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Abstract

The optimal positioning of switches in a mobile communication network is an
important task, which can save costs and improve the performance of the network.
In this paper we propose a model for establishing which are the best nodes of the
network for allocating the available switches, and several hybrid genetic algorithms
to solve the problem. The proposed model is based on the so called capacitated p-
median problem, which have been previously tackled in the literature. This problem
can be split in two subproblems: the selection of the best set of switches, and a
terminal assignment problem to evaluate each selection of switches. The hybrid
genetic algorithms for solving the problem are formed by a conventional genetic
algorithm, with a restricted search, and several local search heuristics. In this work
we also develop novel heuristics for solving the terminal assignment problem in a fast
and accurate way. Finally, we show that our novel approaches, hybridized with the
genetic algorithm, outperform existing algorithms in the literature for the p-median
problem.
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1 Introduction

In the last decade, mobile telecommunication networks have known an ex-
traordinary development, due to the necessity of information transfer among
users. Mobile communication networks can be modelled as formed by hexag-
onal cells, each corresponding to a different cover zone, and associated to a
given Base Station (BTS). The cell is the unit of a cellular communication
system. A certain number of cells are chosen to install switches 1 , which route
calls to another base station or to a public switched telephone network [1].

The design of mobile networks often involves problems of devices location
(BTS, multiplexers, switches etc.) [6], [21], [22]. There are works specifically
related to the design of the BTS-switch structure, like the BTS location prob-
lem [2], in which the objective is to obtain the optimal location of BTSs
in a grid, such that the radio coverage of the considered grid is maximum.
Another important problem, directly related to the BTS-switch structure in
mobile networks, is the assignment of cells to switches problem [1], [3], [4], [5].
This problem considers that the BTSs and switches of the network are already
positioned, and its objective is to assign each BTSs to a switch, in such a way
that a capacity constraint have to be fulfilled. The objective function is then
formed by two terms: first the sum of the distances from the BTSs to the
switches must be minimum, and there is another term related to handovers
between cells assigned to different switches, which must be minimized (see [3]
for details). In addition, there are other location problems related to the de-
sign of communications network, either mobile networks [7]-[12] and computer
networks [13], [14].

Among the algorithms applied to solve the above mentioned problems, there
are a wide variety of heuristics and metaheuristics approaches: in [2] sev-
eral heuristics are presented and applied to solve the BTSs location problem.
The performance of Genetic Algorithms (GA), Tabu Search (TS) and Sim-
ulated Annealing (SA) approaches are compared with that of random walk
and greedy approaches. In [10], a hybrid k-means genetic algorithm is applied
to the design of indoor cellular networks. Other hybrid algorithms have been
applied to the BTS-switch assignment problem in [4], [5]. Both works deal
with the same problem, discussing different approaches to it, based on mix-
ing GA, TS and SA algorithms. SA has also been also used in the design of
the BTS-Switch structure of a mobile communication network. In [1], a SA
algorithm with a pricing mechanism is used to tackle the assignment of cells
to switches problem. The results obtained are compared with a lower bound
for the problem, and the authors show that their approach is able to obtain
solutions quite close to the problem’s lower bound. Another SA approach is

1 In the literature switches are also denoted as Base Station Controllers (BSCs).



presented in [7] for the design of telecommunication access networks with reli-
ability constraints. Finally, a SA algorithm is applied to the design of UMTS
access network topology in [8]. The SA algorithm in this work is used as global
search heuristic, and mixed with a local search technique which searches for
tree topologies of radio base stations.

In spite of the huge work carried out on the designing of the access part of
mobile communication networks, there are still some problems which have not
been completely studied. Specifically, this paper deals with the problem of the
location of switches in mobile telecommunication networks. Note that, in the
literature revised above, there are several works dealing with the problem of
assigning cells to switches, locating BTSs and designing the access topology of
mobile networks, but there are very few works tackling the problem of locating
switches in such networks. This is mainly because, in the majority of cases,
the position of switches is considered a pre-fixed parameter, usually installed
within the infrastructure of some BTSs in the network, or considering the
most traffic managing BTSs to be the network’s switches. On the other hand,
a fast and easy model for the location of switches, and the corresponding
BTSs’ assignment to switches, is applicable in the field of regulatory studies
in telecommunications [30], [31].

In this paper we propose a model for the optimal location of switches in a
mobile communication network (Switch Location Problem, SLP hereafter),
and several hybrid genetic algorithms to solve the problem. Our model starts
from the premise that the switches must be located in existing BTSs, in order
to use the existing infrastructure, and save costs. We need then to establish
which are the optimal BTSs for allocating a given number of switches, taking
into account several parameters. First, the distance between switches and their
associated BTSs must be minimum, in order to maximize the reliability of the
radio link between switches and BTSs. Second, a constraint of capacity must
be fulfilled, since a switch is limited on the number of BTSs that it can manage.
Thus, we propose to use the Terminal Assignment Problem (TA) [15]-[18] as
a model to evaluate the selection of a set of BTSs to locate switches. The SLP
with the TA for evaluating the set of BTSs, is equivalent to the well known
capacitated p-median problem, which has been tackled before in the literature
in different fields and applications [19], [23], and it is known to be NP-hard
[24]. We propose several hybrid genetic algorithms for solving the SLP, based
on the hybridization of a conventional GA and several local search algorithms
for the TA. We will show the performance of the local algorithms for solving
the TA, comparing their performance with thus of existing approaches. We
will also test our approaches for the SLP in several instances, with different
number of BTSs and switches available.

The rest of the paper is structured as follows: next section defines the SLP
in a mobile communications network. In this section we show that it can be



split in two subproblems, the selection of the set of controllers and a termi-
nal assignment problem to evaluate this selection. In Section 3 we present
our hybrid genetic algorithms for solving the SLP. In Section 4 we test the
proposed algorithms for the TA and for the SLP, by means of several com-
putational experiments, where the performance of our approaches is studied.
Finally, Section 5 concludes the paper.

2 Problem definition

Let us consider a mobile communications network formed by N nodes (BTSs),
where a set of M switches must be allocated in order to manage the network
traffic and other network resources. It is always fulfilled that M < N , and in
the majority of cases M � N . We start from the premise that the existing
BTSs infrastructure must be used to locate the switches, since it saves costs.
Thus, the SLP consists of selecting M nodes out of the N which form the
network, in order to locate in them our M switches. Note that there are(

M
N

)
possibilities of selecting M nodes out of N , and this selection should be

optimal with respect to a given objective or cost function. In order to define
an objective function for the SLP, a TA must be solved. Thus the SLP can be
divided in two subproblems: First, the selection of the M controllers. Second,
a TA in the calculation of the cost function for each controllers selection.

2.1 Cost function calculation in the SLP: the terminal assignment problem

Let us consider a system formed by K terminals and M concentrators. We have
a vector w = [w1, . . . , wK ] of terminal weights and a vector p = [p1, . . . , pM ]
of concentrator capacities. Finally, we also have an M × K matrix of dis-
tances D, where dij ≥ 0 gives the distance or cost of connecting terminal j to
concentrator i.

The TA consists of determining the minimum total cost links to form a net-
work, by connecting the terminals to the concentrators, subject to two con-
straints. First, each terminal must be assigned to one and only one of the
concentrators. Second, the capacity of a concentrator can not be smaller than
the sum of the weights of the terminals assigned to it.

This problem can be seen as a integer programming problem [15]. Mathe-
matically it can be stated as follows. Let X be a binary matrix such that
element xij = 1 if terminal j has been assigned to concentrator i, and xij = 0
otherwise.



Find X which minimizes

Z(X) =
M∑
i=1

K∑
j=1

dijxij (1)

subject to
M∑
i=1

xij = 1 j = 1, 2, . . . , K

K∑
j=1

wjxij ≤ pi i = 1, 2, . . . , M

xij ∈ {0, 1}

2.2 Modelling the SLP as a capacitated p-median problem

Consider now the SLP. Let us suppose that every node of the network can be
considered both as a BTSs or as a switch. If we have a particular solution for
the SLP, there will be M nodes serving as switches, and K = N − M nodes
which are BTSs. For this particular solution, we can associate BTSs in the SLP
with terminals in the TA, and switches in the SLP with concentrators in the
TA. We have therefore that a particular solution for the SLP is an instance
of the TA, which can be solved using any algorithm for the TA existing in
the literature. The solution obtained for the TA, has associated an objective
function value given by equation (1). The SLP consists then of finding the
location of switches into the nodes of the network which makes this objective
function minimum. With this definition, the SLP is equivalent to a capacitated
p-median problem [24], [19], which has been tackled before in the literature,
and applied to different real optimization problems [23].

Mathematically, the formulation of the SLP as a capacitated p-median prob-
lem is as follows:

Let I = {1, . . . , N} the set of nodes in the network, M be the number of nodes
which will be selected as controllers for the network. Find a binary vector y
such that:

S = {j/yj = 1}

Z = min

⎛
⎝ ∑

i∈I−S

∑
j∈S

dijxij

⎞
⎠ , (2)

subject to:



∑
i∈I−S

wixij ≤ pjyj, j ∈ S, (3)

∑
j∈S

xij = 1, i ∈ I − S, (4)

C(S) = M, (5)

yj ∈ {0, 1}, j ∈ I. (6)

xij ∈ {0, 1}, i ∈ I − S, j ∈ S, (7)

with C(S) number of elements of S. Note that this definition includes the
resolution of a Terminal Assignment Problem for each value of vector y.

2.3 An example

Consider the SLP defined by the collection of N = 13 nodes, with M = 3
switches available, shown in Table 1, and displayed in Figure 1 (a). This SLP
instance consists of choosing the 3 best nodes of the network for the location
of the corresponding switches. Note that there are

(
13
3

)
possibilities of locating

3 switches in a network of 13 nodes. As has been mentioned before, each of
the possible placements defines a TA, with M = 3 concentrators and K = 10
terminals, and an objective function given by equation 1. The best TA solution
(the one with minimum value of function 1 after solving the TA) will be
considered as the solution for the SLP. In this case, it is easy to show that the
best location of switches is given when the TA is defined as in Figure 1 (b),
with an objective function value of 185.4.

3 Proposed hybrid genetic algorithms

In this section we present several hybrid genetic algorithms for solving the SLP.
Following the split structure of the SLP in two subproblems, our algorithms
are based on a global-local search technique. First, we use a GA for choosing
which nodes serve as switches, second, a local search heuristics is used to solve
the associated TA and obtaining a value of the objective function.



3.1 Global search heuristic

We use a conventional GA with a restricted search as global search algorithm.
GAs have been successfully applied before to a wide variety of combinatorial
optimization problems, and therefore we suppose that the reader is familiar-
ized with its conventional implementation. Readers not familiarized with these
technique can consult [25] as basic bibliography. Table 2 shows the algorithmic
description of a conventional genetic algorithm: It works by encoding a pop-
ulation of binary strings, representing a possible selection of switches among
the nodes which form network. In our case, the length of each individual is
equal to this number of nodes of the network. A selection mechanism using the
roulette wheel method [25], two-points crossover and flip-type mutation are
applied to evolve the population. Also, the best individual in each generation
is passed over to the next one, with an operator of elitism.

To deal with the SLP, this conventional implementation of the GA is not
appropriate, since it cannot tackle the constraint imposed by the number of
1s in the binary strings (Equation 5). We must introduce then a mechanism for
dealing with this SLP constraint. This constraint has been previously applied
in the literature. Specifically, the same constraint regarding the number of 1s
in GA and SA have been solved by means of the so-called restricted search
operator in [26] and [27]. The restricted search basically considers one extra
operator to be added to the conventional GA, in the following way: after
the application of the crossover and mutation operators, the individual x will
have p 1s that, in general, will be different from the desired number of desired
1s in x, M . If p < M the restricted search operator adds (M − p) 1s in
random positions, and if p > M , the restricted search operator randomly
selects (p − M) 1s and removes them from the binary string. This operator
can be described in pseudo-code, as follows:



The restricted search operator

Let M be the number of 1s in a given individual s of the GA.

For every generation of the GA:

for every individual of the GA population:

check the number of 1s p.

if(p < M)

Add ones(M − p);

else

Remove ones(p − M)

end(if)

end(individual)

end(generation)

The GA using the restricted search will look for the best binary vector y in
terms of the SLP objective function. This objective function is obtained by
means of solving the TA associated to a given binary vector y. The following
section describes the local search algorithm we have chosen to be hybridized
with the global search techniques.

3.2 Local search algorithms

3.2.1 A greedy algorithm for the TA

One of the most important papers on TA was the approach by Abuali et al.
[15]. In this article, the authors proposed a greedy algorithm for solving the
TA. This greedy approach starts from a random permutation of terminals
π(lK) (order in which we assign the terminals to controllers). Then, the cost
function to optimize is the Euclidean distance between terminal i and concen-
trator j. The terminals are assigned to concentrators following the order in
π(lK), in such a way that a terminal is allocated to the closest concentrator if
there is enough capacity to satisfy the requirement of the particular terminal.
If the concentrator cannot handle the terminal, the algorithm searches for the
next closest concentrator and performed the same evaluation. This process is
repeated until an available concentrator is found, and the algorithm is con-
tinued to assign the remaining terminals, if there are any. In the case that no
concentrator can accommodate the required capacity of a given terminal, the
search is considered failed, and the solution provided by the greedy algorithm
is not feasible.



Pseudo-code of the Greedy algorithm in [15].

Choose a permutation π(lK), at random.

for(each terminal π(li))

Determine dij, the distance from

π(li) to the closest feasible concentrator rj.

Assign π(li) to rj.

end(for)

3.2.2 A Modified greedy approach for the TA

The greedy approach defined in [15] has a major drawback: it is computation-
ally inefficient, since its performance and computational time depend on the
number of permutations defined. To solve this point, we propose a modification
of the algorithm for reducing its computational time, and trying to improve
its performance on the TA. Instead of defining a number of permutations, we
define only one permutation π∗ which sorts the terminals for their distance
to the nearest concentrator. We start assigning terminals to concentrators fol-
lowing the order given by permutation π∗. When a given terminal i cannot
be assigned to its nearest concentrator k (due to the capacity constraint), we
calculate the distance of all the terminals in k to the second nearest concen-
trator. If the distance of a terminal j (already assigned to k) to its second
closest concentrator is smaller than the distance from terminal i to its second
closest concentrator, and wj ≥ wi, then we reassign terminal j to its second
closest concentrator, and substitute it by terminal i. In the case that there
is not such a terminal or with the requirements of distance or weight, ter-
minal i is assigned to its second closest concentrator. We call this modified
greedy approach as the GreedyExp algorithm for the TA. It is expected that
the GreedyExp approach to be computationally much efficient than the greedy
algorithm in [15]. We will show its performance on the TA in Section 4.

3.2.3 Local heuristics based on linear programming relaxation of the TA

The linear programming (LP) relaxation of the TA can be defined as follows.
Find X̂ which minimizes

Z(X̂) =
M∑
i=1

K∑
j=1

dijx̂ij (8)



subject to
M∑
i=1

x̂ij = 1 j = 1, 2, . . . , K

K∑
j=1

wjx̂ij ≤ pi i = 1, 2, . . . , M

x̂ij ∈ [0, 1]

Note that the solution X̂ of the LP relaxation satisfies that Z(X̂) is a lower
bound on the cost of an optimal solution of the TA, i.e Z(X̂) ≤ Z(X).

In this section we present two heuristics for the TA which start from the
solution X̂ to the LP relaxation, and use the vectors of capacities p and
weights w as local information to build a solution of the TA. The output of
each heuristic is a result matrix X∗, and its corresponding cost value Z∗.

The first heuristic we propose is called the XWLP algorithm, since it uses an
ordering of terminals and concentrators which depends on the product of the
elements of X̂ and w as follows.

XWLP Heuristic:
1: xij ← 0,∀i, j
2: x′

ij ← x̂ijwj,∀i, j
3: while (maxi,j{x′

ij} > 0)
4: choose at random n and k such that x′

nk = maxi,j{x′
ij}

5: if (pn ≥ wk) then
6: xnk ← 1
7: pn ← pn − wk

8: x′
ik ← −1,∀i

9: else
10: x′

nk ← −1
11: end if
12: end while
13: if (

∑
i,j xij = K)

14: Z∗ ← ∑
i,j xijdij

15: X∗ ← X
16: else
17: - No feasible solution has been found
18: Z∗ ← ∞

Note that in this heuristic, the terminals corresponding to large elements of
matrix X′ are assigned first, breaking ties randomly. If there is enough capacity
available, the terminal is assigned to the concentrator, the terminal’s weight is
subtracted from the remaining concentrator’s capacity, and the entire row of



matrix X′ is removed from further consideration, by marking it with a value
−1. This process ensures that the capacity constraint will not be violated.
The resulting solution is unfeasible if not all the terminals are assigned to
concentrators. In this case the solution cost is fixed to ∞.

The second heuristic that we propose is called MWFLP (Maximum Weight
First Linear Programming) heuristic:

MWFLP Heuristic:
1: xij ← 0,∀i, j
2: while (maxj{wj} ≥ 0)
3: choose at random some k such that wk = maxj{wj}
4: if(maxi{x̂ik} = −1) then
5: - No feasible solution has been found
6: Z∗ ← ∞
7: exit
8: end if
9: choose at random some n such that x̂nk = maxi{x̂ik}

10: if (pn ≥ wk) then
11: xnk ← 1
12: pn ← pn − wk

13: x̂ik ← −1,∀i
14: wk ← −1
15: else
16: x̂nk ← −1
17: end if
18: end while
19: Z∗ ← ∑

ij xijdij

20: X∗ ← X

This heuristic selects the terminals to be assigned following the ordering given
by the maximum of the vector of weights w. If there is a tie, the heuristic
chooses randomly among the unassigned terminals with equal weight. For a
chosen terminal, the order in which the concentrators are considered depends
on the elements of matrix X̂, breaking ties at random. One terminal is assigned
to a concentrator if and only if the concentrator has enough capacity for handle
the terminal. If so, the row of the matrix corresponding to the terminal is
removed from further consideration by marking it with a value of −1. This
process ensures that the capacity constraint is fulfilled. The solution will be
unfeasible if any of the terminals has not been assigned. In this case the
solution cost is fixed to ∞.



3.2.4 Lower bounds for the SLP

In order to obtain comparison algorithms for assessing the performance of our
approaches in the SLP, we consider two Lower Bounds (LB) for the SLP. The
first LB is given by the linear programming relaxation of the TA, given in
Section 3.2.3. If we hybridize this LB with the GA proposed in Section 3.1, we
will obtain an algorithm which provides a LB for the SLP. We call this lower
bound as LBLP .

The second LB for the TA has been defined in [5]:

LB∞ =
N−M∑
i=1

min
k

(dik) (9)

Note that this LB comes from the solution obtained by assigning each node
i to the nearest controller k. It is important to see that this LB is equivalent
to have controllers with infinite capacity, in such a way that they can handle
any number of nodes. This LB provides then the best possible assignment if
no capacity constraint is considered. The SLP without the capacity constraint
is similar to the so-called p-median problem (see [28], [29] for details). We can
use then the GA in Section 3.1 hybridized with the LB∞ to obtain a LB for
the SLP.

4 Computational experiments and results

We divide this section in two major parts. The first part is devoted to test
the performance of the proposed heuristics for the TA, presented in Section 3.
The second part will show the performance of the hybrid algorithms for the
SLP.

4.1 Experiments in the TA

First we would like to test the performance of the algorithms we have proposed
for the TA, as it is a key part for accurately solve the SLP. To do it, we have
run a set of experiments, where the performance and computational time of
the different algorithms for the TA are evaluated.

To test the performance of the algorithms, we use a 300 × 300 grid, where a
set of K = 200 terminals and M = 10 concentrators will be placed. First of
all, we randomly and uniformly set the concentrators’ coordinates (ri1, ri2),
for i = 1, · · · , M , in the grid. Then, the terminals’ coordinates (lj1, lj2), for



j = 1, · · · , K, are obtained starting from those of the concentrators. For each
terminal j, a concentrator k is randomly and uniformly chosen, and the ter-
minal coordinates are obtained as:

lj1 = rk1 + N(0, σ) (10)

lj2 = rk2 + N(0, σ), (11)

where N(0, σ) is a normally distributed one-dimensional random number, of
mean 0 and variance σ. This framework allows different cases in the distri-
bution of terminals and concentrators, depending on the parameter σ. If this
variance σ is small, the terminals will be placed in the surroundings of the
concentrators. Figure 2 show an example of this, using a variance σ = 10. On
the other hand, for large values of σ, the terminals will be almost uniformly
spread in the grid. This can be seen in Figure 3, where a value of σ = 200 has
been used. The testing of the heuristics has been carried out in this frame-
work, by varying the parameter σ from 5 to 200, in steps of 5, and running 20
experiments for each value of σ.

The weights of the terminals have been randomly chosen, with values between
2 and 6. The capacities of the concentrators have been calculated from the
terminal weights, as follows:

pi = round

(∑K
j=1 wj

M

)
+ (1 + round(U(0, 4))); (12)

where U(0, 4) is a uniformly distributed number between 0 and 4. Note that,
with this definition

∑K
j=1 wj <

∑M
i=1 pi. Finally, the distance matrix has been

computed as the Euclidean distance between each pair of terminal-concentrator.

Note that XWLP and MWFLP algorithms proposed in this paper make ran-
dom choices when ties are encountered. This may influence on the chances of
finding a feasible solution and its quality. Empirically, we have found that in
these test cases, the random choices do not influence much the performance
of the XWLP algorithm. However, the quality of the solutions obtained with
the MWFLP algorithm can vary from one run to another. For these reasons,
in the evaluation performed we only execute the XWLP algorithm once for
each problem, while we repeat the execution of the MWFLP algorithm 200
times, and keep the best solution found. We have tested the greedy approach
in [15] by running it with 15000, 30000 and 50000 permutations.

The computational time of the compared algorithms has also been analyzed
by means of computational experiments. To do this, we have created a new set
of experiments, fixing the parameter σ and varying the number of terminals K
from 50 to 200. We have run 30 experiments with each value of K, obtaining
the CPU time employed by each heuristic. All the experiments have been
carried out in a Pentium IV processor (2.5 GHz).



Figure 4 shows the results obtained by the different algorithms tested. The
figure represents the parameter σ in the x-axis, and the cost of each algorithm
divided by the cost of the LBLP in the y-axis. Each point of the curves was
obtained as an average of the 30 experiments in each variance. Note that
the best results are obtained using the MWFLP algorithm, followed by the
XWLP. Both heuristics improve the results obtained by the GreedyExp and
the greedy approach with 15000, 30000 and 50000 permutations. Note also that
the GreedyExp algorithm obtains better results than the greedy algorithm.

The dashed line in Figure 4 represents the LBLP . It is interesting that the dif-
ferences between this LB and the result obtained by the MWFLP and XWLP
heuristics are small. There are, however, some differences depending on the
value of σ. It seems that in the cases where the terminals surround the con-
centrators (small value of σ), the differences between the proposed heuristics
and the LBLP is larger than in the experiments where the terminals are al-
most randomly distributed in the grid (large value of σ). These differences are
small, about 2% in the best cases.

Regarding the computational time of the compared heuristics, Figure 5 shows
the CPU time in seconds of each algorithm in TA examples of different size.
Note that the GreedyExp approach is the algorithm with less computational
cost. XWLP heuristic also has a good computational time, and solves all the
instances in less than 1 second. The MWFLP heuristic solves all the instances
in less than 5 seconds, and obtains better results than the rest of the algo-
rithms, as was shown in Figure 4. The greedy heuristic with 15000, 30000
and 50000 permutations are more time-consuming algorithms than the other
heuristics, as can be seen in the figure.

4.2 Experiments in the SLP

In order to test the hybrid algorithms in the SLP, we have proposed several
SLP instances of different difficulty. Table 3 shows the main characteristics
of the instances tackled. There are 6 SLP instances, with different values for
N and M . we have small size networks (Instances 1 and 2), medium size
networks (3 and 4) and large size networks (5 and 6). Instance 1 is the small
example of Section 2.3. Instances 2, 3 have been randomly generated in a
100× 100 grid, and Instances 4, 5 and 6 have been generated over a 200× 200
grid. The capacities of all the nodes have been randomly generated between
values of 15 and 22, and the weight of the nodes have also been randomly
generated between 1 and 5. It is expected that the difficulty of the instances
increases with the number of nodes in each instance. The parameters of the
conventional GA used in the simulations are population of 50 individuals, 200
generations, crossover probability Pc = 0.6 and mutation probability Pm =



0.01. We compare the performance of the GA hybridized with the MWFLP,
GreedyExp algorithm and greedy algorithm in [15] with 50000 permutations.
We also include a comparison with the results obtained by a GA proposed in
[19] for the capacitated capacitated p-median problem.

Table 4 shows the results obtained by the hybrid algorithms tested. We have
run each algorithm 30 times, keeping the values of the best, mean and stan-
dard deviation. We also include the lower bounds for the considered instances
defined in Section 3.2.4. Note that the bound obtained with the bound LBLP

and the GA is tighter than the bound obtained with the GA plus the LB∞.

The best results obtained with the approaches compared in this paper are
achieved with the hybrid approach GA MWFLP. This hybrid algorithm ob-
tained the minimum value of the objective function Z in all instances tested.
The algorithm GA GreedyExp obtains similar results in Instances 1 and 2,
but the results obtained in the rest of instances seem to be worse. The hy-
brid approach GA Greedy50000 obtains the worst results among the heuris-
tics tested. Note also that our approaches GA MWFLP and GA GreedyExp
outperform the results obtained by the GA proposed in [19]. In order to sta-
tistically corroborate these results, Table 5 shows the results of a t-test per-
formed over the data obtained by the compared algorithms. The t-test shows
that the GA MWFLP performs statistically better than the rest of algorithms
compared in Instances 3, 4 and 5. In the smallest instances 1 and 2, and in
Instance 6, GA MWFLP and GA GreedyExp performs in a similar way. Both
approaches outperform statistically the GA proposed in [19]. Regarding the
comparison between GA MWFLP and GA Greedy50000 algorithm, it is easy
to see that the GA MWFLP improves the performance of the GA Greedy
approach in all Instances, and this improvement is statistically significant in
Instances 2, 3, 4 and 5.

The case of Instance 2 is interesting. Note that in this instance, the LBLP is
equal to the solution obtained by the hybrid algorithms. This means that the
solution obtained by the linear relaxation of the TA is also a solution for the
TA. Figure 6 shows Instance 5 nodes distribution (Figure 6 (a)), the solution
obtained by the GA MWFLP hybrid algorithm (Figure 6 (b)) and the solution
given by the LBLP (Figure 6 (c)). Note the differences between Figures 6 (b)
and 6 (c) due to the capacity constraint of the problem.

4.3 The SLP in a real case

We conclude the experiment part of this paper by showing the resolution
of a SLP in a real case: the SLP of in the wireless network of Alcalá de
Henares, Madrid, Spain. Alcalá de Henares is a medium size city, with 180000



citizens, sited on the north-east of Madrid. In the last few years there have
been a massive growth of the wireless telephony use within the city, and its
2G wireless network is now completely deployed, having 33 BTS of different
types for covering the city. Figure 7 shows the situation of the BTSs in a map
of the city. The parameters of the different BTSs (Table 6) has been obtained
from the mobile network operators. The weights of the TA are equivalent to
the number of transceivers (Trx) of each BTS. All the BTSs have the same
maximum capacity if it is considered as a switch. This table also provides the
position of the BTSs in Universal Transverse Mercator (UTM) coordinates.

We have applied our best approach, the GA MWFLP algorithm to obtain the
switches location. Note that, in this case, the minimum number of switches
to cover the network capacity requirements is 5. Figure 8 shows the solution
found by our algorithm, with a maximum cost of 26059.9 meters. This solution
is also given in Table 7.

5 Conclusions

In this paper we have presented several hybrid genetic algorithms for solving
the Switch Location Problem (SLP) in a wireless communication network.
We have defined a model for the problem, based on the capacitated p-median
problem, and following this model, we have constructed several hybrid ge-
netic approaches. All the heuristics proposed consist of a conventional genetic
algorithm for choosing which nodes of the networks contains a switch, hy-
bridized with local heuristics for providing the associated objective function
(solution of the associated terminal assignment). The experiments carried out
have shown the good performance of the hybrid genetic heuristics for solving
the SLP. The heuristic developed in this paper, and the model in which they
are based, can also be applied in different cost models for regulatory studies
in telecommunications.
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7 Best solution obtained for the SLP problem in the wireless
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Table 1
Nodes weight, capacity and coordinates for the problem in Section 2.3.

Node # Weights Capacities Coordinates

1 4 12 (19,76)

2 3 14 (50,30)

3 2 13 (21,79)

4 5 12 (54,28)

5 4 13 (28,75)

6 4 13 (84,44)

7 2 12 (67,17)

8 3 12 (90,41)

9 1 14 (68,67)

10 3 14 (24,79)

11 4 13 (38,59)

12 5 12 (27,86)

13 4 13 (07,76)



Table 2
Algorithmic description of a conventional genetic algorithm

Conventional Genetic Algorithm
BEGIN

Generate initial population P (0) randomly,
i ← 0;
REPEAT

Calculate fitness for all the individuals in P(i),
Select the parents from P (i) based on their fitness in P (i);
Apply crossover to the parents;
Apply mutation to the individuals and replace the population;
i = i + 1

UNTIL i =Max gen;
END



Table 3
Main characteristics of the SLP instances tackled.

Instance # Nodes Controllers Grid

1 13 3 100 × 100

2 20 4 100 × 100

3 40 6 100 × 100

4 60 8 200 × 200

5 80 10 200 × 200

6 100 12 200 × 200



Table 4
Results obtained (best/avg/std. dev.) by the different approaches studied, in the
SLP instances considered.

P # GA MWFLP GA greedy50000 GA GreedyExp GA in [19] LB∞ LBLP

1 185.4/185.4/0.0 185.4/185.4/0.0 185.4/185.4/0.0 185.4/185.4/0.0 120.0 181.7

2 357.0/357.0/0.0 357.0/359.6/4.0 357.0/357.0/0.0 357.0/358.4/3.5 357.0 357.0

3 468.1/471.7/2.3 492.8/501.4/6.15 471.5/474.3/1.6 485.3/497.3/6.8 449.4 462.6

4 1420.3/1444.9/13.9 1476.4/1553.5/42.5 1425.8/1452.7/16.6 1457.2/1503.6/32.7 1346.4 1385.0

5 1699.2/1748.4/20.2 1767.5/1827.9/29.9 1704.0/1753.6/28.3 1726.9/1794.3/38.6 1573.5 1618.8

6 2105.2/2198.1/50.6 2132.7/2221.9/43.5 2127.5/2213.8/44.6 2143.8/2206.3/40.8 1940.0 2031.7



Table 5
t values obtained by a two-tailed t-test for the SLP instances tackled. † stands for
values of t with 29 degrees of freedom which are significant at α = 0.05.

P # GA MWFLP-GA GreedyExp GA MWFLP-GA Greedy50000 GA MWFLP-GA [19]

1 0.0 0.0 0.0

2 0.0 -3.5† -2.8†

3 -4.85† -28.57† -17.63†

4 -2.06† -15.75† -12.48†

5 -0.98 -15.74† -12.74†

6 -1.21 -1.94 -1.90



Table 6
Weights and capacities of the BTSs in Alcalá de Henares.

Node # Weight (Trx) Capacity x-coordinate (UTM) y-coordinate (UTM)

1 3 48 467092 4481354
2 3 48 466105 4480876
3 3 48 468067 4480731
4 6 48 465630 4485016
5 6 48 468816 4481043
6 6 48 469296 4480356
7 6 48 468647 4483846
8 6 48 469815 4482204
9 3 48 470204 4481771
10 3 48 470274 4482279
11 3 48 471468 4483752
12 9 48 466147 4483155
13 9 48 468168 4482323
14 9 48 467872 4481516
15 9 48 468806 4482498
16 12 48 469012 4481755
17 12 48 469455 4482025
18 12 48 469262 4481140
19 12 48 469243 4480275
20 9 48 468914 4484249
21 9 48 469539 4482412
22 9 48 470508 4482427
23 9 48 470272 4481806
24 9 48 471322 4483141
25 6 48 468319 4480835
26 6 48 466265 4484883
27 6 48 466249 4481399
28 9 48 469147 4481880
29 9 48 469692 4482710
30 6 48 469713 4482094
31 6 48 471650 4483967
32 3 48 470633 4482783
33 3 48 470943 4483039



Table 7
Best solution obtained for the SLP problem in the wireless network of Alcalá de
Henares. We show the nodes which serves as switches and their assigned nodes.

Node serving as switch Assigned nodes

14 1, 2, 3, 13, 15, 25, 27

33 7, 10, 11, 20, 22, 24, 31, 32

26 4, 12

18 5, 6, 16, 19, 28

30 8, 9, 17, 21, 23, 29
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Fig. 1. (a) Example of SLP; (b) Optimal solution.
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Fig. 2. Example of TA test problem, M = 10, K = 200 and σ = 10. The squares
and circles stand for concentrators and terminals, respectively.
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Fig. 3. Example of TA test problem, M = 10, K = 200 and σ = 200. The squares
and circles stand for concentrators and terminals, respectively.
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Fig. 6. (a) Distribution of nodes in Instance 5; (b) Best solution found by the
GA MWFLP algorithm in Instance 5.; (c) Best solution found by the GA LB∞
algorithm in Instance 5.



Fig. 7. BTSs locations in Alcalá de Henares (Madrid).



Fig. 8. Best solution obtained for the SLP problem in the wireless network of Alcalá
de Henares.


