Relaxation of a Bolza Problem Governed
by a Time-Delay Sweeping Process

Jean Fenel Edmond

Abstract We study in an infinite dimensional Hilbert space a Bolza problem in
which the dynamics are given by a time-delay perturbed sweeping process. This is
a differential inclusion whose right-hand side involves a normal cone to a moving set,
along with a time-delay perturbation. A relaxation result is established from which
we deduce a sufficient condition ensuring the existence of an optimal solution.
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1 Introduction

The paper is devoted to a Bolza problem whose dynamic constraint is given by a
delay perturbed sweeping process. To state the problem, let H be a real Hilbert
space, U a compact metric space, C: [0, T] = H and I': [0, T] = U two set-valued
maps, I'(-) being measurable and compact-valued. Given p > 0, one considers the
space Cy([—p,0]) of all continuous maps from [—p, 0] into H. For ¢ € [0, T] and
x(-) € Cy([—p, T)), one defines a continuous map x,(-) on [—p, 0] by x,(s) = x(¢ + ).
Let g: [0, T] x Cu([—p,0]) x U — H be a single-valued map, ¢(-) a measurable
selection of I', and ¢ a fixed member of Cy([—p, 0]) such that ¢(0) € C(0). Let us
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denote by x¢(-) the unique solution (under assumptions to be specified below) of the
delay perturbed sweeping process

{ —x(1) € N(C(®), x(1)) + g, x:("), ¢ (1)) a.e. 1 € [0, T )

x(s) = @(s) Vs € [—p, 0]

Now, given J: [0, T] x Hx U — R and L: H — R, we are interested in the exis-
tence of an optimal solution for the problem

T
(O.P) {(i)nfs L(x(D)+ / J(t, x5 (1), ¢(0)) dt.
Desr )

In addition to mathematical motivations, this problem is important because some
mechanical systems are governed by differential inclusions of the type Eq. 1. The
reader is referred to Monteiro Marques [19] and Moreau [21, 22] for details.

Similar problems have been studied in the finite dimensional setting by Jawhar
[18] and Castaing et al. [4]. In the latter paper, the authors studied, particularly,
variational properties of the value function associated with the problem. They proved
in particular that the value function is a viscosity subsolution of an appropriate
Hamilton-Jacobi-Bellman equation.

Note that, if C(f):= H for all ¢, the problem (O. P) reduces to an optimal control
problem governed by a differential equation. Indeed, in such a case, N(C(?), x(¢)) =
{0} and then the dynamics are given by a differential equation. Those problems
have been extensively studied, particularly in the finite dimensional framework. We
refer to Balder [2], Baum [3], Cesari [8, 9], Fleming and Rishel [15], Warga [25] and
references therein.

To establish an existence result for the problem (O.P), as usual, we will consider
a minimizing sequence and prove its convergence, up to a subsequence, in the set of
the Young measures. This leads us to study the following problem.

Let us consider the Lebesgue-measurable set-valued map ¥ from [0, 7] into the
set ML(U) of all probability measures on (U, B(U)) defined, for each ¢ € [0, T, by

2(f):={Pe M. .(U): P(C®) =1}

Let Sy be the set of all measurable selections of X. For each u € Sy, let us denote by
x*(-) the unique solution of the delay perturbed sweeping process
—x(1) € N(C(t), x(1)) + [, g(t, x:(-), w)u,(du) a.e. t € [0, T]
x(s) = ¢(s) Vs € [—p, 0].

Now, we consider the following optimal control problem:

T
(R.P) inf L(x“(T))+/ /J(t,x”(t),u)u[(du)dt.
o Ju

HESs

The latter problem is called the relaxed problem of the problem (O. P).

It turns out that the infimums of the two problems are equal and, further, the
infimum of the relaxed problem is attained. This generalizes the result obtained
in Edmond and Thibault [14], which is an extension of the ones proved in the



finite dimensional setting by Jawhar [18] and Castaing et al. [6] for optimal control
problems governed by sweeping processes without delay.

As a consequence of the above result, under a convexity assumption, we prove
that the problem (O.P) has an optimal solution. It is known that without such an
assumption the problem may have no solution.

The paper is organized as follows: In Section 2 we summarize the notations and
some notions that will be used in the paper. Section 3 contains an existence result
for delay perturbed sweeping processes that is needed in Section 4 to introduce
the Bolza problem to be studied. We recall in Section 5 properties and results for
Young measures, which will be used to study the relaxed problem that is presented
in Section 6. While Section 7 is concerned with the existence of solutions for the latter
problem, Section 8 addresses the existence result for the Bolza problem.

2 Preliminaries

In all the paper /:= [0, 7] (0 < T)is aninterval of R and H is a real separable Hilbert
space whose scalar product will be denoted by (-, -) and the associated norm by || - ||

2.1 Notations

The closed unit ball of H will be denoted by B and, for n > 0, B[O, n] is the closed
ball of radius 5 centered at 0. For any subset S of H, coS stands for the closed convex
hull of §. We will denote by C(I, H) or Cy(I) the set of all continuous maps from 7 to
H. The norm of the uniform convergence on C(/, H) will be denoted by || - ||o. The
Lebesgue o-field of I is denoted by £(/) and A denotes the Lebesgue measure. For
p € [1, +o00], we denote by L?(I, H) or LZ(I) the quotient space of all A-Bochner
measurable maps g(-): I — H such that ||g(-)|| belongs to L?(I, R).

2.2 Normal Cones

For the following concepts, the reader is referred to Clarke et al. [10, 11] and Poliquin
et al. [23].

Let S be a nonempty closed subset of H and y € H. The distance of y to S, denoted
by ds(y) or d(y, S), is defined by

ds(y):= inf{||y —x|:x¢€ S}.
One defines the (possibly empty) set of nearest points of y in S by
projs(y):= {x € S:ds(y) = lly — x|l}.

When projs(y) is a singleton {x}, we will write x = proj¢(y).

If x € projg(y) and @ > 0, then the vector «(y — x) is called a proximal normal to
S at x. The set of all vectors obtainable in this manner is a cone termed the proximal
normal cone to S at x. It is denoted by N¥ (x).



One also defines the limiting normal cone (or Mordukhovich normal cone, see
Mordukhovich and Shao [20]) and the Clarke normal cone respectively by

NE(x):= [.g e H:g, 26,6 e N(x), x> x]
and
N§ (x):=coN& ().

s
Here, &, =X & means that the sequence &, converges weakly to &, and x, — x means
that x, — x and x,, € § for each integer n.

2.3 Prox-Regular Set

For a fixed r > 0, the set S is said to be r-prox-regular (or uniformly prox-regular
with constant %) if, for any x € S and any & € Ng(x) such that ||| < 1, one has
X = projg(x + r€). Another characterization (see Poliquin et al. [23]) is the following
hypomonotonicity property: For any x; € S (i = 1, 2), the inequality

(& — &, x1 —x2) = — X — x|

holds whenever & € N SL (x;) N B(0, r), where B(0, r) stands for the open ball of radius
r centered at 0.
If S is r-prox-regular, then the following holds (see Poliquin et al. [23]):

— for any x € §, all the normal cones defined above coincide. In such a case, they
will be denoted by Ng(x) or N(S, x);
— forany x € H such that ds(x) < r, the set proj¢(x) is a singleton.

2.4 Standing Assumptions

Let r > 0. In all the paper a set-valued map C(-) from I:=1[0, 7] to H will be
involved. It is required to satisfy the following assumptions:

(A1) Foreacht e I, C(¢) is a nonempty closed subset of H which is r-prox-regular;
(Az) C(1) varies in an absolutely continuous way, that is, there exists an absolutely
continuous function v(-): I — R such that, for any y € H and s, t € I,

ld(y, C(1)) —d(y, C(s)] < [v(@) — v(s)].

3 Existence Result for Delay Perturbed Sweeping Processes

Let p > 0. Consider the space Cy:= Cy([—p, 0]) endowed with the uniform conver-
gence norm denoted by || - |l¢,. For x(-) € Cu([—p, T1) and for each t € I:= [0, T7,
one defines a map x,(-) € Cy by x,(s):= x(t +s). Let f: [ x Co — H a single-valued
map. Let ¢ be a fixed member of Cy such that ¢(0) € C(0). We consider the following
problem

(Py)

{—x(t) e N(C@®),x®) + ft, x, () ae.te [0, T]
x(s) = ¢(s) Vs € [-p,0].



One calls solution of (P,) any map x(-): [—p, T] — H such that:

(i) foranys € [—p, 0], one has x(s) = ¢(s);
(ii) the restriction x|, 7;(-) of x(-) is absolutely continuous and its derivative,
denoted by X(-), satisfies the inclusion

—x(t) € N(C@), x(t)) + f(t,x()) ae.t €[0, T].
The following theorem, the proof of which is given in Edmond [13], provides an
existence result for the delay perturbed sweeping process (P,).
Theorem 1 Let H be a Hilbert space. Assume that C(-) satisfies (A,), (Ay). Let f:
I x Cy - H be a map satisfying:

(i) forany ¢ € Co, f(-, @) is measurable;
(ii) forany n > 0, there exists a non-negative function k,(-) € L'(I, R) such that, for
all g1, ¢, € Co with |lgille, < n (i =1,2) and forallt € I,

I ft o) — [t o)l < ky@llor — @2lley:

(iii) there exists a non-negative function B(-) € L' (I, R) such that, for all t € I and
forall ¢ € Cy,

If@ )l <O+ llelc,)-

Then, for any ¢ € Cy with ¢(0) € C(0), the problem (P,) has one and only one solution
x(-), which satisfies, for

T T
I:=l¢llc, +exp {2/(; ﬂ(f)df} /0 200+ llglic,) B(s) + [v(s)]1ds,

I ft x (DI <A+DB@ ae.rel

and

£@) + ft x (DI < A +DBO + v ae.r €l

4 The Bolza Problem

In this section we consider an optimal control problem governed by a delay perturbed
sweeping process. We are interested in the existence of solutions for this problem in
the infinite dimensional setting. A problem of the same kind has been studied by
Jawhar [18] for perturbed sweeping processes without delay in the case H = R”.

Let U be a compact metric space and let I': [0, 7] == U be a measurable set-valued
map taking nonempty compact values. Denote by By the closed unit ball of Cy. Let
g: I xCy x U— H be amap satisfying:

(A3) foranyte I, g(t, -, ) is continuous on Cy x U,

(A4) foreach (p,u) € Cy x U, g(-, ¢, u) is A-measurable on I,

(As) for every n > 0, there exists a non-negative function k,(-) € L'(I,R) such
that, for all ¢t € I and for all ¢;, ¢, € By,

g, o1, u) — g, o2, Wl < ky(Dllor — 2licys



(Ag) there exists a non-negative function 8(-) € L'(, R) such that, for all (¢, ¢, u) €
I x Cy x U, one has

g @, W < BB + ll@llc,)-

Let ¢ be a fixed member of Cy such that ¢(0) € C(0). Let St be the set of all
measurable selections (up to almost everywhere equality) of I', which are called
original controls.

According to Theorem 1, for each ¢(-) € Sr, the delay perturbed sweeping process

x(s) = p(s) ¥s € [—p, 0]

has a unique solution denoted by x4 (-).
Given two maps J: [0, T] x H x U — R and L: H — R satisfying appropriate
conditions, we are interested in the existence of an optimal solution for the problem

T
(0.P) C(i)nt:? L5 (D) + / J(t, X5 (0), ¢ (D)dt.
yesr 0

To find a solution of this problem, as usual, we will consider a minimizing
sequence. This approach will lead us to deal with Young measures, which are the
object of the following section.

5 Young Measures

In this section we recall the concept of Young measures and provide some important
results that is needed later. For ampler details, we refer the reader to Balder [1],
Castaing, Raynaud de Fitte, and Valadier [5], Jawhar [17], and Valadier [24].

Let (S, S, 0) be a complete measure space with a non-negative finite measure o
and let V be a complete separable metric space. B(V') being the Borel sigma-field, one
denotes by Y(S, o, V) the set of all positive measures v on (S x V, S ® B(V)) whose
projections on S (that is, their images by the map (s, v) — s) equal o. Equivalently,
v e Y(S,0,V)if and only if, for all E € S, one has v(E x V) = o(E). The members
of Y(S,0,V) are called Young measures, in reference to the pioneering work of
Young [26].

On the other hand, let ML (V) be the set of all probability measures on (V, B(V)).
Following Castaing et al. [5], we denote by Vis(S, o, V) the set of all maps p: S —
ML(V) (up to o-almost everywhere equality) that are A-measurable in the sense
that, for any B € B(V), the function s — u(B) is S-measurable.

Remark 1 In Jawhar [17], the set Vy;s(S, o, V) is denoted by R(S, o, V) and any of
its members is called transition probability measure on S x V.

Let us recall that if u € Vgis(S, 0, V), A € S ® B(V), and if 14 is the characteristic
function of A (thatis, 14(w) = 1if w € A and 0 otherwise), then the function s
fv 14 (s, v)us(dv) is S-measurable on S and the set function v defined by

V(A)=/S/V11A(s, v) s (dv) o (ds) (3)



for all A € S ® B(V) is a Young measure on S x V. Accordingly, any member of
Viis(S, o, V) is called a disintegrable Young measure.

Conversely, under the above assumptions on S and V, any Young measure on
S x V is associated with some p € Vqis(S, o, V) in the way above (see Valadier [24]).

Remark 2

1) If v is the Young measure corresponding to the member u € Vgs(S, o, V),
ie, the Young measure defined by Eq. 3, then, for any function v :
SxV—> RU{—o00,+00} which is §® B(V)-measurable and non-negative
(resp. v-integrable), the function s — [}, ¥ (s, v)us(dv) is o-measurable (resp.
o-integrable) and one has

vav= [ [ v o,

SxV sJv

2) If v is a Young measure associated with some u € Vgis(S, o, V) we will make
no distinction between v and pu, that is, for all s € S, we will write v, instead of ;.

3) Any S-measurable map u(-): § — V defines a Young measure on S x V termed
the Young measure associated with u(-). This is the Young measure correspond-
ing to the member p of Vyis(S, 0, V) defined by py:= 8,5, where 8, is the
Dirac mass at the point u(s), i.e, for any B € B(V), §,5(B) = lif u(s) € Band 0
otherwise.

5.1 Caratheodory Integrand and Narrow Convergence

One calls integrand any function ¢¥: S x V — RU {—o00, 400} that is S ® B(V)-
measurable. An integrand is said to be of Caratheodory type if, for any s € S, the
partial function ¥ (s, -) is continuous and takes finite values on V. An integrand v is
said to be L'-bounded if there exists some non-negative function y € L]}Q(S ,0) such
that [y (s, v)| < y(s) forall (s,v) € S x V.

The set Y(S, o, V) will be endowed with the narrow topology (see Balder [1] and
Valadier [24]), called stable topology in Castaing et al. [5]. Recall that a sequence (V")
converges to v in Y(S, o, V) if, for any L'-bounded Caratheodory integrand v,

lim v dv' = / ¥ dv. 4)
nJSxv SxV

On the other hand, one says that a sequence (u") converges in Vs (S, o, V) to w if the
sequence of the corresponding Young measures converges in Y(S, o, V). It amounts
to saying that, for any L'-bounded Caratheodory integrand v,

lim/f v(s, v)u?(dv)a(ds):// v (s, v) us(dv) o (ds).
noJsJv sJv

5.2 Some Important Results

We recall that 7:= [0, T] and A is the Lebesgue measure on /.
We will need the following results which are proved in a more general setting in
Valadier [24] (see also Castaing et al. [5]).



Proposition 1 Let h,(-), h(-) € C(I, H) (n > 1) and u"*, n € Yais(I, 1, V). Assume that
(hy(+)) converges uniformly to h(-) and (u") converges to p in YVais(I, 1, V). Let 0" €
YU, x, H x V) be defined by 0]':= 65,y ® u. Then, 0" converges in Y(I, A, H x V)
to the Young measure 0 € Y (I, ., H x V) defined by 0;:= 8p1) ® (-

Before stating a second result, let us recall that a sequence of functions (f,(-)) is
said to be uniformly integrable in L' (I, R) if it is bounded in L'(Z, R) and

lim sup/ | £ ()] dt = 0.
n JA

A(A)—0

Proposition 2 Let u,(-): I — V (n>1) be measurable maps. Assume that the
sequence of the associated Young measures (V") (that is, v' := 8,,)) converges to v in
YU, 1, V). Let y: I x V— R bea Caratheodory integrand. Assume that the sequence
W (-, un(-)))n is uniformly integrable in L' (I, R). Then, \ is v-integrable and

/ Ydv = lim/w(t, u, (1)) dt.
IxV noJr

The following result is also useful (see Balder [1], Jawhar [17], and Valadier [24]).

Proposition 3 If V is a compact metric space, then any sequence in Yqis(I, ., V) has a
subsequence which converges in Vais(I, A, V).

6 The Relaxed Problem

To establish the existence result for our Bolza problem (O.P) (see Section 4), it is
convenient to consider another optimal control problem called relaxed problem. We
will prove that the latter has an optimal solution and that its optimal value is equal
to the infimum in the problem (O.P).

Let us consider the set-valued map X (-) defined on 7 by

@) :={Pe MLU): PT®) =1}.

Denote by Sy the set of all A-measurable selections (up to almost everywhere
equality) of X. The set Sy, whose members are called relaxed controls, is nonempty.
In fact, the following result holds (see Castaing and Valadier [7] and Jawhar [17]).

Proposition 4 Let I': [0, T] = U be a A-measurable set-valued map with nonempty
compact values. Consider the set-valued map X (-) defined on [0, T] by
2(0):={Pe ML(U): P(T() = 1}.

Then the set Sy is nonempty and sequentially closed in YVqis(I, A, U).

Now, for each u € Sy, consider the following delay perturbed sweeping process:

—Xx(t) e N(C(@), x(2)) + fU g, x,(-), ) (du) a.e. t € [0, T]

(DSP(w))
x(s) = @(s) Vs € [-p, 0]



According to Remark 2 (1), the map

I, )= /U gt ¢, wpne(du)

is separately scalarly A-measurable on / and thus separately measurable (see [12]).
Moreover, thanks to the assumptions on g, we have

— foreveryn > 0, for all t € I and for all ¢, ¢, € By,

ALt o) — bt o)l < kyOllor — @all;

— forall (¢, ¢) € I x Cy,

A o)l < BOA + lelle,)- ©)

Consequently, by Theorem 1, for any 1 € Sy, the delay perturbed sweeping process
(DS P(1)) has one and only one solution, which will be denoted by x**(-).

Therefore, we may consider the following optimal control problem, which is called
the relaxed problem:

T
(R.P) inf L(x*(T)) + / / J(t, X" (1), ) (du)d.
neSz o Ju

7 Existence of Solutions for the Relaxed Problem

In this section we prove that the problem (R. P) has a solution, that is, the infimum is
attained.

From now on, we assume that the functions J and L satisfy the following
assumptions:

(A7) foreacht € I, the partial function J(¢, -, -) is continuous on H x U;

(Ag) for any sequence (x,(-)) bounded in (C([0, T], H), |- |lc) and for any
sequence (¢,(-)) in Sy, the sequence (J(-, x,,(-), &y (+))) is uniformly integrable
in L'([0, T], R);

(Ay) the function L is continuous on H.

This uniform integrability assumption entails in particular that, for any ¢ €
Sr, the function J(-, x,(-), ¢(-)) is A-integrable on [0, 7] and hence the integral
fOT J(t, x, (1), £ (1))dt appearing in the problem (O. P) is well defined in R.

We are going to prove that, for any u € Sy, the integral involved in the problem
(R.P)is also well defined. To do this, we will use the following lemma which is proved
in Edmond and Thibault [14].

Lemmal Let h,(:),hoo(:): I - H (n > 1) be A-measurable maps and let V"', v>®° €
Y, x,U). Assume that (V') converges to v™° in Y(I, ., U) and (h,(t)) converges
weakly in H to hoo(t) for all t € 1. Let 0",0° € Y (I, , H x U) be defined by 0]' .=
8,y @ Vi and 02° := 6y, ;) @ v°. Let : I x (H x U) — R be an integrand such that,
for any te I, ®(t,-,-) is sequentially continuous on H" x U, where H" denotes



the space H endowed with the weak topology. Assume further that the measurable
Junction t = sup, ,yemuioopyxv | P& An (1), w)| is A-integrable on 1. Then,

lim O do" :/ d do.
n=>0 JIxHxU IxHxU

We will also need the following lemma which is a consequence of Gronwall’s
lemma.

Lemma?2 Let I =[0, T] and let (n,(-)) be a sequence of non-negative continuous
functions defined on I, (a,,) a sequence of real numbers, and B(-) € L' (I, RY). Assume
that lim,, o, = 0 and, for all n,

t
nn(t)</0 BN, (s) ds + ay.

Then, forallt € [0, T],

lim 7, (t) = 0.
n

Thanks to the two foregoing lemmas, we can prove the following result, which is
interesting of its own.

Theorem 2 Let Sy be endowed with the topology induced by the narrow topology
of Y, x,U) and C([0, T, H) be equipped with the uniform convergence topology.
Under the assumptions (Ai)-(Ag), the map which associates with each u € Sy the
unique solution x*(-) of the delay perturbed sweeping process (DS P()) is sequentially
continuous.

Proof We are going to adapt the proof of Proposition 7 in Edmond and Thibault [14].
Let us fix u € Sx. Let (u") be a sequence in Sy converging in Y([0, 71, A, U) to u.
We are going to prove that the sequence (x*'(-)) converges uniformly in C([0, T, H)
to x*(-).

We recall that, for each n, x*'(-) denotes the unique solution of the delay
perturbed sweeping process

{ —x(t) € N(C(t), x(0) + [, &(t, x,(-), w)u} (du) a.e. t € [0, T] ©)

x(s) = ¢(s) Vs € [-p,0].

Let us set, for each (¢, ¢) € [0, T] x Co,
hu(t, @)= / g(t, o, i (du)
U
and

T T
M= ||(P||co+eXp{2/0 ﬂ(S)dS}/O [266)(1 + lglley) + [5(s)[]ds.



Theorem 1 ensures that, for almost all ¢ € [0, T,

16 @)+ ho (1,27 0)) | < ayi= (1 + MIBW® + 190, ()
o (127 0) I < (1 + M)BG, ®)

and then
1 @) < 201 + MB® + [5(0)| a.e. t € [0, 1. ©)

Recall also that x*(-) is the unique solution of the delay perturbed sweeping process

[ —x(t) € N(C(t), x()) + [, g(t, x,(-), w) i (du) a.e. t € [0, T]
x(s) = ¢(s) Vs € [=p, 0].

To show that (x*" (-)) converges uniformly in C([0, T, H) to x*(-), we will prove that
any subsequence of (x*"(-)) has a subsequence converging uniformly in C([0, T1, H)
to x*(-).

Let us fix a subsequence of (x*"(-)), still denoted by (x*"(-)). Taking Eq. 9 into
account, we may suppose, without loss of generality, that the corresponding subse-
quence (¥ (-)) converges weakly in L' ([0, T, H) to some map a(-) € L' ([0, T], H).
It follows that, for any ¢ € [0, 77,

(10)

t t
/ i (s) ds — / a(s) ds weakly in H.
0 0

Considering the map w(-) € C([0, T'], H) defined by

t
w(o) = p(0) + / a(s) ds,
0
one has, for all ¢ € [0, T1],
() — w(@) weakly in H.

We are going to prove that the subsequence (x*'(-)) converges uniformly to x*(-).
Applying Theorem 1 to Eq. 10, we have, with

h(t, ¢):= /Ug(t, @, w)p(du),

for almost all ¢ € [0, T,
124 + A (6.3 O) | < at) = (1+ M)B(@) + [9()]

and

e, X (DI < (1 + M)B(@). (11)
Thanks to the hypomonotonicity of the normal cone, one has, for all » and for almost
allt € [0, T1,

(@ + ha (1.2 0) =30 = h (1.20) 2" (0 = 2 (0))

< “D e @ - ol



and then

(@) — 2, ¥ 1) — x(0) < @ 6 (1) = X" @II* +

(o (1247 0)) = B (2 ) 20 =2 @)
It results that

2a(1)
r

X (t) — X" O%) < [l (£) — x(0) 1> +

=
+2< (r X ()) Rt 6 )), x“(t)—x“"(t)>.
Let us write
(i (")) = B (6 ) 20 = 2 )
= {1 (854" ©)) = B (16 0) 0 = 2 ) +
+ (B (£, X)) = A (6, X1 () L X (1) — X (1) .

Owing to Eq. 9 and the fact that x*(-) belongs to C([0, T'], H), there exists some n > 0
such that, for all n and for all ¢ € [0, T7,

" (). x/'(-) € nBy.

Taking the assumptions on g into account, there exists a non-negative function k(-) €
L'([0, T1,R) such that, for any n and for any ¢ € [0, T1, h,(t, -) is k(t)-Lipschitz on
n By. It follows that, for all n and for almost all ¢ € [0, T7,

d p n
o7 (llx” ®) — x”(f)llz) <yl () = x“(')“?:,,([o,t]) + 2y,(0), (12)
where

y():=2 (Q + k(t))

and
Yu(@) = (R (6, X)) — h (6, X)) X (0) — X (1)) (13)

In the following we use the fact that the map t — [ x*" () — x*()|c 4([0,e7) 1S continu-
ous. Integrating Eq. 12 on [0, 7], it follows that

t t
6" (1) — x> < / YOI () = X O I2, 0. 48 + 2 f Ya($)ds.
0 0
The last inequality being true for all ¢t € [0, T], we deduce that, for any ¢ € [0, T],

t
() = 2O, 0 < / YOI () — O, g0y ds +2 / ya(s)ds,  (14)

where 1, € [0, T is such that
/ ' Vu(s)ds = sup f Y (8)ds.
0

7€[0,71J0



We are going to prove that

lim/ Vu(8)ds = 0.
mJo

We may suppose without loss of generality that 7, converges to some t € [0, T]. Note
that, by Eq. 5, for all n and for all ¢ € [0, T7,

Va1 < 4n(l+mpB(0). (15)

Writing

f")/n(S)dS=/"J/n(S)ds—/ Vn(S)dS+/ Va(8)ds,
0 0 0 0

f " a(s)ds / " ps)ds f a(s)ds
0 T 0

Straightforwardly, lim,, [ B(s)ds = 0. It remains to prove that

we deduce that

<4nd+n) +

lim/ yu () dt = 0.
n 0

According to the definitions of 4, and 4, we have
[ mwde = [ [ fglexto.u) o0 -5 0) @ -
0 o Ju

- / / (g (t. X1 (), ), X" (1) = X (0) pe(dut.
o Ju
Let us define, for (¢, x,u) € [0, T] x H x U,

D, x,u):= (g (t, x{' (), u) , x* (1) — x) T 1(2).

Recalling that H* denotes the space H endowed with the weak topology, it is obvious
that, for any ¢ € [0, T], the function ®(t, -, -) is sequentially continuous on H" x U.
Moreover, setting x*~ (-) :== w(-), one has, for all (¢, n, u) € [0, T] x (NU {o0}) x U,

|® (. x*" (1), u)| < 2n(1+)B@). (16)
Let us consider the Young measures 6", p", 6 € Y([0, T], », H x U) defined by
o' = Byt 1y @ Uy, pp = Sy (y @ e, and b := Sy ® .

We can write

T
f yn(odt:/ oden—f & dp",
0 [0,T1x HxU [0,TIx HxU

and then Lemma 1 yields

T
lim v (1) dt :/ o do —/ ddo =0.
n=00 Jo [0,T)x HxU [0,T)x HxU



Therefore,

lim / " y(s)ds = 0.
nJo

Finally, applying Lemma 2 to the inequality Eq. 14, we obtain that the subsequence
(x™"(-)) converges uniformly to x*(-) in C([0, T'], H). This ends the proof. O

Now, we can prove that the function ¢ — fU J(t, x* (), wyu,(du) is A-integrable.
The proof is exactly the same as the part B of the proof of Proposition 7 in Edmond
and Thibault [14], but we will write it for completeness.

Proposition S Let i € Sx. Then, under the assumptions (A)—(As), the function t +—
fU J(t, x*(t), w)u,(du) belongs to L' ([0, T], R). Moreover, for any sequence (¢,(-)) in
St such that the sequence of the associated Young measures converges in Y (I, A, U) to
W, one has

T T
/ / J(t, x* (1), ), (du)dt = lim / J(t, x5 (5), ¢, (1)) dt.
o Ju nJo

Proof Let us fix u € Syx. Fix any sequence (£,(-)) in Sr such that the sequence of the
associated Young measures converges in Y([0, 7], 1, U) to u. According to Theorem
2, the sequence (x%(-)) converges uniformly in C([0, T, H) to x*(-). For each n, let us
define the Young measure 6" €Y (I, 1, HxU) and the map u,(-): [0, T]—>HxU by

0] := S8xen 1y ® 8¢, and u, (1) := (X (1), £u (1)).

It is easily seen that 6" = §,,(;. On the other hand, according to Proposition 1, the
sequence (9") converges in Y([0, T], A, H x U) to the Young measure 6 defined by
Or:= Sxnqy @ Iy

As the sequence (J (-, u,(+))) is uniformly integrable by assumptions, we obtain, by
Proposition 2, that J is 6-integrable and

T
lim/ J(t, x5 (5), &, (1) dt:/ Jao.
n 0 [

0,TIx HxU
Now, taking Remark 2 into account, the function
t— J(@t, x, w)yny @ wi(d(x, u)) = / J(t, x* (1), u)pu (du)
HxU U

is A-integrable and satisfies

T
/ Jdo =/ / J(t, x" (1), u)u,(du)dt.
[0,TIx HxU 0 U

As a result,

T T
lim / J(t, x5 (1), £, (1) dt = f / J(t, x*(t), w)pu (du)dt,
nJo o Ju

which completes the proof. O



Now we are going to prove that the relaxed problem (R. P) has a solution. This is
the object of the theorem below.

First, let us recall the following density result in a form that directly follows from
that in Castaing et al. [6] (see Proposition 3.2 in [6]).

Lemma 3 Let u € Sx. Then, there exists a sequence ({,(-)) in St such that the sequence
of the associated Young measures (u"), that is, )} := &, ), converges in Y([0, T1, 1, U)
to |.

Theorem 3 Under the assumptions (A)—(Ay), the control problem (R.P) has an
optimal solution. Furthermore, one has

min (R.P) = inf (O.P).
Proof According to Lemma 3, for any u € Sy, there exists a sequence ¢,(-) € Sr such

that the associated Young measures converges in Y(I, A, U) to p. Thus, Theorem 2
and Proposition 5 entail that

T T
lim L(x*(T)) +/ J(@t, x5 (1), £, (1) dt = L(x*(T)) +/ / J(@, x* (@), w)u,(du)dt.
n 0 o Ju
As it is obvious that, for each n,
T
Lx*(T)) +/ J(t, X" (1), £u(1)) dt > inf (O.P),

0

one has
T
Lo+ [ [ s 0. wdnd > int(0.p)
o Ju

and thus

inf (R.P) > inf (O.P).
The reverse inequality being always true, it results that

inf (R.P) = inf (O.P).
Let us prove that inf (R.P) is a minimum. Let (£,(-)) be a minimizing sequence of
(O.P), thatis, ¢,(-) € Sr for each n and

T
inf (O.P) = lim L(x*(T)) +f J(t, x5 (1), &, (D) dt. 17)
n 0

Consider, for each n, the map v": [0, T] — ML(U) defined by v := §;,(. Since
V" € Sy obviously, by Proposition 3 and Proposition 4, we may suppose, without loss
of generality, that the sequence v" converges in YVgis([0, 7], A, U) to some v € Sx.
Thanks to Proposition 5 and Theorem 2, one has

T T
lim L(x*(T)) + / J(t, x5 (6), &, ())dt = L(x"(T)) + / / J(t, x" (1), w)v,(du)dt,
n 0 o Ju



Whence
T
inf(O.P) = L(x"(T)) +/ / J(t, x" (1), u)v,(du)dt.
o Ju
As, moreover, inf (R.P) = inf (O. P), it follows that inf (R. P) is attained at v, and

min (R.P) = inf (O.P).

The proof is then complete. O

8 Existence of Solutions for the Bolza Problem

This section gives an existence result for the Bolza problem (O. P) under a convexity
assumption. To be precise, we will suppose that the following holds:
(A1) Foranyt e [0, T], for any x € H, and for any ¢ € Cy([—p, 0]), the set
G, x,0) ={(Jt,x,u),glt,p,u)) :ucl@}
is convex.

This assumption is often used to prove existence results for classical optimal control
problems. It is worth noting that convexity assumption is unavoidable to establish
existence results for general optimal control problems. Indeed, there are examples
(see Fleming and Rishel [15]) showing that, without an appropriate convexity
assumption, those problems may have no solution.

Theorem 4 Under the assumptions (A1)—(Ay), the Bolza problem

T
(0.p) int LGA(T)+ f TGt 25 (0, ),
i

where x* is the unique solution of the differential inclusion

—x(t) € N(C(@), x(1)) + g(t, x,(-), ¢ (1)) a.e. t € [0, T]
x(s) = @(s) Vs € [—p, 0],

has an optimal solution.
Proof According to Theorem 3, we have, for some u € Sr,
T
inf (O.P) = L(x*(T)) +/ / J(t, x* (), wyp,(du)dt, (18)
o Ju

where the map x* (-) satisfies

—xt(1) € N(C(0), x" (1)) + [, g (t, %/ (), u) e(du) ae. t € [0, T
xt(s) = @(s) Vs € [—p,0].

The assumption (A o) ensures that, for any ¢ € [0, 71,

(/ J(, x"(t),u)m(dw,/ gt xi'(), u) Mz(du)) € G (t,x"(0,x/ (). (19)
U U



Let us set

Y = (/U J(, X“(t),u)m(du),fl]g(t, xp' (), u) m(du)>

and consider the set-valued map W: [0, 7] == U defined by

V(@) :={ueU:uel @) andy @) = (J@ x"(0),u), g(t, xi' (), u))}.

Thanks to Eq. 19, the set W(¢) is nonempty for every ¢ € [0, T]. Moreover, ¥ is
closed-valued and it is not difficult to prove that its graph is £(I) ® B(U)-measurable.
Consequently, W is measurable and thus has at least one measurable selection
(see Castaing and Valadier [7]). In other words, there exists a measurable map
&:[0, T]1 — U such that £(¢) € W (¢) for almost all # € [0, T]. Obviously & € Sr,

T
inf (O.P) = L(x“(T))+/ J(t, x* (1), (1)) dt,
0

and

—x(t) € N(C@0), x*(1) + g (t, x{'(), £E1)) ae.t € [0, T]
xt(s) = ¢(s) Vs € [—p, O].

Since the above differential inclusion has, for £ fixed in Sr, a unique solution x° (),
we conclude that x* = x¢. This implies that the infimum of the problem (O.P) is
attained at &, which ends the proof. O
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