθθ  

Some consumers do not fly: SQQSS po
ff /)(/)(/)( θθθθθθθθ −<+⇔−<−⇔>  

The off-peak is used: 00/)( ** >⇔>−⇔> o
ff QSθθθθ  

With this, the proofs of each part are: 

(i) Note that )( op Ω+Ω−  in (11) is strictly increasing in Qp , and ( ) 0>Ω+Ω− ∞→pQ
op . Also, 

( ) SBBSPP opopoQ
op

p
γθ +−−−=Ω+Ω− = )()( . Hence, if SBBSPP opop γθ −−<− )()( , then 

( ) 0<Ω+Ω− =oQ
op

p
and 0>pQ .                          ■ 



 

(ii) From Ωo=0 in (9) we get that ooopo PcSBNNSBQQ −−=++ θ/)1()( 2 , This imply that 

)/()( 2SBPcSBQQ ooopo −−<+ θ . Hence, a sufficient condition for 
S

QQ po
θθ −

<+  is: 

SSBPcSB ooo /)/()( 2 θθθ −<−− , which leads to SPcB oo /)( +<θ .        ■ 

(iii)  From Ωo=0 we know that  
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p . And since 0/~

>∂∂ θpQ , the condition is always 

fulfilled for θ  large enough, even when 1γγ <  – i.e. when the peak benefit function is above the off peak 

benefit function everywhere in ),( θθ .                                                                                                ■ 

 

Part (i) says that the peak period is used if the airport price differential between peak and off-peak is not too large. 

Specifically, the per-passenger airport price differential has to be smaller than the incremental benefit, for the highest 

consumer type, of changing from the off-peak to the peak. If the airport does not practice PLP, the peak is used as long 

as 2γγ < . Part (ii) says that if θ  is low enough, then some consumers will not fly. In particular, the lowest 

consumer type must have a willingness to pay for off-peak travel that is smaller than the airlines’ per-passenger 

marginal cost for an off-peak flight. Finally, part (iii) implies that Brueckner (2002, 2005)’s interior crossing 

property, which imposes that )()( θθ op BB <  for small θ values, may not be needed to have a non-empty off-peak, 

and that a smaller airport price differential between peak and off-peak increases the likelihood of the off-peak been 

used. The lower bound for θ  cannot be made explicit because of the non-linearity of the delay function. For a linear 

delay function KQKQD pp /),( δ= , the lower bound on θ  is given by  

( ) ooopooop
o
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+
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θ )())((
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, while a lower bound not 

depending on N, would be )1/(~2 +NNθ . 

 



 

• Derivation of equations (27) and (28) 

Consider first the derivative of (26) with respect to Pp: 
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But, from (14), pppo PQPQ ∂−∂=∂∂ // . Replacing and re-arranging, we get the following: 
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Next, consider the derivative of (26) with respect to Po: 
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The first term in brackets on the RHS is 0 by pPSW ∂∂ /  in (A.2). Using Ωo in (9), we also get that 
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From where equation (27) is obtained. Next, )( op Ω+Ω−  in (11), we get 
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which, when replaced in (A.2) leads to equation (28). 

 

• Proof of Proposition 3 

To prove parts (i) and (ii), it is useful to first state the following Lemma: 



 

Lemma A.2: If two prices 1P  and 2P  are given by the fixed points ))(( 11 PQfP =  and ))(( 22 PQgP =  

respectively, where f is continuously differentiable in ( ))();( 21 PQPQ , Q is continuously differentiable in 

);( 21 PP , ))(())(( 22 PQgPQf > , and either )(⋅Q  is non-increasing and )(⋅f  is non-decreasing, or )(⋅Q  is 

non-decreasing and )(⋅f  is non-increasing, then 21 PP > . 

 

Proof: We prove this by contradiction. Suppose that 21 PP ≤ . Denote ))((~
22 PQfP = . Applying the mean-value 

theorem to ))(( 11 PQfP =  and ))((~
22 PQfP =  yields 

))()()(('~
2121 PQPQQfPP −=−  

where Q  is some point between )( 1PQ  and )( 2PQ . Further applying the mean-value theorem to )( 1PQ  and 

)( 2PQ , the above equation becomes: 

0))((')('))()()(('~
212121 ≥−=−=− PPPQQfPQPQQfPP  

where the inequality arises because 0)(')(' ≤PQQf  and the assumption that 21 PP ≤ . Thus, 21
~PP ≥ . But 

since by assumption ))(())(( 22 PQgPQf >  or, equivalently, 22
~ PP > , we obtain 21 PP > , thus resulting in 

a contradiction.                                                                      ■ 

 

Now, we can prove Proposition 3. 

 

(i) That π
o

W
o PP <  follows from writing the pricing rules (27) and (30) as )( pooo QQfP +=π  and 
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o QQgP += . Since total traffic pQQ +0  is, by (14), downward sloping in P0, )(⋅of  is increasing 
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decreasing as long as the (unsigned) term )(''' ⋅D  is non-negative (or if is negative, its magnitude is not too 
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Since 0/ >∂∂ NQp  by Remark 1.4, the first term in the RHS is positive. Since 

( ))1(// +<∂∂ NNQNQ pp  by Remark 1.4, 
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Q
N
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∂
>  making the second term in the RHS positive 

as well. Therefore, 0/ >∆ − dNPd W
op .                                                           
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 if the delay function is linear, follows from differentiating (31) and then imposing 

0)(''',0)('' == pp QDQD  . We get: 
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, where )(' pQD  is a constant. 

With a linear delay function Remark 1.4 changes to ( ))1(// +=∂∂ NNQNQ pp , making 

0/ =∆ − dNPd op
π . If we consider 0)('' >pQD , the sign is then undetermined and depends on the values of, 

for example, Bp, Bo and )(''' pQD .                                                                                                                          ■ 

(iii) π
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p QQ >  flows from part (ii), and the comparative statics in (15) or Remark 1.3. 0=>
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 follows 

from replacing π
opP −∆  in the sub-game equilibrium equation (11); we get: 
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Use this to calculate
pop

op
op

op
p

QP
NP

dN
dQ

∂∆Ω+Ω−∂

∂∆Ω+Ω−∂
−=

−

−

/))((
/))((

π

ππ

 and to prove that 

( ))1(//0 +<< NNQdNdQ pp
ππ , which shows that peak traffic increases with N. 

Similarly, replacing W
opP −∆  in the sub-game equilibrium equation (11), we get: 
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Which does not depend on N, hence 0/ =dNdQW
p .                                                            ■ 

(iv) π
t

W
t QQ >  flows from part (i) and the comparative statics in (14) or Remark 1.1. To prove 0=>
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use the sub-game equilibrium equation (9) to prove 0=>
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 in an analogous way as in part (iii). The 

result then follows directly from this and part (iii). 

(v) Direct from part (iii) and 0)(' >pQD  (equation 2).                                                             ■ 

(vi) Consider the SW function in (26). We can rewrite it in terms of total traffic, Qt, and peak-traffic, by replacing 

pto QQQ −= . This gives us: 
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Now, SW is globally concave in ),( pt QQ  because 
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Since ),( W
p

W
t QQ maximizes SW, and from parts (iii) and (iv), ),(),( ππ

pt
W
p

W
t QQQQ > , then πSWSW W > . 

Finally, since ),( ππ
pt QQ  increases with N, πSW  increases with N, while                            

WSW  does not change with N because ),( W
p

W
t QQ  does not.                                               ■ 


