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Abstract. In this paper, we consider a Lagrange—Galerkin scheme to approximate a two-
dimensional fluid-rigid body problem. The equations of the system are the Navier—Stokes equations
in the fluid part, coupled with ordinary differential equations for the dynamics of the rigid body.
In this problem, the equations of the fluid are written in a domain whose variation is one of the
unknowns. We introduce a numerical method based on the use of characteristics and on finite
elements with a fixed mesh. Our main result asserts the convergence of this scheme.

Key words. fluid-structure interaction, incompressible Navier-Stokes equations, finite element
method, Lagrange—Galerkin method

AMS subject classifications. 35Q30, 76D05, 656M12, 76M10

DOI. 10.1137/S0036142903438161

1. Introduction. The aim of this paper is to analyze a Lagrange—Galerkin ap-
proximation of the equations modelling the motion of a two-dimensional rigid body
immersed in a fluid. We first briefly describe the equations modelling this system.
Assume that the system fluid-rigid body occupies a bounded domain @ in R? with
a regular boundary 0O. The solid is supposed to occupy at each instant t a closed
connected subset B(t) C O which is surrounded by a viscous homogeneous fluid filling
the domain Q(t) = O\B(t).

The motion of the fluid is described by the classical Navier—Stokes equations,
whereas the motion of the rigid body is governed by the balance equations for linear
and angular momentum (Newton’s laws). More precisely, we consider the following
system coupling partial differential and ordinary differential equations:

ou

(1.1) pfa—yAu+pf(u-V)u+Vp:pff, x e Qt), tel0,T],

(1.2) divu=0, xe€Q(t), telo,T],

(1.3) u=0, xe€90, tel0,T],

(1.4) u=C¢'(t) +w)(x—¢@)*t, xe€adB(t), telo,T],

(1.5) ME"(t) = — on dl’ + ps/ f(x,t) dx, ¢€]0,T)],
OB(t) B(t)
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Ju'(t) = f/ (x—¢(t)t -on dl + ps/ (x — ¢t - f(x,t) dx, te0,T),
OB(t) B(t)

(1.7) u(x,0) =up(x), xe€Q0),
(1.8) C0)=¢o eR?, ((0)=¢ €R? w(0)=w R,

In the above equations the unknowns are u(x,t) (the Eulerian velocity field of
the fluid), p(x,t) (the pressure of the fluid), {(¢) (the position of the mass center of
the rigid body), and w(t) (the angular velocity of the rigid body). The domain B(¢)
is defined by

B(t) = {R_p)y +((1), y € B},

where

(1.9) 0(¢) :/0 w(s) ds,

B = B(0), and Ry is the rotation matrix of angle . Moreover, we have denoted by
0B(t) the boundary of the rigid body at instant ¢ and by n(x,¢) the unit normal to
0B(t) at the point x directed to the interior of the rigid body.

The constants py and p, are, respectively, the density of the fluid and the density
of the rigid body. In what follows, we assume that the densities of the fluid and of
the solid are equal, that is

(1.10) pr=ps=1,

and that the rigid body is a ball in R2. Assumption (1.10) is clearly restrictive but
it is important for the forthcoming analysis (see Remarks 2.1 and 2.4 below). On the
contrary, the assumption that the rigid body is a ball is not essential but avoids some
technicalities.

The constants M and J are the mass and the moment of inertia of the rigid body,
and the positive constant v is the viscosity of the fluid. Moreover, f(x,t) is the applied
force (per unit mass).

For all x = (i;), we denote by x1 the vector x+ = (f;l) Ifx,y € R? thenx-y
stands for the inner product of x and y and |x| stands for the corresponding norm.
We have also denoted by w’ and w” the derivatives of a function w depending only
on the time t.

Finally, the stress tensor (also called the Cauchy stress) is defined by

(1.11) o(x,t) = —p(x,t)1d + 2vD(u),

where Id is the identity matrix and D(u) is the tensor field defined by

1 6uk 6ul
D =-|l—+—.
(u)k’l 2 (81‘1 + a$k>
The main difficulties of this problem are that
e the equations of the structure are coupled with those of the fluid,

e the domain of the fluid is variable, and it is one of the unknowns of the
problem (we thus have a free boundary problem).
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The well-posedness of this type of system has been recently studied in a large
number of papers (see, for instance, Desjardins and Esteban [6], Gunzburger, Lee,
and Seregin [17], San Martin, Starovoitov, and Tucsnak [25], Grandmont and Maday
[16], Takahashi [27], and the references therein).

The literature on the numerical approximation of the solution of (1.1)—(1.8) also
contains a large number of recent papers. Some of these papers are based on an arbi-
trary Lagrangian Eulerian (ALE) formulation; see, for example, Grandmont, Guimet,
and Maday [15], Nobile [22], Maury and Glowinski [21], Maury [19], [20], Formaggia
and Nobile [9], and Farhat, Geuzaine, and Grandmont [8]. In the ALE method, at
each time step, the mesh is moved with an arbitrary velocity in the fluid to follow the
motion of the rigid body. The stability of the ALE method is studied in [9] (in the
case of the finite element context) and in [8] (in the case of the finite volume context).
We also mention the work of Gastaldi [11], where, in the case of an advection-diffusion
equation in a moving two-dimensional domain, a priori error estimates that are opti-
mal both in space and time have been obtained.

Another approach, developed by Glowinski et al. [14], [13] is based on a fictitious
domain formulation: the rigid bodies are filled by the surrounding fluid, and the
constraint of rigid body motion is relaxed by introducing a distributed Lagrange
multiplier.

As far as we know, the only proof of the convergence of one of these methods
is given in [15] for a simplified problem in one space dimension. The main novelty
brought in by our paper consists of the fact that we construct a new approximation
method using a fixed mesh and that we prove a convergence result. This method
is inspired by the Galerkin-Lagrange approximation, which is commonly used for
Navier—Stokes equations (see Pironneau [23] and Siili [26]).

The remaining part of this paper is organized as follows. In section 2 we introduce
some function spaces and semidiscretize our problem with respect to the time variable.
In section 3 we give the full discretization of the problem and state the main result.
Section 4 is devoted to the study of the finite element spaces that were introduced in
the previous section. Section 5 is devoted to the study of a change of variables that
plays an important role in the proof of the main result. In section 6 we prove the
consistency of our scheme. Finally, in section 7 we give the proof of the main result.

2. Notation and preliminaries.

2.1. Notation and function spaces. Throughout this paper, we shall use the
classical Sobolev spaces H*(€2), H5(S2), H*(Q2), s > 0, and the space of Lipschitz
continuous functions C%1(Q) on the closure of 2. We also define

3@ = {re 2@ | [ rax=o}

and denote by £3(€2), H*(Q2), H5(Q2), H™5(2), s > 0, the spaces [Lg(Q)]z, [H*(Q)]?,
[HE()]%, [H*(Q)]>. The usual inner product in £2(0) will be denoted by

(2.1) (u,v):/@u-vdx Yu,v € L3(0).

If A is a matrix, we denote by A* its transpose. For any 2 x 2 matrices A, B € Mgyo,
we denote by A : B their inner product A : B = Trace(A*B), and by |A| the
corresponding norm. For convenience, we use the same notation as in (2.1) for the
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inner product in L?(O, Mays), that is,
(2.2) (A,B) :/ A:Bdx VA,Be L*(0,Mays).
o

We also define the spaces

(2.3) K(¢) = {u € Hy(O) [ D(w) =0 in B(¢)}
and
(2.4) K@) ={ueH)O)|divu=0in O, D(u)=0in B(()},

where ¢ € R? and B(¢) = {x € R?,|x — {| < 1}. According to Lemma 1.1 of [29, p.
18], for any u € K(¢), there exist 1, € R? and w, € R such that

u(y) =lu+wu(y —¢)* Vye B().

These spaces are specific to our problem. In fact, if the solution u of (1.1)—(1.8) is
extended by

u(x,t) = ¢'(t) +w(t)(x - ¢(1)" ¥x € B(L(1)),

then we easily see that u(t) € K(¢(t)).
In what follows, the solution u of (1.1)—~(1.8) will be extended as above.
We also notice that, by using (1.10), for any u, v € K(¢) we have

(2.5) (u7v):/ u-vdx+ Ml -1, + Jwy wy.
O\B(Q)

Remark 2.1. In the case of different densities pr # pg, the natural inner product
to be used seems to be

(u,v><:pp/ u-vdx+ Ml, -1y + Jwy wy,
O\B(¢)

which clearly depends on the position of the ball. This fact would considerably com-
plicate the further analysis.

An important ingredient of the numerical method we use is given by the charac-
teristic functions whose level lines are the integral curves of the velocity field. More
precisely (see, for instance, [23], [26]), the characteristic function 1 : [0, T]?> x O — O
is defined as the solution of the initial value problem

(2 . %f{pv(t; s,x) = u(Y(t; s,x),t),

P(s;8,X) = x.

It is well known that the material derivative D;u = du/0t + (u- V)u of u at instant
to satisfies

(2.7) Diu(x, tg) = % u(p(t; to, x), ) e
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Remark 2.2. By using a classical result of Liouville (see, for instance, Arnold [1,
p. 251]), if

¢ e H*(0,T), weHY0,T), ueC([0,T];K(L(1)),
then we have that

(2.8) det I =1,

i
J~=
’lP <8y7>z]

the jacobian matrix of the transformation y — i[)v(y)

where we have denoted by

2.2. Weak form and semidiscretization scheme. In this subsection we give
a weak form of (1.1)—(1.8) which is then used to discretize the problem with respect
to time.

The fact that (2.9) is called a “weak formulation” of the system (1.1)—(1.8) is
justified by the following result.

LEMMA 2.3. Assume that

u e L2(0,T; H* (1)) N H' (0, T; £2(2(t))) N C([0, T]; HH(Q(1))),
p € L*(0,T; HY(Q())),
¢ € H*0,T), weHY0,T)

and that u is extended by
u(x, t) = ¢'(t) +w(t)(x = ¢(t)*" Vx € B(C(1)).

Then (u,p,{,w) is the solution of (1.1)~(1.8) if and only if u(t) € IE(C(t)) for all t
and (u,p) satisfies

(2.9) (jt [uo ) <t>,so) + 2 (D(u(t).Dlg) - |  (@velp(t) dx

= (f(t),p) Ve € K1)

We skip the proof of Lemma 2.3 since it is similar to the proof of the corresponding
result for the classical Navier—Stokes system (see, for instance, [24, Chap. 12]).

Remark 2.4. In the case of different densities pr # pg, a similar weak statement
can be obtained (see, for instance, [5]). In this case u in the first term of (2.9) should
be replaced by pu, where p = pp in the fluid and p = pg in the moving solid. Thus
p would depend on the time and a transport equation for p should be added to the
system.

By using the weak formulation given above we can derive a semidiscrete version
of our system. For N € N* we denote At = T'/N and t,, = kAt for k =0,...,N.
Denote by (u*,¢*) € K(¢*) x R? the approximation of the solution of (1.1)~(1.8) at
the time t = t;. We approximate the position of the rigid ball at instant tx,1 by
¢ which is defined by the relation

(2.10) ¢ = ¢+ uk(¢h)AL
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We then define characteristic function 1) associated to the semidiscretized velocity
field as the solution of

d— _
(2.11) &Q'b(t;tkﬂvx) = u"(P(t; tyi1,%)),

Y(thg1; ey, X) = X,

and we denote

(2.12) X*(x) = P(tritisr,x) ¥x € O.

One can easily check that Yk(O) =0.
We next define ut! ¢ IC(Ck 1) as the solution of the following Stokes type
system:

. —k
(213) (‘W,<p>+2V<D<uk+1>,D<<p>)=<f’f+1,so> Ve € R(CH),

where f81 = £(t)11).
The above equation can be rewritten by using a mixed formulation. To achieve
this, we first define

(2.14) M(¢)={pe L§(0)|p=0in B()},
(2.15) a(u,v) = 2V/ D(u): D(v) dx Vu,v e H(O),
o
(2.16) b(u,p) = 7/ div(u)p dx Vue HY (0), Vpe Li(0).
o

With the above notation, it is clear that (2.13) is equivalent to the system

(2.17)
(uk“‘1 —uko X"

At 79°> +a(ut ) + b, p"h) = (FFT ) Ve e K(¢CMT,

(2.18) b(ut ) =0 Vqe M(¢H

of unknowns (uf*+1, pF+1y e K(¢H) x M(¢FT).

Remark 2.5. The requirement p = 0 in B(¢) for the definition of M ({) allows us
to define the form b on the whole domain . This extension does not affect the form
b since div(u) =0 in B(¢) for all u € K(¢).

It is well known (see, for example, [12, Corollary 1.4.1., p. 61]) that the mixed
formulation (2.17), (2.18) is a well-posed problem, provided that the spaces K(¢),
M (¢) and the bilinear form b satisfy an inf-sup condition. The fact that this inf-sup
condition is satisfied in our case follows from the result below.

LEMMA 2.6. Suppose that ¢ € O is such that d({,00) = 1+ n, with n > 0.
Then there exists a constant 3 > 0, depending only on 1 and on O, such that for all
q € M(C) there exists u € K({) with

(2.19) / div(u) ¢ dx = Bl[ull31(0)llallL2(0)-
(@]

The proof of the above result can be obtained by slightly modifying the approach
used for the mixed formulation of the standard Stokes system (see, for instance [12,
p. 81]), so it is left to the reader.
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3. Full discretization and statement of the main result. In order to dis-
cretize the problem (2.17), (2.18) with respect to the space variable we introduce two
families of finite element spaces. We first define a family of finite element spaces that
approximate the space K(¢) defined in (2.3). Let h denote a discretization parameter,
0 < h < 1, and let P; be the space of all affine functions in R2.

Consider a quasi-uniform triangulation 7j, of O, as defined, for instance, in [2, p.
106] (this assumption will be accepted in the remainder of this paper and will allow
us to make use of inverse estimates). If T' € 7}, is a triangle of vertices x1, X3, and
x3, we denote by ¢1(x), w2(x), and ¢3(x) the corresponding barycentric coordinates
of x € R? with respect to the vertices xj, X2, and x3 (see, for instance, [4, p. 45]
for the definition of barycentric coordinates). We associate to this triangulation two
classical approximation spaces used in the mixed finite element methods for the Stokes
system. The first space, classically used for the approximation of the velocity field in
the mixed statement of the Stokes system, is denoted by W), and is defined as the
subspace of H;(O) formed by the Pj-bubble finite elements associated to 7. More
precisely, ¢ € W, if and only if

p1(x) 2 (x)ps(x) |

/ Pp1ep2003 dx
T

for some constant vectors a1, az, az, A € R?2. We may notice that all functions in
W), are continuous.

The second space, classically used for the approximation of the pressure in mixed
statements of the Stokes system, is denoted by E; and is defined by

(3.1) E,={q€C(O) | qr e A(T)}.

p(x) = p1(x)ay + pa(x)oz + p3(x)as + VxeT

For our problem we use two spaces that are related to the presence of the rigid
body. The first one, which is used for the approximation of the velocity field, is
denoted by K;,(¢) and defined by

Kn(€) =WnnK() V(eO.

The second one, which is used for the approximation of the pressure, is denoted by
My (¢) and defined by

Mp(¢)=E,NnM() V¢eO.
We also define the finite element space (see [23])
Rp =A{rot ¢, ¢n € Ep, ¢p=0o0nd0}.

We denote by P the orthogonal projection from £2 onto Rj. More precisely, if
u € L2(0), then Pu € R, satisfies

(11 — Pu, I‘h) =0 Vry € Ry.

Let N be a positive integer. We denote At = T/N and t;, = kAt. Assume that
the approximate solution (uf,pf, CZ) of (1.1)—(1.8) at t = t is known. We describe
below the numerical scheme allowing us to determinate the approximate solution

(uﬁ“,pi“, EH) at t =ty 1. First, we compute Cﬁ“ € R? by

(3.2) W= ¢E +ul(¢h) At
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We denote by Puf the projection of uf onto Rj,. Then we define the characteristic

—k
function 1, associated to the fully discretized velocity field as the solution of

d—k SYAL
(33) 7 Pn(t i, %) = P (y, (£ 1, X)),

—k
Yy, (teg15 tes1, X) = X,

We also define
—k —k
(3.4) X, (x) =, (tr;ter1,x) VxeO,

and as for the problem (2.11), one can check that X7 1 (0) = O (see Remark 3.1 below).
Then we define (uf ™, pFt1) € 0, (¢HT) x My, (¢FT) as the solution of the prob-
lem

(3.5)

UZH_UQOYZ k41 k1 E+1 k41
e e e) Hble ) = (B e) Ve e Ki(¢),

(3.6) bupy,q) =0 Vge Mu(¢hH),

where f;f“ is the £2-projection of f**1 = f(¢;41) on (E,)%. We take C(,)l = ¢ and
the initial approximate velocity uf is the Hg-projection of ug onto ICh(C?L).

Remark 3.1. In (3.3), we use the projection of uﬁ on Ry, rather than the function
uf itself because div(Puf) = 0 in O. By using a classical result of Liouville, this
implies that det Jfk = 1 and in particular that det J—k = 1. This property, combined

with the fact that the velocity field Puh vanishes along the boundary 00, entails the

invariance property of the whole domain O through x5 hy 1€, X h((’)) = 0. Moreover,
since Puf is constant in each triangle, the initial value problem (3.3) can be solved
exactly.

In what follows, we suppose that

f e C([0,T); H(O)), ug € HAQ), div(ug) =0 in Q,

3.7
(8.7) u =0 ond0, uy(y)=<¢; +woly—¢y)t ondB.

The corresponding solution (u, p, {,w) of problem (1.1)—(1.8) will be assumed to sat-
isfy the following regularity hypotheses:

u e C([0, T]; H*(Q(1)) N H (0, T3 L2(2(1))),
(3.8) Diue L*(0,T; £2(Q(t))), ue C([0,T];C%H(0))
p e C(0,TEHNQ®), ¢eH(0,T), weH0,T).

Moreover, we assume that
(3.9) dist (B(t),00) > 0 VYt e [0,T).
The hypotheses (3.8) and (3.9) imply the existence of 1 > 0 such that

(3.10) dist (B(t),00) > 3n Yt € [0,T].
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THEOREM 3.2. Let Cy > 0 be a fized constant. Suppose that O is the interior of
a convex polygon and that (u,p,,w) is a solution of (1.1)—~(1.8) satisfying (3.8) and

(3.9). Moreover, assume that £ and ugy satisfy (3.7). Consider the functions C’fl, uy,
and p’fb defined in this section. Then there exist two positive constants C and T* not

depending on h and At such that for all 0 < At < 7* and for all h < Cp (At)2 we
have

sup (1¢(te) = €Al + lu(te) = uf 20y ) < CAL
1<k<N

Remark 3.3. For the Navier—Stokes system, the same type of result is obtained
in [23] for h < CoAt and in [26] for h? < CoAt < C1h% and o > 1/2 (for h and At
small enough).

Remark 3.4. Tt can be easily checked, by using the fact that det JE:c = 1, that

h

our method is unconditionally stable.

4. Some properties of the finite element spaces. Next we give some techni-
cal results on the finite element spaces introduced above. Throughout this section we

consider ¢ € O such that dist (B(¢),00) > 2n and we suppose that h < n. Therefore,
we have that

(4.1) dist (B(¢), 90) > 2h.

Notice that, by definition, if ¢ € M}, (¢), then ¢ = 0 in B(¢). Since ¢ is a P; function
in each triangle, it follows that g4, = 0, where

A= | T
TeT,
TAB(¢)#0
Moreover, if we denote by @, the union of all triangles T' € 7}, such that the three

vertices of T are contained in Ay, then, by using again the fact that ¢ is a P; function
in each triangle, it follows that

q9Q, = 0 Vg€ Mh(C)
A similar argument shows that
D(u)j4, =0 VueKy().

In order to study the properties of the spaces K, (¢) and M, (¢) defined above we
divide the triangles in 7}, into four categories. These categories are defined as follows
(see Figure 1):

e F is the subset of 7;, formed by all triangles 7' € 75, such that T C B(().

e F, is the subset formed by all triangles T' € Tj, \ F; such that T C Q.

e T3 is the subset formed by all triangles 7' € 7, such that T N Q) # 0 and

T ¢ Qn.
o .7:4:7—}1\(.71U.7:2Uf3).
LEMMA 4.1. There exists a positive constant Cy (not depending on the position

of B(¢)) such that

. 3
inf |[[v = vallr2(0) < Cih? ([[VIlnzo\B(e) + IVIIr2(B(¢))) »
<

va€K(C)
inf [|v — Vil o) < CLVR (IIV]reons@e) + [VIes@) -

vihEKH(C)

for all v € K(¢) NHZ(O\ B(¢)).
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Fy
This kind of triangle is
not included in Aj; since
TN B =0, but it is
included in @)y, since its
three vertices are in Aj,.
F

Fi

Fic. 1. Splitting of the triangulation into four families of triangles.

Proof. Let v € K(¢) NH?(O \ B(¢)). This means, in particular, that
v(x) =1+ wxt vV x € B((),
for some 1 € R? and w € R. In the remaining part of this section we denote
R(x) =14 wxt Vx e R

We denote by vy, the unique function in (Eh)2 which agrees with v at every node
x; of the triangulation 7;, (recall the definition of Ej, in (3.1)). Then we consider the

function vy, € (Eh)2 whose value in a node x;j of 7}, is defined by

N R(Xj) if Xj € A_}“
Vh(x‘]) o { V]h(Xj) if Xj ¢A_h

Since vy, is affine in each triangle, it follows that
(4.2) vn(x) = R(x) Vx € Qp.

We will show that there exists a positive constant C; (not depending on the
position of B(¢)) such that

3
(4.3) IV = vallz20) < Cih2 (VI ooy + IVIre(B(0))) -

(4.4) IV = Vil ) < CovR (Vo) + IVl s@)) -
In order to prove the above inequalities, we divide the domain O into four parts:

O=B<<)U<Qh\B<o>u<U T)u(U T).

TeFs TeF,

Let us first remark that

(4.5) v=R in B(().
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On the other hand it is clear that @}, is contained in the closed ball of center ¢ and
radius 1+ h, denoted by By, (¢). Let us remark that the ball By (¢) is included in the
domain O due to condition (4.1). According to a classical result (see, for instance,
Lemma 5.11 in Fujita and Sauer [10]), there exists a universal constant C' > 0, such

that for all ¢ € HY(O\ B(()),

(48)  lelemionsen < C (VRlelleonion + bVl 2, eneen) -
The above relation with ¢ = v — R and (4.5) imply that
(4.7) v =Rl ez, 008 S ORIV = R)l 1208, )\ B0 -

By again applying Lemma 5.11 in [10] (this time for the function V (v — R)), we
obtain that

IV v = Rl onaiens < C(VAIV O = Rllzsqanieyy
+ 1V (v = R) s onmeny )-

The above inequality, combined with the trace theorem in Sobolev spaces, gives that
(4.8) IV (v = R) sy enmen < CVAIY =Rl o\s(0)-
From (4.7) and (4.8) it follows that

3
(4.9) v =Rl 2B, cnB(©) < Ch2 [V = Rllwz0\B(0))-
The above relation implies, by using the fact that Q;, C By (¢) and (4.2), that

3
(4.10) IV = vhlle2@usie) < Ch2 v = Rllwz0\B(c)-
Consequently, we have that

3
@1 v =vale@anse) < Gk (IVleose) + IVIbese)) -
On the other hand, (4.8) and (4.9) imply that
IV =Rl suense) < Ch2 IV = Rlzo\s(0))-

The above relation implies, by using the fact that Q) C By (¢) and (4.2), that

1

IV =vulr @) < Ch2[lV = Rllwz0\B(0))

which clearly implies
(4.12) IV = Vall @z < CVR(IVIeovs@) + IVIrese)) -

Let us now consider a triangle T" € F3. In order to estimate the restriction of
v — vy to T we use the interpolating function vy,. More precisely, we have

(4.13) v —villa <IVv=vmlla+ Vih = Vila, a€{0,1},
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where || - |, stands for the £%-norm or the H!'-norm on 7. We first estimate the
second term in the right-hand side of (4.13). Since the function v, — vy, is affine in
T, we have

3
Vin(x) = Va(x) = Y (vin(x:) = vi(xi) i),

i=1
where (x;) are the nodes of T' and (p;) are the corresponding Lagrange barycentric
functions. We have

3

(4.14) Ivin = villa < D 1vn(xi) = va(xi)] @illa:
i=1

A simple calculation shows that

(4.15) l@illLe(ry < Ch
and
(4.16) Vil L2y < C.

Since the mesh is quasi-uniform, the constant C' can be chosen independent of the
triangle. We now estimate |vyp,(x;) — va(x;)|. Since T' ¢ Qp, it follows that T has
at most two nodes in @, and, consequently, at least one node such that vy,(x;) —
v (x%;) = 0. Therefore we tackle only the nodes in Q. If x; is a node in @}, then

(4.17) V(i) — vaxa)| = [v(x:) — R(x)
Relations (4.14), (4.15), and (4.17) imply that
IVin = Vil g2y < ORIV = Rl zoo

< Ch (HV - VIhHLOO(T) + HVIh - RHEOC(T)) .

By using a classical interpolation error (see, for example, [2, Corollary 4.4.7]) and
an inverse estimate (see, for example, [2, Lemma 4.5.3]), the above inequality yields

IVin = Vil gary < Ch (B IV llgazy + 07 Vi = Rl oy )
which implies that
Ivin = Vallgzry < C (B2 ¥l + Ivin = Vil agry + IV = Rllgacry )
<C (h2 IVl + IV = R“E?(T)) :
Above we have used again a classical result on the interpolation error (see, for example,

[2, Theorem 4.4.4]).
Now, summing up the above relation for all triangles T' € F3 we obtain that

(4.18) [lvin — vall <C P2 IVlyeon@) IV - R
r2 (LJTE]:3 T) (O\B(¢)) r2 (UTej-‘g T)
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In order to estimate the last term in the right-hand side of (4.18) we proceed as
previously by introducing the closed ball Bap, () of center ¢ and radius 1 + 2h. This
ball is included in O thanks to (4.1). It is clear that all triangles of F3 are contained
in Bap(¢) \ B(¢). Then we can once again use Lemma 5.11 in Fujita and Sauer [10]
and prove an estimate similar to (4.9), namely,

3
(4.19) [V =Rl 2B, 00\B(¢) < Ch2|v—Rl20\B(¢))

From (4.18) and (4.19) we deduce that
3
420 vl gy <o (Ve 0nm0p + I¥lhescien) -
TeFs

The above relation, combined with (4.13) and with an interpolation error estimate
(see [2, Theorem 4.4.4]), implies that

(4.21) v — vl < ChE (IVlheonsen + Ve ) -
“(Umrs T) ( (O\B(¢)) ( (<>>)

Now we turn to the H'-estimate for the family F3 of triangles. From the usual inverse
inequality (see [2, Lemma 4.5.3]) and the L2-estimate (4.20) we obtain

1
(422) IV (vin = vl e )} < Gz (IIVlreovse) + IVIbese)) -

UTEFg T

which implies, together with (4.13) and an interpolation error estimate (see [2, The-
orem 4.4.4]), that

L2 UTG.F;; T

(4.23) WW—%W[( )rsawmvwmmm+wuw@»

Finally, we consider the case of the triangle family F,. Interpolation error esti-
mates lead to

(4.24) [v— vl < CLR?(|[ V3200 B(¢))
1#(User, 7)

and

(4.25) IV (v —va)ll

< Crhvlnzo\B(e))-
L2 (UT€F4 T)

Relations (4.11), (4.21), (4.24) and the fact that v = v, in B(¢) imply (4.3). More-
over, (4.12), (4.23), (4.25) and the fact that v = v, in B(¢) imply (4.4). a

LEMMA 4.2. There exists a positive constant Cy (independent of the position of
B(¢)) such that

420 inf g < Cohalm
( ) qh,th(C)Hq anllz2(0) 212 ||l 5 o\B())

for all g € M(¢)N HY(O\ B(¢)).
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Proof. The proof of this lemma is similar to that of Lemma 4.1. Consider a
function ¢ € M(¢) N HY(O\ B(¢)). According to a classical result (see, for example,
[3, Theorem IX.7]), there exists ¢ € H'(O) such that

(4.27) Glo\) =4 ldlz o) < Cllallmo\se)):

and it can be proved that we can choose the constant C' independent of the position of
B(¢). Moreover, by a classical interpolation argument (see, for example, [2, Theorem
4.4.4)), there exists q;, € Ej, such that

17 = qnllL2(0) < Chlldllar (0)-

The above relation and (4.27) clearly imply that there exists a constant C' > 0 such
that

(4.28) lg = anllr2o\B(e)) < Chllallmo\p(e)-
Denote by ¢ the function in Ej satisfying the conditions
Qh(xi) =0 if x; € Ai}“
Qh(xi) = ah(xi) if X; € 771 \A7h
Then as in the proof of Lemma 4.1, we can show that
1
lg = anllzzo) < C2h? |ldllmro\Bey)- O

We next show that the finite element spaces K (¢), M} (¢) and the bilinear form
b satisty a discrete inf-sup condition. This proves in particular that the approximate
problem (3.5)—(3.6) is well-posed (see [12, Theorem II.1.1., p. 114]). More precisely,
the following result holds.

LEMMA 4.3. There exists a constant §* > 0 such that for all ¢, € Mp({) there
exists uy, € Kp(C) with

(4.29) [ div e x> 5 oy lan 12 o)

Proof. Let qp, € Mp(¢). Since My(¢) C M(¢), Lemma 2.6 yields the existence of
u € K(¢) such that

/dwwmwﬂ>5WMmmMmey
(@)

with 8 independent of g. In order to prove the conclusion of the lemma it suffices to
show the existence of uj, € K,(¢) such that

(4.30) /O div (up)gn dx — /O div (w)gy, dx,

(4.31) lur 40y < Cllully (o),

where C' is a constant independent of gy,.
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Note that (4.30) is equivalent to

/uh~thdx:/u~thdx.
1) 1)

Since Vg, is constant in each triangle and vanishes in any triangle from F; U Fs, in
order to check (4.30), it suffices to show that

(4.32) /uh dx:/udx VT € Fz3UFy.
T T

Note first that if u, € K, (€), then for any triangle T € 7}, of vertices x1, X3, X3 and
of corresponding barycentric functions ¢1, @2, @3, we have

(4.33) un(x) = Ty (x) + LV Pa () VxeT,
/TSD1302<P3 dx

where 1, € C(O) satisfies

(4.34) up(z) = p1(x)a1 + pa2(x)oz + p3(x)as vxeT,

for some constant vectors a1, az, az, A € R? (these constants depend on the triangle
T). Notice that, since the restriction of uy to triangles in F; U F» is a rigid velocity
field, the constant A in (4.33) is equal to zero for all triangles in F; UF,. If w), satisfies
(4.34) and T € F3 U Fy, then condition (4.32) holds provided that

(435) )\:/ (u—ﬁh) dx VT e Fs3UF,.
T

Some simple calculations show that there exists a constant C' > 0 (independent of the
triangle) such that

V1P203 < c

ﬁ.
/ Pp1ep20p3 dx
HY(T)

(4.36)

Moreover, (4.35) and the Cauchy—Schwarz inequality imply that
(4.37) |A| < ChHu_ﬁhH[:?(T) VT € F3UFy,

for some constant C. From (4.33), (4.36), and (4.37) it follows that

_ c _
(4.38) HUhHHI(T) < ||uh||H1(T) + EHu — uh||£2(T) VT e FzUFy.

The remaining part of the proof is devoted to the construction of u; such that uy
satisfies (4.31). According to a classical result (see, for instance, [12, Theorem I.A.2.,
p. 101]), there exists a function u§, € C(O) which is affine in each triangle T € 7},
such that

(4.39) u = 2y < Chllullpa(ry,
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(4.40) [ 1131y < Cllallz(y,

with the constant C' independent of h. We are now in a position to define w,. This
function is defined by

up(x) if xe U T,
TeFs

R(x) it xe U T,
TeEF1UFs

(4.41) wi(x) =

where R is the extension of u p(¢) (which is a rigid velocity field) to R2. We remark
that relation (4.41) also defines the values of @, in the triangles of F3. Indeed, the
vertices of each triangle in F3 are also vertices of a triangle in either 5 or in Fy. In
order to prove (4.31) we estimate the terms in the right-hand side of (4.38). We first
consider a triangle T' € F,. By using the fact that T, = uj, in T, (4.39), and (4.40),
we obtain that

(92) Wil + 3 oWl < Clulbaey YT e,

with the constant C' independent of u. We next consider a triangle T € F3. We first
notice that

_ 1 _ 1
(4.43)  [[Wpll () + 7 o =Tl 2y < 103 oy + 5 ||11 | 2y
=C = L =C
+”uh_uhH’Hl(T)+EHuh_uh||L2(T) VT e Fs.
The first two terms in the right-hand side of (4.43) can be directly estimated by using

(4.39) and (4.40). Moreover, by using inverse estimates (see, for example, [2, Lemma
4.5.3]), there exists a positive constant C' independent of h such that

a5, = Wnllyo ) + 5 ||uh || 2y < C 0], = Unll e ) VT eZs.

The above relation and the fact that uy, is equal either to R or to uj, in the vertices
of a triangle T' € F3 imply that

—c 1 —c —c
[y, = Wnlly () + ||uh — Wl 22y < Ol = Rl poo oy VT e Fs.

The above inequality, combined once again with an inverse inequality, implies that

e 1 . C
(4.44)  [[ag — Ul () + 7 lan =il 2 S5 [ — Rl g2 VT € Fs.
On the other hand,
(4.45) 0], — Rllz2() < 105 —ull oy + lu = Rl 227 VT e Fs.

Combining (4.39), (4.45), (4.44), and (4.43), we obtain
(4.46)

1
[l iy + 1 0= Tl esgry < Cllalbsry + 5 a = Rllgary YT €
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We recall that all triangles of F3 are contained in Bap,(¢)\ B(€). Therefore, by taking
the sum of the above relations for all ' € F3 and by using (4.6), combined with the
fact that u =R on dB((), we obtain

1
(4.47) [T | + - [[u — | < Cllalla (B e\B()-
e (Upnyr) BTy ) :

Now by combining (4.42) and (4.47) in (4.38), we obtain

(4.48) ) < Cllullao\B(e))-

Junl
# (Ureryor, T

We next consider the triangles T' € F; U Fs. By using the fact that u, =1, =R
in T', we obtain that

Janll =R . :
H (UTGFlu]—'Q T) H (UTGJ-'lUFQ T)

A simple calculation shows that the right-hand side of the above relation is bounded
by C|lull1(5(¢)), where C' is a constant independent of . We thus obtain

(4.49) [[up|| < Cllall#se))-
H! (UTGJ-‘luJ-‘g T)

If we join (4.48) and (4.49), we see that the function uy, satisfies (4.31). This concludes
the proof of the lemma. 0

Now, we are in position to introduce a projector in Kp(¢) x Mp(¢) that will be a
key ingredient in the proof of the convergence result.

LEMMA 4.4. Suppose that V € K(¢) and that P € M({). Then there ezists a
unique couple (V, Pp) in Kp(¢) x Mp(¢) such that

{MV—Vmw+b@JLJm = 0 Ve Kn(c)

Moreover, if we suppose in addition that V|o\p(¢) € H? (O \ B(C)) and that Po\p(¢) €
H (O\ B(C)), then there exists a positive constant C' such that

IV = Vil e2(0) < Ch.

Proof. The result in Lemma 4.3 combined with Theorem 1.1 in [12, p. 114] implies
the existence and uniqueness of (Vy, P,) in Ky (¢) x My(C), satisfying (4.50) together
with

V-V +||P—F <C inf ||V — + inf [P - .
IV=Yalla o H1P~Pallizoy < Ot IV = vibooy + _int 1P~ dliso)

h

Using Lemmas 4.1 and 4.2, we obtain
IV = Vil o) + 1P = Pillz2oy < ChY2 {[VIlrziovs) + VI ) + 1Pl o) } -

Moreover, by applying the usual Aubin—Nitsche duality argument (see, for example,
[12, p. 119]), one can easily prove

IV = Vilzzi0) < Ch{{[Vlszonm) + | VIrzs) + |Plaioy}. O
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5. Definition and properties of the change of variables. In order to prove
Theorem 3.2, we should be able to compare the exact solution, which is rigid in the
ball B(¢(tx)), with the approximate solution, which is rigid in the ball B(¢F). This
will be achieved by the use of a change of variables that maps the exact ball onto the
approximate one. This section is devoted to the description and main properties of
this transformation.

5.1. Change of variables. In this section, we suppose that O is convex. In
what follows, we need a change of variables, transforming a function in (¢;) into a
function in K(¢,), where ¢; € O are such that

(5.1) dist (¢;,00) > 1+2n, i€ {1,2}, withn>0.

In this case, B((;) is contained in O and the distance between B(¢;) and 0O is greater
than 2n. Let £ € C*°(R?,R) be a compactly supported function such that

e {=1if x € O and dist (x,00) > 2,

e £ =0if x ¢ O or dist(x,00) < n.
Let A be the mapping defined by

(5.2) A) = [(€ = Ca) - xt] (rot ) + (¢, —¢;) Vx € R

We need several properties of the field A and of the associated flow. Since these
properties are similar to those proved in [27] we state them here without proof.

LEMMA 5.1. Let A be the mapping defined by (5.2). Then we have

(i) A =0 outside O,

(i) divA =0 in R?,

(iii) A(x) =¢; — o if x € O and if dist(x,00) > 2n.

In other words, the restriction of A to a neighborhood of 0O is zero and A is a
translation when restricted to points of O at distance to 0O larger than 27.

We consider next the initial value problem

d
B = A, A >0,

%(0) =y,

(5.3)

with A given by (5.2).
LEMMA 5.2. For all' y € R?, the initial value problem (5.3) admits a unique
solution P(A,y) on [0,1]. Denote

(5:4) X6, (v) = X(y) =4(1,y).
Then X is a C*®-diffeomorphism from O onto itself, and X(B(¢,)) = B({y). If we

denote by
0X;
=(%;)
Yi /i

the jacobian matriz of the transformation'y — X(y), then the above change of vari-
ables satisfies

(5.5) detJx(y)=1 VyecR2%
We denote by
(5.6) Ye,e,=Y=X"!

the inverse of X on O.
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5.2. Properties of the change of variables. In this subsection, we use the
change of variables defined by the mapping X in Lemma 5.2 to transform functions
in K£(¢;) (resp., K(¢1), M(¢;)) into functions in KC(¢y) (resp., K(Cy), M({5)). We
also give the expressions of Au and Vp after the transformation.

Consider (u, p) € HY(O) x L?(O) and define as in [18] the functions (U, P) €
H(O) x L?(0O) by

(5.7) U(y) =Jv(X(y)u(X(y)) VyeO,
(5.8) P(y) =p(X(y)) VyeO.

We can easily check, by using the definition of A, that
(5.9) X(y)=y+¢1—C Vy€B((),
(5.10) Y(x)=x—-¢ +¢; Vx€B((),

Consequently, if u € K(¢;), then U € K(¢,) and if p € M (), then P € M(¢,).

By using (5.5), we obtain the following result (see, for instance, [18, Proposition
2.4]).

LEMMA 5.3. If X is defined by (5.4), then for all u € HY(O), the function U
defined as above satisfies the relation

div [U(y)] = div [u(X(y))] Vy € O.

This lemma implies in particular that if u € K(¢,), then U € K(y).
In order to write down the expressions of Au and Vp after the change of variables,
we define (see [18])

oU; oU;
(5.11) Zay ( I )+2Z g, =L o

Oy,

7.kl
+ Z { kl z + nglr }
gkl
2 0P
5.12 GP); = b,
(5.12) @rh=Y g
j=1 J
where we denote (see, for instance, [7])
. aY; 9Y;
5.13 Vo= L2 tri t iant ¢
(5.13) g Xk: B, Do (metric contravariant tensor),
00X 0X
(5.14) Z 3 i 3 i (metric covariant tensor),
Yi OYj
and

1 Ogu  Ogji  0Ogij :
(5.15) Fi»‘j =3 ngl { aill + ag;l - agyj } (Christoffel symbol).
; j i !

We are now in position to write down the expressions of Au and Vp after the
change of variables (see again [18] for details).
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PRrOPOSITION 5.4. Suppose that
(u,p) € H*(O\ B(¢y)) x H'(O\ B(¢y)).
Then, we have that
(U, P) € H*(O\ B((y)) x HY(O\ B(Cy))-
Moreover, for all y € O\ B(Cy), we have that

[LUJ(y) = Iy (X(y)) [(Au) o X] (y), [GPI(y) =Iv(X(y)) [(Vp) o X](y)-

In the remaining part of this section, we denote by C' a positive constant which
may depend only on £ and O. We give below (without proofs) several estimates of
the dependence of the change of variables defined in (5.4) on the points ¢; and (,.
For the proofs of these estimates, we refer to [27] and [28].

LEMMA 5.5. Let A be the function defined by (5.2). Then, for all {1, {5 € O
satisfying (5.1) we have

[Allz0) S C1C1 = Cal,  IVA[l[pc oy < Ol — Gl s

DA
8xi8:zcj8xk

< CI¢ =Gl

H 0%A
£2(0)

6$i8.’I}j

<Clt =Gl H

L=(0)

LEMMA 5.6. Let A, ¢y, ¢5 be as in Lemma 5.5. Then the functions X and Y
defined by (5.4) and (5.6) satisfy the following inequalities:

Xl 20y O Y20y < C,

3% — 1d |z qos < C 16— Gl 1Ty — Tl oy < C1¢1 — ol

0%Y; H 0?X;
< C - ) g C - ?
H 8$j8.13k Loo(0) |Cl CQ| 8y]8yk Loo(0) |C1 CQ|
23Y; H X
_ gt <CIE -6, |l <O — ¢l

LEMMA 5.7. Let A, {;, ¢y be as in Lemma 5.5. Moreover, suppose that
(U, P) € H*(O\ B(¢y)) x HH(O\ B((,))

and that L and G are given by (5.11) and (5.12). Then we have
(i) (VL= AUl 20\B(¢2)) < ClC1 = Cal [Ullnzo\B(c)):
(i) [V =G)Plczo\B(c,) < Cl61 = Cal [1Pllaro\B(c,)-

6. Consistency of the fully discretized scheme. This section is devoted
to the consistency of our fully discretized scheme. The main result in this section
asserts that the solution (u, p, {,w) of (1.1)—(1.8) satisfies the scheme (3.2)—(3.6) with
consistency errors that will be estimated. Since (u(t),p(tr)) belongs to K({(tx)) %
M (¢(t)) and not to () x M(¢F), we need the change of variables introduced in
the previous section.



Downloaded 03/18/13 to 200.89.68.74. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1556 SAN MARTIN, SCHEID, TAKAHASHI, AND TUCSNAK

6.1. Consistency in time. In this subsection we show that the exact values
at instants ¢ = t; of a strong solution of (1.1)—(1.8) satisfy a perturbed version
of the semidiscretized problem introduced in subsection 2.2 and we estimate these
perturbations with respect to the time step. The precise statement is given in Lemma
6.1 below.

Consider the solution (u,p, ¢,w) of (1.1)—(1.8) and assume that (3.8) and (3.10)
hold. In what follows, we will use the notation

(6.1) X(x) =Y(tg;tet1,x) VxeO,

where ) is defined by relation (2.6). Note that 3{(0) =0.
Let ek, 6k, o, By, vk be quantities defined by

er = C(try1) — C(t) — ¢'(tr) A,

(63) B1(6) = W5 1,3, 1) — W 1,3, 1),
(6.4) o = M) U0 X T g (1),
(65) R !

(6.6) T = wl(tk“)m_ L) _ frth1).

By using the fact that u (¢(tx),tx) = ¢'(t;) and relations (2.6), (1.1), (1.5), and
(1.6) together with the above definitions, we infer that the exact solution (u,p,{,w)
satisfies

(6.7) C(trt+1) = Ctk) +u(C(te), te) At + e,

d ~ -
St %) = u (W(E: b, %), b ) + Oe(E,%),

Y(thg1;try1,X) =X

(6.8)

for all x € O and for all t € [ty, tr+1], together with

(6.9)
u(t —u(tg) o f .

) At( o —vAu(tys1) + Vp(tes1) = " 4y in O \ B(¢(tk+1))s

(6.10)
! /
MC (te+1) — € (tk) _ _/ o(tps1)n dF—i—/ fhtt dx + 3,
At OB(C(tki1) B¢(ts1)
w(t —w(t
(6.11) J%t(k) = —/ (y = C(trsn))" - o (tpyr)n dT
0B(¢(tk+1))

+ / (v — Cltnpn)) s - 541 dx + .
B(¢(tkt1))
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Moreover, if we denote

and by Ry the rotation matrix of angle 8, then we also define the matrix Ej by
(6.12) RG(tkH)fH(tk) =1Id — Atw(tk+1)R,7T/2 + E;.

By using the Taylor-Lagrange inequality, we easily obtain the following consis-
tency error estimates.

LEMMA 6.1. The elements oy, By, Vi, Ok, €k, and Ey defined by (6.2)—(6.6)
satisfy the following inequalities:

)

Ju
s SO, il < 05 |5
L2(OX (trstr+1))

)

d? -~
(613) HakHﬁz(o) < C\/AtHdtz[uow]

ﬁz(OX(tk,tk+1))
1B < CAL, |yl < CAt,  [Ex| < O (A1),

6.2. Transformed system. We need to compare u(ty) € K(¢(tx)), which is a
rigid velocity field in B(((t1)), with uf € K(¢F), which is a rigid velocity field in
B (C;f) This will be done by using the change of variables introduced in section 5.1.
To this end, we suppose that |C2 —¢(tg)| < n. This hypothesis and (3.10) imply that

(6.14) dist (B(C(ty)), 00) > 2.

With this assumption, we can transform u(t;) by using the change of variables intro-
duced in section 5.1: we denote (see (5.4), (5.6))

(6.15) XE =Xk ey Y= Yeb e
We also define (see (5.7) and (5.8))
Uk(y) = Jyr (XF(y)u (X (y). tr),  PH(y) = p*(X*(y)),

S" = —P*1d + 20D(U*), F*(y) = Iy (XF(y)E(XF(y). ti).

(6.16)

We recall that, according to Lemma 5.3, U € K(¢F) and P* € M(¢F). We introduce
the following notation that will be useful in what follows:

—

(6.17) X =YFoX oXFt!
and
(6.18) J = [y o X5 (Ixe 0 X).

Before stating the main result of this section, we give some properties on the
characteristics. First note that, according to Lemma 5.2, we have

(6.19) XMHB(CE)) = B(¢(tre1)),
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Y*(B(¢ () = B(Ch)-
Moreover, we can easily check that the function X defined by (6.1) satisfies

(6.20) X (x) = ¢(tr) + Rty )—0(tn) (X — C(trt1))  Vx € B(C(trt1))-

Consequently, we have

X (B(¢(tr+1))) = B(C(tr)),

and therefore, we obtain
(6.21) X(B(¢i™) = B(SH).

We summarize some of the above properties in the following diagram:

B( ;CLH) B(¢(try1))

B(¢r) —— B(¢(tx))

Xk+1

Next, we turn to the main result of this subsection: we show that U¥+1 and P++!
satisfy a mixed weak formulation with test functions in K(¢F) and M(¢FH).
PROPOSITION 6.2. The functions (U1, PE+1) defined by (6.16) satisfy

1 - .
(6.22) (At [U’““ -3 (U’f o X)} ,ga) + a(UM, ) + b(p, PFHY)
= (B 0) + (Ak,p) Ve e K(CT,

(6.23) (U, q) =0 Vge M(¢H),
with
(6.24)

d? ~
Adlero) < c<|<<tk+1> ~ G e At OV o 9] )
L2(OX(trste+1))
Proof.
First step. We transform (6.9).
By using Proposition 5.4, we have that UFt! and P**+1 satisfy

u(tk+1) — u(tk) oX
At
= (Jyrso Xkﬂ) (EXMH tp1)) + (Jyrsr o Xkﬂ) (g1 0 XY,

in O\ B(¢F.

(JYk+1 ° Xk‘+l) o Xk+1 _ V[Lk+1Uk+1] 4 [Gk‘+lpk‘+l}

The above relation and (6.16) imply

1
(625)

= V[(LF — A)UM 4+ (V= GFTH PP+ FF 4 Ty o XY (g o XFTY),
in O\ B(¢™),

(U5 = (Iyin 0 XH) (Ixe 0 X) (UF 0 X)) | - vaURH! 4 v PR+
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where X is defined by (6.17).
By taking the inner product of the previous equation with ¢ € K( ZH) and by
using (6.18), we obtain

(6.26) /c9\3<<k+1) (Alt [U’““ -3 (Uk 05(\)} ~<p) dy

— / (divSkJrl . <p> dy = / Frl.ody + A
O\B(¢; ) O\B(¢; ™)

with
(6.27) Ay = / (V[(Lk:Jrl _ A)UkJrl] +[(V - Gk+1)Pk+1]) - dy
O\B(¢; )
+/ (JYk+1 o Xk+1) (ak+1 o Xk+1) - dy.
O\B(¢; ™)

Second step. We transform the integral

/ Uk _J (Uk ° X\)
B(¢h

At e dy

by using (6.10)-(6.11). From (5.3) (with Y**! as in (6.15)), combined with (5.9) and
with (5.10), we obtain that

(6.28) Jyeni(x) =Id  Vx € B(C(ter)).

The above relation, (6.16), and (5.9) imply that for all y € B(¢F),

(6:29) U (y) = u (v + ) = Gt ).

In particular, we have that

(6.30) UM (y) = ¢(te) +wter) (y — 7)™ Yy € BIGH.
Similarly, we have

(6.31) Uk(y) = ¢'(t) +w(te)(y — ¢R)™  Vy € B(CR).

Relations (6.19) and (6.21) yield

O

(6.32) (Tyesr 0 XFH) (Jxk o X) =1Id in B(¢H).
Simple calculations combined with relations (5.9) and (6.20) yield
X(y) = Rogto)-000)(y —Ch ) + ¢ Yy € B¢,

The above relation, (6.32), and (6.31) imply that for all y € B(¢¥*), we have that

o~ —~

J(U* 0 X)(y) = ¢'(tr) + w(tr) Ry -0t (y — ST
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By using (6.12), the previous equality can be written as

J(U* 0 X)(y) = ¢'(t) + wlty)(y — ¢FHH*
+ At wtp)w(tes) ¥ — Y +w(te)Ex(y — ¢FTHY Yy € B(¢ET).

By taking the inner product of the above relation with ¢ € K(¢F*!) and by integrating

on B(¢FT), we obtain that
(6.33) / J(U* 0 X)(y) - @ dy = ML, - €' (t4) + Jus(te)w
B¢
+W(tk~)/ Eily -G e dy,
B¢,
Relation (6.30) implies that, for all ¢ € K(¢FT), we have
/ UM @ dy = Ml - ¢ (the1) + Jw(tps)we.
B¢ )

The above equality and (6.33) yield that, for all ¢ € K(¢F1), we have

Uk — J(U* o X)) ¢(trr1) = ¢ (tr)
cpdy =M1, -
w(tr+1) — w(te) w(tr) / k+1yL
k1) ZO0) |, Ein(y — - dy.
+J A7 We — —xy e Ky =G ) e dy
The above relation and (6.10)—(6.11) imply that
Uk—i—l _ j Uk 5(\
(6.34) / (U0 X) cpdy = -1, / o**tin dr
B(eh) At IB(C(thsn))
—We / (y = C(ter1)) " - o ndl + 1, - / A dx
OB(¢(tk+1)) B(¢(tk+1))

+ Wso/ (x = C(tryr)) " - £57 () dx
B(¢(tr+1))

w(t
1, By + werk — (Af)/ Eu(y — ¢t o dy.
B¢

On the other hand, by using relations (5.9), (5.10), and (6.28), we easily obtain that

/ SFtin dr = / o"tin dr
dB(¢k ) 0B(C(tkt1))

and that

/ =g sM ndr = / (y = ¢(te1))* - " dl.
dB(¢ET OB(C(tk+1))
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The above relations and (6.34) yield that

k+1 _ J(yTk 5(\
(6.35) / v J(U70 X) cpdy = —/ (Skﬂn) < dl’
B(CE™) At aB(CE)

k1 . _ w(tk) _ pkIyL
+/B( W)F e dy +lo- By +were — —; B(dﬂ)Ek(y Ch ) e dy.

h

Third step. By integrating by parts, we have that

(6.36) 2u/ D(U*) : D(p) dy—/ P*ldiv () dy
O\B(¢H™) O\B(¢H™)

= / (Sk+1n) cpdl — / div (S - ¢ dy.
aB(¢, O\B(¢, ™)
Summing (6.36), (6.35), and (6.26) yields (6.22) with

w(t
(Ak, ) = (FF — £ ) +1, - By +weo i — (Af) / Er(y—¢i) e dy
B(¢ET

+/ (V[(Lk-‘rl o A)Uk-H] + [(V o Gk-i—l)Pk-i-l]) L dy
O\B(¢; ™)

h

+ / (Jyrsr 0 XFF) (ageyr o XFHY) - o dy.
O\B(¢, ™)

The above relation, combined with relation (3.7) and Lemmas 5.6, 5.7, and 6.1, implies
the proposition. 0

6.3. Some results on characteristics. In this subsection, we give some results

on the functions X*, X , and Yz that will be used in the proof of the main result.
LEMMA 6.3. There exists a positive constant C' independent of h and k such that

IXEHY = Xl oo (0) < C (Ilufy — U*|220)At + |ex]) -
Proof. We denote by A* (resp., A*™!) the mapping defined by (5.2) with ¢, =
C(ty) and ¢y = CF (resp., ¢ = C(thy1) and ¢y = ¢FTH). Let 4" and 4" be the

solution of (5.3) corresponding to the velocity fields AF and AL respectively.
By using (5.3), we have that

A
(P =)\ = /0 AR @R () = AR () dp.

Therefore, by Lemma 5.5, there exists a positive constant C' such that for all A € [0, 1],
we have that

A
(@ =) O)] < IAS = Aoy +C [ [+ () = 94|
The above inequality and Gronwall’s lemma yield

|5 = $F) )| < CIAT = A¥]| g o)
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for all A € [0,1]. In particular, for A = 1, we have that

(6.37) [ XFH — XF|| oo (0) < CIIAFT — Al 2o (00,

By using relation (5.2), there exists a positive constant C' such that
[ARHE — A¥|| 2 0y < CI¢(trs1) = CEFH = (1) + -

The above relation, combined with (3.2) and (6.7), yields

(6.38) IART = A¥|l (o) < Clufi(Ch) = w(C(tr), te)| At + Cleg]-

On the other hand, by (6.29), we have u (¢(t), tx) = U*(¢F) and, moreover, uf —
U* € K(¢¥). Then, owing to (2.5), we readily check that

(6.39) [uji (¢1) = UM(CH)I < \ﬁlluh Ul z2(0)-

Therefore, the above relation and (6.38) imply that
(6.40) [ARHY = A¥| 2o 0) < Clluf = U 220y At + Cley|.

Relations (6.37) and (6.40) yield the conclusion of the lemma. o

A similar estimate holds for the jacobian matrices Jxx+1 and Jxx. Since the
proof of this estimate is completely similar to the proof of Lemma 6.3, we give below
only its statement and skip the proof.

LEMMA 6.4. There exists a positive constant C independent of k and h such that

[Txcrrr — Ixr| (o) < C ([[uf — Ul g2y At + |ek]) .

= —k
The functions X and X, are close to the identity in the sense made precise below.

LEMMA 6.5. The functions X and be defined by (6.17) and (3.4) satisfy the
following estimates:

(6.41)
IX — Id | z2(0) < C (|€k| + AU* = uf |l 22(0) + VALSKI 22(0x (b1 t0s0)) + At) ;
(6.42)
||5(\*Y:||L2(0) <C <|€k| + AU — uf |l 22 (0) + VALISK] 22(0x (1 t0s0)) T hAt) .
Proof. Let us define
(6.43) Bt trrr,y) = Y@t trrr, X (1)),

where ibv is defined by (2.6). Note that &(tk;tk.}rl,y) = X\(y) for ally € O.
We have that

d ~ -
%Uf(ts tor1,y) = Jyr (Pt b1, X (y))

By using (6.8) we obtain that

P(t; terr, X (y)).

=

Lt thiny) = [Jyr o XF] (9t trs1,y)) [u (X’“ (iﬁ(t;tkﬂ,y)) tk)]

dt
+ [Jyr 0 XF] (Wt ts,y)) {5k (t»Xk (&(t?tkﬂaY)))} :
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The above relation and (6.16) yield

d ~ L~
(6.44) ad’(t;tkHJ) = UF(h(t; teg1,y))
+ [Iyr o XF] (P(titag1,y)) [5k ( (@(t tht1,y )))} :
On the other hand, we have that

(6.45) P(trprstesry) = YF o XA (y).

Therefore, by using (6.44) and (6.45), we get

—

X(y)—y=YroXF(y) —y— / U@t b y)) dt

ty

B /tk+1 [JYI« oXﬂ ('(;(t;tk-t,-laY)) {5k (uXk ({p\(t;tk+1>}’))>} dt,

ty

which yields

(6.46) || X — Id | c2(0) < [ Y" o XFF — 1d | 22(0)

tr41
+ /
ty

By Lemma 5.6, there exists a positive constant C such that

V@O 1, 5+ OVAHBLez@xtnt1100:

YY" o XA — 1d|| 22 (0) < O XM — X¥| 2o (0
The above relation and Lemma 6.3 yield
(6.47) [Y" o XFF — 1d || c2(0) < C (AtlJuf — UP|| 220 + |ex]) -
Relations (6.46) and (6.47), together with (3.8) and (6.16), imply
IX — Td || c2(0) < C (At|uf — U c2(0) + lel) + CAL+ VAL 8k ]l 2(0x (t0.011))-

Therefore, we deduce (6.41).
Now we turn to the proof of (6.42): by using (3.3), (6.44), and (6.45), we obtain

Bt trr1,y) —Ei(ﬁ;t/wh)’) =Y"o X (y)—y
tht1 R .
[ (U st y) - Pl @it y)) ds
t
tr41 N R
— Jyr o XF Sttt 5k (s, XF Sttt ds,
[ @y o XN st ) 51 (5K (9 tir.9)) )| s
which yields

k:
(6.48)  [[9(t) — ¥y (D)l 20y < [IYF 0 X+ — 1d|| 22(0)

tht1 N k
[ ) - Pk @], ) 45+ CVAHIB e Oxoti
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Relations (6.48) and (6.47) imply
~ —k
19(t) — Py, (1)l 22(0) < C (Atfluf, — U220 + lel)
tht1 N o
+ [ Ut - Puk @)
t

By using (3.8) and Remark 3.1, we have that

£2(0) ds + Cv At‘|6k||£2((9><(tk,tk+1))‘

~ —k
1% (t) = (1)l c2(0) < O (Atlluf — U220 + lex] + At[U* — Puj| 22(0))

tlc+

Therefore, by Gronwall’s lemma, we get that

~ —k
() =B 0)] ) 05 OVAHIBL 22 0x o))

~ —k
19(1) = BBl 20y < C(Atluf — UM[ea(o) + lex] + A[UF — Puf 20y
+ VAL 220 (0 057 )-

In particular for ¢t = ¢, we obtain that

(649) |IX — Xplle2(0) < C(Atuf = Urllz(o) + el + AlIU* — Puf ez o)
+ \/E”5k||£2((9x(tk,tk+1))>-
Since P is an orthogonal projection in £2(0), we have that
(6.50) [U* — Pujllz2(0) < IU* = uillz2(0) + [PU* — U¥| 2.

Now, since U* € H}(O) and div(U¥) = 0, there exists a stream function ¢ €
H2(O)NH}(0) of U* ie., U* = rot 1. Let ¢y, be the Lagrange interpolated function
of ¢ on the triangulation 7,. We denote U¥ = rot 4. Since U} € R, we have that

U — U¥| 2200y = |0t (¥ — ¥n)l|c2(0)
Chl|¢|| 20y < ChI U |31 (0)-

IPU* — U¥| 20 <
<

The above equation, (6.49), and (6.50) imply the result. |

7. Proof of the main result. We can now prove Theorem 3.2.
First step. Assume that h < C(At)?. We first show that if (3.10) holds and if

(7.1) dist (B(¢F),00) > 2,  dist (B(¢FT),00) > 21,

then there exist two positive constants Cy and C7 independent of At and h such that
the error eff = [[U* — uf| z2(0) + [¢(tk) — ¢F| satisfies the following inequality:

(7.2) eftt < ef(1+ CoAt) + CoAtpr,

where

N
Zﬂ;]f < Ch.

k=0
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Let us remark that assumption (7.1) together with (3.10) allows us to perform
the change of variables defined in section 5 and to define U¥, U+l and P**! (see
(6.16)).

By using (4.50), there exists (UF™, PFF) € K, (¢FH!) x My, (¢FT) such that

gy U U e (e P BT = 0 Yo e K6
' b(UML UM g) = 0 VYge My(¢F™).
Subtracting (7.3) and (3.5) from (6.22) yields

1

k41 k+1
At (U —u,

L) +a(UFTt —af Tt ) +b(p, PETY — pith)

1 /= = —k
- (T(U" o X) —uk o Xy, 0) + (Ars0) Voo € K(CHT,
bUM! —ul Tt ) =0 Vge My(¢i™).

In particular, for ¢ = U’,YLH — uZH and q = P,’f“ - pffl, we easily obtain that

[UE =0 ooy < [|F (UF 0 X) = uf o X

£2(0)
(74) =+ AtHAk||L2(O) =+ HUk+1 — Uﬁ+1H£2(O) .
On the other hand, since

J = [y 0 X5 (Ixi 0 X)
we have that

Hj (Uk 05(\) - u};; OYI:LI

< O @y 0 X1 (Ix0 0 X) - 14|

£2(0) £2(0)

+HUkoX\—UkOYZ‘

£2(0)

(7.5) —i—HUkoYz —uﬁofﬁ‘

£2(0)

Since (Jywr+1 0 X*1) Ixir1 = Id, we infer from Lemma 5.6 that

|@yin o XM (0 X) —1d|| | < CIX = Hdllga(o) [(t5) — ¢

£2(0)
+ C[[Ixr = Ixr+1] c2(0)-

By using Lemmas 6.4 and 6.5 and the above inequality, we obtain that
(7.6) H(le o X 1) (Jxk o 55) - IdeO) < C(At\(j(tk) — ¢k

+ Atljuf — UMl a0y + VAHISK] c2(0x (tu,tar) + lek]):
By using (3.8) and Lemma 5.6, we easily check that

= —k < ==k
||Uk OX — Uk OXhHﬁz((')) < CHX _XhH.Cz((’))'



Downloaded 03/18/13 to 200.89.68.74. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1566 SAN MARTIN, SCHEID, TAKAHASHI, AND TUCSNAK
The above inequality, relations (7.4), (7.5), and (7.6), Lemma 6.5, and the fact that
det sz = 1 imply that
(7.7) IUF = uf a0y < C(AUC(R) = Gl + Atlluf = U 20y
VAU 20 1)) + len] + hAE)
+1U" — il 20y + At Asllc2 o) + [0 = U 22 (0).-

By using Lemma 4.4, Proposition 6.2, and Lemma 6.1, we have the following inequal-
ities:

UM — Uit 2200y < O,

)

d? ~
Ao < © <c<tk+1> ~ G A OV o 9]

£2(O><(tk,tk+1))>

)

Ou
10kl 220 (tr,t111)) < CAL H@t
L2(OX (tstk+1))

lex] < C (A1),
The above inequalities and (7.7) yield that
(7.8) [[UF —wftY| 2200y < [[UF —uf| 220y + C ((At)2 + hAt +h

+ At (trr1) — ST+ AL UY — uf |22 (0)

ou 2

3/2
+ (A?) pr

4 (At)3/2
£2(O><(tk,tk+1))

On the other hand, (3.2), (6.7), (6.31), and (6.39) imply that

C(thrr) — CETH < IC(t) — Sl + Atfuf (CF) — u(Ctn), tr)] + |ex]
(7.9) C(te) — Chl + CAtl[uf — Ul 220 + |exl.
Combining (7.8) and (7.9), we obtain that

wod

ﬁz(OX(tk,tk+1))>
<
<

[URE —uf ™ 220y + [€(trrr) — €Y

< (1400 ([¢(t) = €I+ 1 = UPlea(o)

+C <h + (At)® + hAE + (AL)*/? %
t LZ(Ox(tk,tkH))
) d? ~
+ (At)‘3/2 —[uo ] .
dt? L2(OX (tg,t
kotk+1))

The above inequality and the hypothesis h < C' (At)2 imply the existence of a positive
constant Cy such that

[URY —af T 220y + € () — €T

< (1+ CoAt) (\C(tk) — Gl + g, - U’“Ilﬂ(@))
2

[wo ]

d2

dt?

+ CoAt (At + Hau + ”

2
)
L2((9><(tk,tk+1) ﬁZ(OX(tk,tk+1))
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which is exactly (7.2).

Second step. We show that if At is small enough, then the error efl = ||U* -
uf || z20) + € (k) — CF| satisfies ef < CyAt with a constant C; independent of k, At,
and h. This fact implies, in particular, that (7.1) holds.

Define
42 2
€1 = Cyexp (CoT) H + | ftaod +exp (CuT).
£2(0x(0,T)) £ L2(0x(0,T))
It can be easily checked that
2 . 2
(14 CoAt)"” (H Hdt2 [uo ) )
L£2(0x(0,T)) L£2(0x(0,T))

( +C()At)n—1 4 VRE{O,...,N}.
Moreover, there exists a positive constant Cy such that
0¥l 22(0) < Co

Let Ng € N be such that (20 + C3)At < n for all N > Ny. Next we prove by
induction over k that for N > Ny and for k € {0,..., N} we have

(7.10)  [C(te) — Chl + Iluf — UF|| 220y < | (1 + CoAt)F —
d? 2
+Co (1+C()At H —+ ‘ 2[uo’¢] At.
L2(0x(0,tr)) dt L2(Ox(0,tr))

The relation (7.10) is true for k = 0. Suppose that we have shown (7.10) for a given
k > 0. Then, we deduce that

(7.11) C(tk) = ChI < LAt <

and therefore, by using (3.10), we have that dist (B(¢F),00) > 2n.
By using (3.2) and (3.10), we also have that

1
ISt = ¢l < S7m (0% —uf |l 220y + [U* || 22(0)) At

< Ci +C,
~ \/7?
The above relation, the fact that (2Cy + C3)At < n, and (7.11) imply that
dist (B(¢FT),00) > 2n.

At.

Thus, we can apply the first step of the proof to obtain that

1 (thr1) — CEFH A+ [luf ™ — UFY 20

<<LH%At0am>—demi—Ume0

uo

d2

+ Gy (m ¥ H

2
| )
L2(OX (tk;tre+1)) Hdt2 L2(OX (tr,tet1))
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Fic. 2. Initial position and mesh.

The above relation and (7.10) imply that

G (tkr1) = CHFH A+ up !t = UMY 220 < (14 CoAB)[(1+ CoAt)* —1]A¢

oul)’ 2 I
+C0(1+00At)k+1 Hu —&—HQ[uodJ] At
ot L2(0x(0,tr)) dt L£2(0Ox(0,tr))
oul? a2 12
+Coat [ A+ ||S2 1L fwo ] 7
Ot | 20 (g trn)) 1147 L2(Ox (tritrin))
kslk+1 kylk+1

which implies (7.10) for k + 1.
Third step. From the previous steps we conclude that if At is small enough and
if h < C(At)?, then

1$(tk) = Ch + [luf — Ul 220y < C1AE Vke{0,...,N}.

The above relation, Lemma 5.6, (3.8), and Lemma 4.4 imply that if At is small enough
and if h < C(At)?, then

& () — CF| 4 [[uf — uts)]|c20) < CAt Vke{0,...,N},

which is the conclusion of the theorem. O

8. Concluding remarks. We implemented the numerical method we proposed,
and several numerical tests have been performed. Let us briefly describe the results
obtained in the case of a rigid ball falling vertically under the action of a vertical force
oriented downward. At instant ¢ = 0 the velocity field in the fluids and in the solid is
supposed to vanish.

We use a mesh with 1432 triangles and 752 vertices (see Figure 2).

Far from the ball the space discretization parameter is h; ~ 0.57, whereas in the
neighborhood of the ball it is given by ho = 0.12. For the time discretization, we
choose the time step At = 0.1. Moreover, we choose the radius of the ball equal
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k=460, t=46.0, Vmax=0.021087

VL bk ke

Fic. 3. Position and velocity field at time t = 46.0.

0 30 60 90 120 150 180

Fic. 4. Position of the ball.

to 0.3, the viscosity ¢ = 1, and the downward force of intensity equal to one (all
quantities are given in International System (IS) units). In Figure 3 we represent the
configuration of the system for k& = 460 (corresponding to t = 46.0).

We repeated the calculation twice by dividing each mesh size by two (this means
that each triangle was each time divided into four smaller triangles). More precisely,
we used the meshes described in the table below.
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] | h | Triangles | Vertices | CPU time |
Mesh 1 | 0.12 1432 752 3 hours
Mesh 2 | 0.06 5728 2935 11 hours
Mesh 3 | 0.03 22912 11597 8 days

The last column represents the time used by a Pentium IV computer with a 2.4
GHz CPU clock to achieve the calculation.

In Figure 4 we represented the height of the center of the ball versus the time ¢
for the different meshes.
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