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This paper describes the derivation and the econometric calibration of a joint time assignment–mode choice
model with a microeconomic foundation, to be applied to the TASTI (time assignment travel and income)

database. The econometric procedure is a full information maximum likelihood with three nonlinear continuous
equations and one discrete choice. We use Lee’s transformation [Lee, L. F. 1983. Generalized econometric models
with selectivity. Econometrica 51 507–512] to include correlations between the continuous and discrete equations.
This allows us to estimate (a) the value of time as a resource or value of assigning time to a pleasurable activity,
(b) the value of assigning time to work, and (c) the value of assigning time to travel. We apply the method and
obtain reasonable results. Finally, we identify some econometric challenges for further research.
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1. Introduction
Traditional transport mode choice models are based
on random utility maximization (RUM) theory in
which choice is based on a utility function Vj that
depends mainly on the travel cost and travel time
of mode j . As pointed out by Train and McFadden
(1978), Vj can be viewed as an indirect utility func-
tion that originates from consumer behavior the-
ory in which both goods and leisure are considered
as sources of utility (see also Gronau 1973; Becker
1981, 1965; Mincer 1962, 1963; DeSerpa 1971). This
behavioral framework has been further enhanced in
the last decade, incorporating contributions from the
field of home production. In this broader microe-
conomic framework, utility is viewed as depending
on all activities participated in by the individual
and the goods consumed while pursuing those activ-
ities. From this perspective, discrete mode choice
models, time assignment models, and goods con-
sumption models originate from a common microe-
conomic framework. However, most of the efforts to
date adopting such a perspective have been rather
theoretical in nature.
At the same time that theoretically derived

microeconomic frameworks have been developed to
examine time use in activities in the economics and
home production fields, there have also been paral-
lel empirically driven research efforts to study time

use in the travel behavior field to better under-
stand and forecast travel (see Bhat and Koppelman
1999; Pendyala and Goulias 2002; Arentze and
Timmermans 2004). Some of these travel behavior
studies are based on frameworks that are not derived
from utility theory (see, for example, Allaman, Tardiff,
and Dunbar 1982; Damm and Lerman 1981; van
Wissen 1989; Lu and Pas 1999; Golob 1998; Meka,
Pendyala, and Kumara 2002; Fujii, Kitamura, and
Kishizawa 1999; Bhat 1998), whereas others use
frameworks with utility theory as the fundamental
basis for time use (Munshi 1993; Kitamura 1983; Kita-
mura et al. 1996; Yamamoto and Kitamura 1999; Bhat
and Misra 1999; Meloni, Guala, and Loddo 2004;
Bhat 2005; Ettema 2005; Srinivasan and Bhat 2006;
Chen and Mokhtarian 2006). An important difference,
though, between the latter group of travel behavior
studies and the economics studies is that the travel
behavior studies have generally considered time as
being the only constraint in time allocation, ignored
goods consumption in the formulation, and focused
on discretionary activities.
In the past few years, the research work of Jara-Díaz

and his colleagues has straddled this economic travel-
behavior divide. In particular, their line of research
has focused on using a complete microeconomic
framework and translating this into an empirically
estimable model system. In this context, a recent



paper by Jara-Díaz and Guevara (2003) developed
and estimated a behavioral model that encompasses
time assigned to work and mode choice. However,
this model has three important limitations. First, the
only nonwork activity to which time is assigned is
travel. This generates a work duration model that
depends only on travel cost and travel time. Sec-
ond, the assignment of time to other activities is
not considered. Third, the authors assume indepen-
dence between the error terms of the work and travel
mode choice equations for simplicity, an assumption
that was later relaxed by Munizaga et al. (2006).
The microeconomic model was theoretically extended
by Jara-Díaz and Guerra (2003) to include all activi-
ties, goods consumption, and travel choice. However,
they did not develop an econometric framework to
estimate their microeconomic model. In this paper,
we present an econometric approach to calibrate
Jara-Díaz and Guerra’s (2003) model for activities and
travel and apply the approach using data from a
Chilean time-use survey.
In the rest of this section, we provide a brief

overview of the model developed by Jara-Díaz and
Guerra (2003) and identify the equation system to
be calibrated. In §2, we summarize the econometric
tools available to estimate the different components
of the proposed equation system. We then formulate
an econometric approach to calibrate the new model
system and specify the likelihood function to be max-
imized. In §3, we provide an overview of the data and
sample used in the empirical analysis, and we present
the empirical results. Section 4 concludes the paper.

1.1. Model of Jara-Díaz and Guerra (2003)
The microeconomic model developed by Jara-Díaz
and Guerra (2003) follows the general approach by
DeSerpa (1971), where individual utility comes from
the activities people participate in and the goods con-
sumed while pursuing the chosen activities. There
are two budget constraints: one that includes income
from different sources and all the expenditures, and
another that accounts for total available time. Finally,
technological constraints are considered regarding
goods consumption and time assigned to activities.
Let Ti be the time assigned to activity i, and let Xj

be the amount of good j consumed during period � ,
with minima given by T Mini and XMin

j , respectively.
Define Tw as the time assigned to work, Pj as the
price of good j , w as the wage rate, cf as the total
fixed expenditure (does not depend on goods con-
sumption), and If as the exogenous fixed income.
If utility is given by a Cobb-Douglas form, further
define �j and 
i as the exponents associated with
good j and activity i, respectively, and � as a positive
constant. Then, consumer behavior regarding time
assignments and goods consumption can be described

by the constrained utility maximization problem in
Equations (1)–(5). Note that monotonic transforma-
tions of utility do not change the problem, which
implies that the sum of all exponents can be used
to normalize utility such that the summation of all
normalized exponents is equal to one. A slightly dif-
ferent but useful normalization is presented below.
The signs of the marginal utilities are the signs of
the 
i and �j exponents. Second derivatives have the
opposite signs:
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(minimum time-investment constraint) (4)

Xj −XMin
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(minimum goods-consumption constraint)� (5)

where the Lagrange multipliers associated with each
constraint have been included on the right side of the
constraint. Note that, by definition, �/� is the value
of time as a resource or value of leisure. Let I be
the set of freely chosen activities, R the set of activi-
ties assigned the minimum required T Minr �K the set of
freely chosen goods, and J the set of goods for which
the minimum required XMin

j is consumed. Note that
unconstrained activities (those that are freely assigned
more time than the minimum) must have equal posi-
tive marginal utilities (all equal to �); otherwise, they
would not be undertaken. Besides, every unpleas-
ant activity will be assigned the exogenous mini-
mum, because the sign of its marginal utility is the
same irrespective of duration under this specification.
This does not mean that an activity that is assigned
the minimum time is necessarily unpleasant, because
the optimal time assignment could be less than the
exogenous minimum.
From the first-order conditions of this optimiza-

tion problem, Jara-Díaz and Guerra (2003) obtain an
equations system for time assigned to work (Equa-
tion (6)), time assigned to unconstrained activities
(Equation (7)), and goods consumption (Equation (8)):
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w�, A is the addition of the 
 exponents over
all unconstrained activities, and B is the addition of
the � exponents over all unconstrained goods. The
other terms are defined in Equation (9). Note that Gf
deals with expenses on goods in J , and Tf is the time
committed to activities in R:
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Equation (6) says that if � and � are positive, then
work time increases with Gf /w, which is the min-
imum work period to cover fixed expenses, and
with available time. On the other hand, expressions
(1− 2�) and (1− 2�) are equal to A/�A+ B+ 
w� and
B/�A+ B+ 
w�, respectively. The former is associated
with aggregated leisure, and the latter is associated
with aggregated discretionary goods consumption.
Then, Equation (7) says that time assigned to leisure
activity i increases with 
i and with available time,
and Equation (8) says that consumption of good k
increases with �k and with available income.
Due to the existence of time and income budget

constrains, only n − 1 time assignment and goods
consumption equations can be calibrated (where n is
the number of unconstrained activities or goods). For
each restricted variable, a discrete choice model could
be specified and calibrated if there are data available,
as explained below. In some cases, it may not be clear
which activities (or goods) are restricted, but this can
be explored empirically.
Once the time assignment and goods consumption

equations are derived, Jara-Díaz and Guerra (2003)
obtain an expression for the indirect utility function
by replacing the optimal values from (6), (7), and (8)
into (1), which generates an indirect utility function
V �w�Gf �Tf �. If constrained activity i is characterized
by time ti and cost ci, the indirect utility can be triv-
ially transformed into a conditional indirect utility
function Vi by simply considering ti and ci explicitly
as part of Tf and Gf , respectively. In other words,
one can make Tf = T ′

f + ti and Gf =G′
f + ci. This way,

the resulting function Vi�ti� ci�w� is, by definition, the
maximum utility that can be obtained conditional on
alternative i. If time and cost refers to travel, then this
is the conditional indirect utility function command-
ing travel choice.

The model system described above not only allows
the efficient calibration of parameters but also enables
the calculation of the different values of time. These
are the value of time as a resource (value of leisure),
the value of assigning time to a particular activity,
and the value of saving time in a particular restricted
activity. Following Jara-Díaz and Guerra (2003), the
value of leisure can be calculated as

�
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The value of assigning time to work is given by
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Finally, the value of assigning time to a restricted
activity t, (%U/%Tt�/�, can be calculated from
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�
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�
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As shown by Jara-Díaz and Guevara (2003), �t/� can
be directly obtained from a discrete choice model
(travel) as the ratio between the marginal utility
of time and cost in the conditional indirect utility
function, which is the value of saving time in that
activity. Subtracting this from the value of leisure
yields the value of assigning time to that partic-
ular restricted activity. Note that the latter is the
value of the marginal utility, i.e., the pleasure or dis-
pleasure of travel, which is different from the com-
monly known subjective value of travel time savings
(�t/�) that includes both the opportunity cost and the
(dis)pleasure of assigning time to travel.
Therefore, to be able to calculate values of time

(Equations (10), (11), and (12)), we have to esti-
mate the parameters �, �, and �t/� from the (6)–(7)-
Vi�ti� ci�w� model system, where the time assignment
equations are continuous and nonlinear, while the
conditional indirect utility function represents a dis-
crete choice problem. These equations can be cali-
brated separately as independent equations, or jointly
acknowledging the presence of correlation among
equations due to common variables and parameters.
The next section discusses the econometric methods
to estimate the equations.

2. Econometric Calibration of a Time
Assignment and Mode Choice
Model System with Correlation

2.1. Discrete/Continuous Model Systems
The methods developed for discrete/continuous
choices (i.e., where one or more continuous variable



choices are related in some way to a discrete choice
in a way that requires the joint modeling of the con-
tinuous and discrete choices) typically fall under one
of two categories: structural equations model sys-
tems (see Golob 1998; Simma and Axhausen 2001;
Schwanen, Ettema, and Timmermans 2004 for appli-
cations in a travel behavior context) and economet-
ric model systems (see Kitamura 1983; Mannering
and Hensher 1987; Bhat 2005). The first approach
is a powerful statistical multivariate analysis tech-
nique based on path diagrams, which represent the
researcher’s beliefs about causal effects. The second
approach has a more fundamental basis in utility the-
ory. Both approaches have been used extensively in
the literature. In the current paper, we use the second
approach because our model system is based on a the-
oretical microeconomic framework that determines
the nature of the relationship between the discrete and
continuous choices.
If the individuals have n different activities to

which to assign their time (excluding constrained
activities that are assigned the exogenous minimum),
then our model system has n− 1 nonlinear continu-
ous equations and one discrete choice. The calibration
of a system of nonlinear simultaneous equations,
with correlated errors, can be accomplished using the
method proposed by Gallant (1975), as an extension
of Zellner’s (1962) seemingly unrelated regression
method. The general idea of the method proposed
by Gallant (1975) is to perform a first stage, where
the error covariance matrix is estimated by applying
nonlinear minimum squares to each equation sepa-
rately and then to estimate all the parameters simul-
taneously, applying Aitken generalized least squares
to the whole system using the estimated covariance
matrix. A more efficient approach is the full infor-
mation maximum likelihood method that assumes a
normal additive error for each equation. From this
assumption, a joint density function can be expressed
for the error terms. This function depends on the
model’s parameters and on standard deviations and
correlations of the error terms. The method searches
the set of parameters that maximizes the likeli-
hood function evaluated for the calibration sample.
Both the model parameters and the parameters that
describe the error structure are calibrated simultane-
ously, using all the information available. The simple
multinomial logit (MNL) model, which assumes inde-
pendently and identically distributed (i.i.d.) Gumbel
error terms, is assumed for the mode choice model in
this study.
Within the context of a system of discrete/contin-

uous equations, there are approaches to deal with
basically two types of problem: endogeneity bias and
selectivity bias. Endogeneity bias is expected when

the continuous equation includes an endogenous vari-
able. Selectivity bias occurs when the observed val-
ues of the variable in a continuous equation are
related to a particular choice in the discrete process.
To deal with selectivity bias, Heckman (1979) pro-
posed a method that has been widely used in labor
supply models (where the number of working hours
can only be observed for those individuals who actu-
ally work). The main idea of the method is to calibrate
the discrete choice model first, assuming a normal
distribution for the error terms (Probit model), and
then introducing a correction term in the continuous
equation. The selectivity correction term is calculated
from the choice probabilities predicted by the Pro-
bit model. The continuous equation error term is also
assumed to be distributed normal.
A problem with the above procedure is that it does

not correct for endogeneity, which can be present
if there are common parameters in the discrete and
continuous equations, and if the error terms of both
types of equations are correlated. Lee (1983) proposed
the calibration of the discrete/continuous model sys-
tem by maximizing a joint full information maximum
likelihood function. The method involves transform-
ing a priori assumed marginal distributions for each
error term into the standard normal and generating
a joint multivariate normal distribution of the result-
ing transformed error terms. Within the context of
a time assignment model, Lee’s (1983) method has
been applied by Barnard and Hensher (1992) to exam-
ine shopping destination choice and retail expendi-
ture, and by Bhat (1998) to jointly model the decisions
of participating in home versus out-of-home activi-
ties and how much time to allocate to each of them.
Another application has been that of Munizaga et al.
(2006) for a continuous equation of time assigned to
work and a discrete equation of mode choice. The
approach proposed by Lee (1983) is general enough
and practical to tackle the calibration of the models
proposed by Jara-Díaz and Guerra (2003), as it allows
multiple alternatives for the discrete choice and per-
mits the inclusion of correlation between this and the
continuous equations. This is discussed next.

2.2. Specification of Time Assignment and
Mode Choice Equations

The equation system we consider includes three
time assignment continuous equations, one for work
(Equation (6)) and one each for personal care and en-
tertainment (using Equation (7)). We do not consider
an equation for consumption of goods (Equation (8))
because of the lack of data on this dimension. For
clarity, the continuous equation system is rewritten



by defining Dq as in Equation (15), obtaining Equa-
tion (13). The � terms represent normally distributed
error terms, and the subindex q stands for individual:
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Equations (13) and (14) could be calibrated separately.
Equation (13) allows estimating � and � using infor-
mation on time assigned to work, time assigned to
restricted activities, fixed expenditures, and the wage
rate. Equation (14) allows estimating 
̃l�1 − 2�� and
� using information on time allocated to the non-
restricted activity l, total time allocated to restricted
activities, fixed expenditures, and the wage rate. Note
that travel is included in R and the travel time used
has to be that of the actually observed choice.
As indicated earlier, we assume additive error

terms � with a different variance in each equation.
We expect that the presence of common parameters
(� and �) and common exogenous variables would
cause correlation among equations, so that this should
be considered in the error structure. Now, we will
explain how we derive the likelihood function for the
joint activities equations system, using some general
properties of the distribution functions. Taking Y =
�y1�y2� � � � � yn� as a vector of random variables, � as a
vector that contains the means, and . its covariance
matrix, the general expression for the joint density
function is

f �Y �= �2/�−n/2�.�−1/2exp[− 1
2 �Y −��′.−1�Y −��]� (16)

This density function can also be expressed from the
marginal and conditional distributions. Let y1 be any
subset of the variables, including the case of only one
variable, and let y2 be the remaining variables. We can
partition � and . in the same way, so

�=
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According to the marginal and conditional normal
distributions, if )y1�y2* follow a joint multivariate nor-
mal, then the marginal distributions are

y1 ∼N��1�.11�
y2 ∼N��2�.22��

(18)

The conditional distribution of y1 given y2 is also
normal:

y1/y2 ∼N��1�2�.11�2�� (19)

where
�1�2 =�1+.12.−1

22 �y2−�2�
and

.11�2 =.11−.12.−1
22 .21�

Using this theorem, the joint density can be
expressed as the product of two terms:

f �y�= f1�2�y1/y2�f2�y2�� (20)

where f1�2 is the conditional utility function of y1 in
y2 and f2 is the marginal function of y2.
From these general expressions, we have written

the equations for a three-variable case, applying
Equation (20) two times. The three normally dis-
tributed variables are the error terms of the time
assigned to work equation and the equations of two
nonrestricted activities (personal care and entertain-
ment). The computation of the likelihood requires
defining the normalized error term for each equation:
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We will also define some auxiliary variables that will
appear in the final likelihood function that originate
from the elements of . in Equation (19):

7∗=
√
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1−72W�C
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+ �72C�E −7W�C7W�E�3q*� (25)

where 2i is the standard deviation of the error terms
of equation i, 7i� j is the correlation between the
errors of equation i and equation j , and Tiq is the
time individual q assigns to activity i. The joint
density function for this three-variable case can be
expressed as
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where we have transformed a variable distributed
normal into standard normal using

f �y�= 1
2
8

(
y−�
2

)
� (27)

Finally, the log likelihood of the sample can be
written as
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So far, we have only derived the log-likelihood func-
tion for the three continuous choice time assignment
equations. However, we also have a discrete mode
choice multinomial logit model (some more general
specifications such as nested logit and mixed logit
were also calibrated, but they were not significantly
better than the simpler MNL). Mode i will be chosen
if its utility is larger than the utility of all the other
alternatives, as expressed in Equation (29):

Ui ≥Max∀ j
j �=i

Uj � (29)

Ui can have an observable component Vi and an
error term :i (i.i.d. Gumbel for the case of MNL). So,
condition (29) can be written as

Vi ≥
(
Max
∀ j
j �=i

Uj − :i
)
≡3i� (30)

Given the properties of the Gumbel distribution,
this new error term 3i distributes logistic, so the
distribution function is

F �Vi�=
exp�Vi�

exp�Vi�+
∑

∀ j
j �=i
exp�Vj�

� (31)

As mentioned in §1, there is an analytical expression
for Vi derived from the direct utility function, which
is a very complex nonlinear equation. For simplicity,
we will only use here a linear approximation of that
expression, which depends on time, cost, and a mode
constant as shown in Equation (32):

Viq = <i+<ttiq +<cciq� (32)

This model is calibrated by maximum likelihood. The
logarithm of the likelihood of a calibration sample
with independent observations is given by

lnL�
�=∑
q

∑
Ai∈A�q�

=iq ln�Fiq�� (33)

where =iq is equal to one if individual q chooses alter-
native i and zero otherwise, and Fiq is the choice prob-
ability given by Equation (31).
To incorporate correlation between the continuous

equations and the discrete choice, using the method
proposed by Lee (1983), 3i defined in Equation (22)
can be transformed into a standard normal term by
applying the inverse normal function. Let Diq be a
dummy variable which is equal to one if individ-
ual q chooses mode i and zero otherwise. Then,
Equation (30) can be written as

Diq = 1 ⇔ Vi ≥3i� (34)

This is a monotonical transformation, so the inequal-
ity that rules mode choice (Equation (34)) can be
written as

Diq=1 ⇔ Ji�Vi�=>−1�Fi�Vi��≥>−1�Fi�3i��=3∗
i � (35)

Next, we can express the likelihood function using
Equation (35) and the fact that TWq , TCq , and TEq are
observed when Diq = 1. Given the trivariate normal
distribution of �TWq , �TCq , and �TEq , and the standard
normal distribution of 3∗

i , we now have a multivariate
normal distribution of �TWq , �TCq , �TEq , and 3

∗
i .
1

To write the likelihood function of this system, we
use Equations (21) to (25) and add

yiq =>−1Fi�<ziq� (36)
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1 There is a strong normal distribution assumption being made
about the error terms in the discrete and continuous equa-
tions. Alternatively, one can use semiparametric or nonparametric
assumptions to generate the correlation between the discrete and
continuous equations, but such methods are not easy to apply to a
system with more than one continuous equation (see Lewbel and
Linton 2002 and the references therein for recent developments in
the area of semiparametric and nonparametric specifications in the
context of limited dependent variable models).



where yiq is Lee’s (1983) transformation for travel
mode choice, Fi is the MNL probability function, < is
the vector of parameters of the discrete mode choice
model, and ziq are the level of service variables that
individual q observes for alternative i. The correla-
tion between the continuous equations and the cho-
sen transport mode is 7l� i, where l is the continuous
equation (time assigned to work, personal care, or
entertainment) and i is the chosen mode.
With these definitions, the log likelihood of the

whole sample can be written as

LL = ∑
q

∑
i
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where 8�·� and >�·� are the density and distribution
functions of a standard normal. The maximization of
this function can have local solutions, which makes
it difficult to find the global maximum of the func-
tion. In our empirical analysis, we obtained multiple
convergent values based on the initial starting values,
and we chose the one that did not provide a degener-
ate solution of unrealistic values. We then selected the
model results that provided the best log-likelihood
value at convergence from among the realistic results.
There are more parameters that could have been

included such as additional mode specific variables,
standard deviations, and correlations for different
chosen modes. We decided not to use such flexi-
bility, as the number of parameters to be calibrated
would get large, making the calibration process more
difficult and less reliable.

3. Empirical Application
3.1. Sample Description
The database used to calibrate the model described
above is drawn from a time-use survey of 290 individ-
uals who work in the Santiago (Chile) CBD and who
live in the southern part of the city along an impor-
tant corridor. The sample also has mode choice infor-
mation, including the level of service variables for a
subsample of the reported trips. Of the 290 workers
surveyed, 42.4% are women and 67.6% are married.
The most frequent age range is 35 to 49 years (47.9%).
Most people in the sample have university or techni-
cal studies (67.2%). The average monthly income in
the sample is U.S. $868. Within a national context, we
could say that this is a typical middle income worker
sample.

The time-use survey includes the activities pur-
sued by an individual for three days (a working
day, Saturday, and Sunday). The activities were clas-
sified into 38 categories, plus travel activity, which
was coded separately for 21 modes. From these 38+
21 detailed activities, we can obtain time-use infor-
mation for aggregate categories. The most useful
aggregation we have identified is based on six cat-
egories: work (in and out of the workplace); personal
care (eating at home, resting, washing up, dressing,
etc.); sleep; entertainment (in- and out-of-home activi-
ties such as watching television, visiting friends, eat-
ing at a restaurant, and attending sports, religious,
or political activities); shopping and errands (shopping
for food, clothes, or durables, looking after children
or elderly, doing domestic work, and handling per-
sonal business such as paying bills or going to the
hairdresser, doctor, or dentist); and travel. Weekly
observations of time assignment can be generated by
repeating the weekday observation five times (assum-
ing the survey weekday is a representative weekday)
and adding the Saturday and Sunday information.
Other variables that were collected in the survey

included individual income, sociodemographic vari-
ables, and travel cost.2 As explained below, fixed
expenditures by income strata were calculated from
other sources.
The mode choice database includes access, egress,

waiting, in-vehicle time, and travel cost. This infor-
mation is available for the morning trip to work (from
the house to the workplace), and also for the return
home when it was a direct trip (without intermediate
stops). In this application, we only use the morning
commute for each individual.
Using this information, the activities and mode

choice models were calibrated both separately and
jointly.

3.2. Modeling and Results
To perform the analysis, the activities were aggre-
gated into six categories: work, personal care, sleep,
entertainment, shopping and errands, and travel, as
discussed above. The last two were assumed to be
restricted activities (those that will be assigned the
minimum possible time). Activities included in the
model as free activities (those that will be assigned
an optimum amount of time) are work, personal care,
and entertainment. Sleep is also considered a free
activity, but it is not included in the model system as
it is determined by the other two (due to the total time
restriction). In the fixed expenses Gf , we include the
weekly expenditure in transport and an approxima-
tion of basic weekly expenses in other items such as

2 The data collection process is reported in detail in Munizaga, Jara-
Díaz, and Palma (2004).



housing, education, and health care. This information
was obtained from the Fifth Family Budget Survey
conducted by the Instituto Nacional de Estadísticas
(INE) during 1996–1997 (INE 1999). The values were
income-segment specific and were determined as a
percentage of individual income. Income from other
nonwork sources was also included in Gf .
Mode choice was modeled with a linear utility

function using level-of-service variables collected dur-
ing the morning trip from home to work. The modes
available were: (1) car driver, (2) car driver–metro, (3)
car companion, (4) car companion–metro, (5) bus, (6)
bus–metro, (7) shared taxi, (8) shared taxi–metro, and
(9) metro.3

Some observations had to be excluded due to miss-
ing variables or because one of the dependent vari-
ables was not observed. The modeling sample has
174 observations with complete information on mode
choice, positive times assigned to all modeled activi-
ties, and complete information on expenses, income,
and wage rate.
In Table 1, we report the parameters calibrated with

both the independent and joint calibration processes.
We include only the best specifications according to
the traditional statistical indicators. All the estima-
tors of the parameters of the continuous and discrete
equations have reasonable values and are statistically
significant. The first set of parameters reported is that
of the mode choice model. There are eight mode con-
stants that have the role of reproducing the sample
market shares, and there are time and cost marginal
utilities that represent the negative effect of having
to pay and having to dedicate time to travel. Param-
eters � and � do not have a direct interpretation
but are very important because the different compo-
nents of the value of time are calculated from them.
The personal care and entertainment 
 parameters
are directly related to the exponents of those activi-
ties in the direct utility function, so their positive val-
ues confirm the hypothesis that they are pleasurable
activities.
The rest of the parameters are related to the error

structure. We report the standard deviation of the
continuous equations’ error terms, the correlation
parameters for the continuous equations, and the dis-
crete/continuous correlations. Six discrete-continuous
correlation parameters turn out to be statistically sig-
nificant. The interpretation of these correlations has
to be made with the opposite sign because, when
applying Lee’s (1983) transformation, the error term

3 These are the usual transport modes in Santiago. Metro is the
underground system. Car companion refers to individuals who
travel with someone else who drives to work, usually a friend or a
relative who lives and works nearby. Shared taxi is a formal trans-
port system where a professional driver carries up to five people
in a regular service.

of the discrete choice is included with a negative
sign. Therefore, the positive value of the parame-
ter 7work&cardriver–metro indicates that there are unob-
served factors that make some people dedicate more
time to work and have a lower propensity to use
the car driver–metro transport mode. These corre-
lations come from unobserved effects that are diffi-
cult to identify. For example, the correlation of car
companion-mode choice with work and personal care
may be due to the fact that people who use the car
companion mode have to adjust to someone else’s
schedule and cannot freely choose how much time to
allocate to activities. This could explain why people
who travel to work as car companions dedicate less
time to personal care and more time to work (arrive
earlier) than other people with the same explana-
tory variables. Other possible correlations could be
due to hidden segmentation effects. Significant corre-
lations were found for car driver–metro mode with
work and entertainment. This may be because peo-
ple who use the car driver–metro combination may
be young or wealthy individuals who dedicate less
time to work and more time to entertainment com-
pared with their observationally equivalent non-car
driver–metro mode users. Note that car ownership
and income are highly correlated in Santiago.
The likelihood ratio test (Ortúzar and Willumsen

1994) indicates that the activities model system is sta-
tistically superior to an independent version (criti-
cal A2 table value (5%�3�=7�82). The likelihood ratio
tests also indicate that the joint model is better than
the independent model (44�2 > A2�5%�6� table value
of 12.59), and as good as the model with all dis-
crete/continuous correlation terms �10�3<A2�5%�21�
table value of 32.67).
In the last section of Table 1, we present the sub-

jective values of time. It can be observed that the
subjective values of leisure and work are not very
different if the estimation is separate or simultaneous.
The value of leisure is positive, as expected; how-
ever, it is not equal to the wage rate as predicted
in the labor economics literature. We also find that
the marginal utility of work is negative, showing that
at the margin, people dislike working. This confirms
the importance of including work in utility instead
of imposing a priori that its marginal utility is zero,
as implicitly assumed in the goods-leisure trade-off
approach. In this application, the absolute value is
nearly 40% of the wage rate.
In the simultaneous estimation, the subjective value

of travel time savings is 14% larger than the value
obtained from the independent mode choice model.
The value of saving travel time is positive, showing
that people are willing to pay close to 80% of their
wage rate to reduce travel time. Also, it is larger than
the value of time as a resource (value of leisure),



Table 1 Calibration Results

Mode choice Activities Simultaneous
Par (t-st) Par (t-st) Par (t-st)

Mode constants
Car driver 2�4 (1.7) — 2�0 (1.5)
Car driver–metro 1�0 (1.4) — 0�8 (1.1)
Car companion −2�1 (−2�0) — −2�3 (−2�2)
Car companion–metro −1�2 (−1�4) — 1�4 (−1�7)
Bus 0�4 (0.5) — 0�2 (0.3)
Bus–metro −0�6 (−0�9) — −0�7 (−1�1)
Shared taxi–metro 0�3 (0.5) — 0�3 (0.4)
Metro 0�9 (1.1) — 0�8 (0.9)

Mode choice taste parameters
Total time −0�0741 (−3�5) — −0�0845 (−4�0)
Cost −0�0023 (−2�5) — −0�0023 (−2�4)

Activities models parameters
� — 0�2915 (16.3) 0�2868 (16.5)
� — 0�0958 (17.6) 0�0977 (18.3)
� Personal care — 0�1803 (36.3) 0�1841 (36.3)
� Entertainment — 0�1587 (23.8) 0�1627 (22.3)

Standard deviations
�Work — 380�2 (18.6) 365�6 (19.5)
�Personal care — 419�7 (18.7) 415�5 (18.9)
�Entertainment — 604�3 (18.7) 599�2 (19.0)

Correlations (activities)
�Work and personal care — −0�2527 (−3�6) −0�2717 (−4�1)
�Work and entertainment — −0�2576 (−3�6) −0�2397 (−3�6)
�Personal care and entertainment — −0�5282 (−9�7) −0�5276 (−9�9)

Correlations (discrete/continuous)
�Work and car driver–metro — — 0�6761 (4.5)
�Entertainment and car driver–metro — — −0�3341 (−2�7)
�Work and car companion — — −0�6155 (−4�3)
�Personal care and car companion — — 0�5591 (3.7)
�Entertainment and bus — — 0�2816 (2.6)
�Work and shared taxi–metro — — 0�5356 (4.1)

Statistical indicators
LR test value of correlated equation system — 112.8 44.2

relative to independent equation system
LR value for comparing final specification to model — — 10.3

with all correlated discrete/continuous elements
Average log likelihood −1�2565 −22�3161 −23�4456

Subjective values of time [U.S. $ per hour]
Leisure (�/	) — 2�77 (13.4) 2�75 (−14�1)
Assigning time to work ((
U/
Tw �/	) — −1�68 (−8�6) −1�70 (−9�1)
Wage rate (w� 4.45 4.45 4.45
Saving travel time (Kt /	) 3�07 (2.0) — 3�49 (2.0)
Assigning time to travel ((
U/
Tt �/	) — — −0�74 (−0�4)

Note. LR, likelihood ratio.

showing that the time assigned to travel generates
disutility (it is an unpleasant activity at the margin).
According to Equation (12), if we separate the value
of travel time savings into a component related to the
alternative use of time (value of time as a resource)
and the disutility of assigning time to travel (the dif-
ference), we find that the first term is much larger,
showing that the possibility of reassigning time to
more pleasant or more profitable activities is more
important for the individuals than the displeasure
caused by the trip. If we calculate the value of assign-

ing time to travel from the two independent models
using Equation (12), we get −0�29 [U.S. $ per hour],
which is only 40% the value obtained with the joint
estimation.

3.3. Applying the Model
The parameters estimated in the joint model system
can be used to predict changes in time assignment
and/or mode choice in response to different scenar-
ios. For instance, policy measures implying changes
in the explanatory variables of the continuous model



(such as changes in the wage rate, weekly travel time,
and level of service variables of the morning trip to
work) can be evaluated with this model. An impor-
tant change in the travel time of a particular mode,
for example, will affect the choice probabilities of the
different modes but will also have an effect on the
time assigned to the modelled activities, as the weekly
travel time is one of the explanatory variables of the
continuous model.
In Table 2, we present the variations in time assign-

ment and mode choice due to changes in the level of
service variables. The “base case” column shows the
values observed in the database. The other columns
show the model predictions for each variable under
each policy scenario. It can be seen that in a scenario
where bus travel time reduces to one half, the market
share of bus increases 90%, decreasing both the aver-
age travel time and travel cost. This last effect is due
to the fact that new users came from more expensive
modes. The effect on time assignment is similar to the
combined effect of more slack in the time and income
constraints (less time and money spent on travel),
free activities are assigned more time, and a slightly
smaller increase is observed for work time. This last
effect is due to the fact that travel time is part of the
time assigned to constrained (unpleasant) activities,
and therefore, there is an elasticity ETwTf of the work
time with respect to travel time. It is a rather moder-
ate effect (ETwTf = −0�13�, and it is further reduced as
it only affects those individuals who use public trans-
port in the base case or those who will change to pub-
lic transport in the new scenario. Similarly, an increase
in car cost reduces the choice of the car driver travel

Table 2 Time Variation and Mode Choice Due to Changes in Level of Service Variables

Scenarios

Bus travel time Car cost Bus fare
Base case reduces ↓50% increases ↑50% increases ↑50%

Percent of Percent of Percent of
Value Value variables Value variables Value variables

Choice of mode [%]
Car driver 6 3 −50�0 1 −83�3 7 +16�7
Car driver–metro 12 5 −58�3 5 −58�3 13 +8�3
Car companion 13 6 −53�8 15 +15�4 15 +15�4
Car companion–metro 15 6 −60�0 17 +13�3 17 +13�3
Bus 65 124 +90�8 68 +4�6 57 −12�3
Bus–metro 18 11 −38�9 19 +5�6 16 −11�1
Shared taxi 4 2 −50�0 5 +25�0 5 +25�0
Shared taxi–metro 21 8 −61�9 23 +9�5 23 +9�5
Metro 20 9 −55�0 21 +5�0 21 +5�0

Expected travel time [min] 45�5 29�6 −34�8 46�0 +1�1 45�2 −0�7
Expected travel cost [U.S. $] 0�77 0�60 −22�1 0�66 −14�3 0�90 +16�9
Work �h� 45�97 46�08 +0�2 45�88 −0�2 46�27 +0�7
Personal care �h� 21�91 22�19 +1�3 21�92 +0�1 21�85 −0�3

Entertainment �h� 19�29 19�53 +1�3 19�30 +0�1 19�23 −0�3
Sleep �h� 54�52 55�22 +1�3 54�56 +0�1 54�37 −0�3

mode, as expected. It also has the effect of decreasing
the total transport expenditure because some users
change to less expensive modes. As a consequence of
this, people would work less and assign more time to
free activities. An increase in the bus fare causes the
opposite effect.
As an example of the sensibility of the activities

model to the explanatory variables, we would like to
mention that, according to the model, an increase on
the wage rate of 50% will have the effect of reducing
by 11.4% the time assigned to work, and increase all
the times assigned to discretionary (pleasant) activi-
ties by 5.5%.

4. Conclusions
We have successfully developed a methodology to
calibrate a novel time assignment–mode choice model
system. This methodology is based on Lee’s (1983)
transformation and expands on the work by Bhat
(1998) and Munizaga et al. (2006). We used a database
collected expressly to estimate the proposed model
system. The methodology worked well and generated
reasonable results. It permits the calculation of the
values of work, leisure, and time assigned to travel.
The results show that there is significant correlation

between time assignment and mode choice. When
the mode choice model is calibrated independently
of the time assignment model system, the subjective
value of assigning time to travel is underestimated by
60%. The continuous equations are more stable and
do not change much between independent and joint



estimations. Even though some elasticities of variables
in the continuous models with respect to those of the
discrete models are small, the joint estimation is jus-
tified because it includes correlation parameters that
are significant, and the joint model is econometrically
superior than the independent version. The estimated
model system can be applied to predict time assign-
ments due to changes in the transport system such as
travel time, travel cost, or other explanatory variables.
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