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Abstract. In this paper, we consider a Lagrange–Galerkin scheme to approximate a two-
dimensional fluid-rigid body problem. The equations of the system are the Navier–Stokes equations
in the fluid part, coupled with ordinary differential equations for the dynamics of the rigid body.
In this problem, the equations of the fluid are written in a domain whose variation is one of the
unknowns. We introduce a numerical method based on the use of characteristics and on finite
elements with a fixed mesh. Our main result asserts the convergence of this scheme.
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1. Introduction. The aim of this paper is to analyze a Lagrange–Galerkin ap-
proximation of the equations modelling the motion of a two-dimensional rigid body
immersed in a fluid. We first briefly describe the equations modelling this system.
Assume that the system fluid-rigid body occupies a bounded domain O in R

2 with
a regular boundary ∂O. The solid is supposed to occupy at each instant t a closed
connected subset B(t) ⊂ O which is surrounded by a viscous homogeneous fluid filling
the domain Ω(t) = O\B(t).

The motion of the fluid is described by the classical Navier–Stokes equations,
whereas the motion of the rigid body is governed by the balance equations for linear
and angular momentum (Newton’s laws). More precisely, we consider the following
system coupling partial differential and ordinary differential equations:

ρf
∂u

∂t
− νΔu + ρf (u · ∇)u + ∇p = ρf f , x ∈ Ω(t), t ∈ [0, T ],(1.1)

divu = 0, x ∈ Ω(t), t ∈ [0, T ],(1.2)

u = 0, x ∈ ∂O, t ∈ [0, T ],(1.3)

u = ζ′(t) + ω(t)(x − ζ(t))⊥, x ∈ ∂B(t), t ∈ [0, T ],(1.4)

Mζ′′(t) = −
∫
∂B(t)

σn dΓ + ρs

∫
B(t)

f(x, t) dx, t ∈ [0, T ],(1.5)
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1537

Jω′(t) = −
∫
∂B(t)

(x − ζ(t))⊥ · σn dΓ + ρs

∫
B(t)

(x − ζ(t))⊥ · f(x, t) dx, t ∈ [0, T ],

(1.6)

u(x, 0) = u0(x), x ∈ Ω(0),(1.7)

ζ(0) = ζ0 ∈ R
2, ζ′(0) = ζ1 ∈ R

2, ω(0) = ω0 ∈ R.(1.8)

In the above equations the unknowns are u(x, t) (the Eulerian velocity field of
the fluid), p(x, t) (the pressure of the fluid), ζ(t) (the position of the mass center of
the rigid body), and ω(t) (the angular velocity of the rigid body). The domain B(t)
is defined by

B(t) = {R−θ(t)y + ζ(t), y ∈ B},

where

θ(t) =

∫ t

0

ω(s) ds,(1.9)

B = B(0), and Rθ is the rotation matrix of angle θ. Moreover, we have denoted by
∂B(t) the boundary of the rigid body at instant t and by n(x, t) the unit normal to
∂B(t) at the point x directed to the interior of the rigid body.

The constants ρf and ρs are, respectively, the density of the fluid and the density
of the rigid body. In what follows, we assume that the densities of the fluid and of
the solid are equal, that is

ρf = ρs = 1,(1.10)

and that the rigid body is a ball in R
2. Assumption (1.10) is clearly restrictive but

it is important for the forthcoming analysis (see Remarks 2.1 and 2.4 below). On the
contrary, the assumption that the rigid body is a ball is not essential but avoids some
technicalities.

The constants M and J are the mass and the moment of inertia of the rigid body,
and the positive constant ν is the viscosity of the fluid. Moreover, f(x, t) is the applied
force (per unit mass).

For all x =
(
x1

x2

)
, we denote by x⊥ the vector x⊥ =

(
x2

−x1

)
. If x, y ∈ R

2, then x ·y
stands for the inner product of x and y and |x| stands for the corresponding norm.
We have also denoted by w′ and w′′ the derivatives of a function w depending only
on the time t.

Finally, the stress tensor (also called the Cauchy stress) is defined by

σ(x, t) = −p(x, t)Id + 2νD(u),(1.11)

where Id is the identity matrix and D(u) is the tensor field defined by

D(u)k,l =
1

2

(
∂uk

∂xl
+

∂ul

∂xk

)
.

The main difficulties of this problem are that
• the equations of the structure are coupled with those of the fluid,
• the domain of the fluid is variable, and it is one of the unknowns of the

problem (we thus have a free boundary problem).
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1538 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

The well-posedness of this type of system has been recently studied in a large
number of papers (see, for instance, Desjardins and Esteban [6], Gunzburger, Lee,
and Seregin [17], San Mart́ın, Starovoitov, and Tucsnak [25], Grandmont and Maday
[16], Takahashi [27], and the references therein).

The literature on the numerical approximation of the solution of (1.1)–(1.8) also
contains a large number of recent papers. Some of these papers are based on an arbi-
trary Lagrangian Eulerian (ALE) formulation; see, for example, Grandmont, Guimet,
and Maday [15], Nobile [22], Maury and Glowinski [21], Maury [19], [20], Formaggia
and Nobile [9], and Farhat, Geuzaine, and Grandmont [8]. In the ALE method, at
each time step, the mesh is moved with an arbitrary velocity in the fluid to follow the
motion of the rigid body. The stability of the ALE method is studied in [9] (in the
case of the finite element context) and in [8] (in the case of the finite volume context).
We also mention the work of Gastaldi [11], where, in the case of an advection-diffusion
equation in a moving two-dimensional domain, a priori error estimates that are opti-
mal both in space and time have been obtained.

Another approach, developed by Glowinski et al. [14], [13] is based on a fictitious
domain formulation: the rigid bodies are filled by the surrounding fluid, and the
constraint of rigid body motion is relaxed by introducing a distributed Lagrange
multiplier.

As far as we know, the only proof of the convergence of one of these methods
is given in [15] for a simplified problem in one space dimension. The main novelty
brought in by our paper consists of the fact that we construct a new approximation
method using a fixed mesh and that we prove a convergence result. This method
is inspired by the Galerkin–Lagrange approximation, which is commonly used for
Navier–Stokes equations (see Pironneau [23] and Süli [26]).

The remaining part of this paper is organized as follows. In section 2 we introduce
some function spaces and semidiscretize our problem with respect to the time variable.
In section 3 we give the full discretization of the problem and state the main result.
Section 4 is devoted to the study of the finite element spaces that were introduced in
the previous section. Section 5 is devoted to the study of a change of variables that
plays an important role in the proof of the main result. In section 6 we prove the
consistency of our scheme. Finally, in section 7 we give the proof of the main result.

2. Notation and preliminaries.

2.1. Notation and function spaces. Throughout this paper, we shall use the
classical Sobolev spaces Hs(Ω), Hs

0(Ω), H−s(Ω), s � 0, and the space of Lipschitz
continuous functions C0,1(Ω) on the closure of Ω. We also define

L2
0(Ω) =

{
f ∈ L2(Ω)

∣∣∣∣ ∫
Ω

f dx = 0

}
and denote by L2

0(Ω), Hs(Ω), Hs
0(Ω), H−s(Ω), s � 0, the spaces

[
L2

0(Ω)
]2

, [Hs(Ω)]
2
,

[Hs
0(Ω)]

2
, [H−s(Ω)]

2
. The usual inner product in L2(O) will be denoted by

(u,v) =

∫
O

u · v dx ∀u,v ∈ L2(O).(2.1)

If A is a matrix, we denote by A∗ its transpose. For any 2×2 matrices A,B ∈ M2×2,
we denote by A : B their inner product A : B = Trace(A∗B), and by |A| the
corresponding norm. For convenience, we use the same notation as in (2.1) for the
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1539

inner product in L2(O,M2×2), that is,

(A,B) =

∫
O

A : B dx ∀A,B ∈ L2(O,M2×2).(2.2)

We also define the spaces

K(ζ) = {u ∈ H1
0(O) | D(u) = 0 in B(ζ)}(2.3)

and

K̂(ζ) = {u ∈ H1
0(O) | divu = 0 in O, D(u) = 0 in B(ζ)},(2.4)

where ζ ∈ R
2 and B(ζ) = {x ∈ R

2, |x − ζ| � 1}. According to Lemma 1.1 of [29, p.
18], for any u ∈ K(ζ), there exist lu ∈ R

2 and ωu ∈ R such that

u(y) = lu + ωu (y − ζ)⊥ ∀y ∈ B(ζ).

These spaces are specific to our problem. In fact, if the solution u of (1.1)–(1.8) is
extended by

u(x, t) = ζ′(t) + ω(t)(x − ζ(t))⊥ ∀x ∈ B(ζ(t)),

then we easily see that u(t) ∈ K̂(ζ(t)).
In what follows, the solution u of (1.1)–(1.8) will be extended as above.
We also notice that, by using (1.10), for any u,v ∈ K(ζ) we have

(u,v) =

∫
O\B(ζ)

u · v dx + M lu · lv + Jωu ωv.(2.5)

Remark 2.1. In the case of different densities ρF �= ρS , the natural inner product
to be used seems to be

〈u,v〉ζ = ρF

∫
O\B(ζ)

u · v dx + M lu · lv + Jωu ωv,

which clearly depends on the position of the ball. This fact would considerably com-
plicate the further analysis.

An important ingredient of the numerical method we use is given by the charac-
teristic functions whose level lines are the integral curves of the velocity field. More
precisely (see, for instance, [23], [26]), the characteristic function ψ̃ : [0, T ]2 ×O → O
is defined as the solution of the initial value problem⎧⎪⎨⎪⎩

d

dt
ψ̃(t; s,x) = u(ψ̃(t; s,x), t),

ψ̃(s; s,x) = x.

(2.6)

It is well known that the material derivative Dtu = ∂u/∂t + (u · ∇)u of u at instant
t0 satisfies

Dtu(x, t0) =
d

dt

[
u(ψ̃(t; t0,x), t)

]
|t=t0

.(2.7)
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1540 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

Remark 2.2. By using a classical result of Liouville (see, for instance, Arnold [1,
p. 251]), if

ζ ∈ H2(0, T ), ω ∈ H1(0, T ), u ∈ C([0, T ]; K̂(ζ(t))),

then we have that

detJ
ψ̃

= 1,(2.8)

where we have denoted by

J
ψ̃

=

(
∂ψ̃i

∂yj

)
i,j

the jacobian matrix of the transformation y 
→ ψ̃(y).

2.2. Weak form and semidiscretization scheme. In this subsection we give
a weak form of (1.1)–(1.8) which is then used to discretize the problem with respect
to time.

The fact that (2.9) is called a “weak formulation” of the system (1.1)–(1.8) is
justified by the following result.

Lemma 2.3. Assume that

u ∈ L2(0, T ;H2(Ω(t))) ∩H1(0, T ;L2(Ω(t))) ∩ C([0, T ];H1(Ω(t))),

p ∈ L2(0, T ;H1(Ω(t))),

ζ ∈ H2(0, T ), ω ∈ H1(0, T )

and that u is extended by

u(x, t) = ζ′(t) + ω(t)(x − ζ(t))⊥ ∀x ∈ B(ζ(t)).

Then (u, p, ζ, ω) is the solution of (1.1)–(1.8) if and only if u(t) ∈ K̂(ζ(t)) for all t
and (u, p) satisfies

(2.9)

(
d

dt

[
u ◦ ψ̃

]
(t),ϕ

)
+ 2ν (D(u(t)),D(ϕ)) −

∫
Ω(t)

(divϕ)p(t) dx

= (f(t),ϕ) ∀ϕ ∈ K(ζ(t)).

We skip the proof of Lemma 2.3 since it is similar to the proof of the corresponding
result for the classical Navier–Stokes system (see, for instance, [24, Chap. 12]).

Remark 2.4. In the case of different densities ρF �= ρS , a similar weak statement
can be obtained (see, for instance, [5]). In this case u in the first term of (2.9) should
be replaced by ρu, where ρ = ρF in the fluid and ρ = ρS in the moving solid. Thus
ρ would depend on the time and a transport equation for ρ should be added to the
system.

By using the weak formulation given above we can derive a semidiscrete version
of our system. For N ∈ N

∗ we denote Δt = T/N and tk = kΔt for k = 0, . . . , N .

Denote by (uk, ζk) ∈ K̂(ζk) × R
2 the approximation of the solution of (1.1)–(1.8) at

the time t = tk. We approximate the position of the rigid ball at instant tk+1 by
ζk+1, which is defined by the relation

ζk+1 = ζk + uk(ζk)Δt.(2.10)
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1541

We then define characteristic function ψ associated to the semidiscretized velocity
field as the solution of⎧⎨⎩

d

dt
ψ(t; tk+1,x) = uk(ψ(t; tk+1,x)),

ψ(tk+1; tk+1,x) = x,

(2.11)

and we denote

X
k
(x) = ψ(tk; tk+1,x) ∀x ∈ O.(2.12)

One can easily check that X
k
(O) = O.

We next define uk+1 ∈ K̂(ζk+1) as the solution of the following Stokes type
system:(

uk+1 − uk ◦ X
k

Δt
,ϕ

)
+ 2ν

(
D(uk+1),D(ϕ)

)
= (fk+1,ϕ) ∀ϕ ∈ K̂(ζk+1),(2.13)

where fk+1 = f(tk+1).
The above equation can be rewritten by using a mixed formulation. To achieve

this, we first define

M(ζ) =
{
p ∈ L2

0(O) | p = 0 in B(ζ)
}
,(2.14)

a(u,v) = 2ν

∫
O

D(u) : D(v) dx ∀u,v ∈ H1(O),(2.15)

b(u, p) = −
∫
O

div(u)p dx ∀u ∈ H1(O), ∀p ∈ L2
0(O).(2.16)

With the above notation, it is clear that (2.13) is equivalent to the system

(
uk+1 − uk ◦ X

k

Δt
,ϕ

)
+ a(uk+1,ϕ) + b(ϕ, pk+1) = (fk+1,ϕ) ∀ϕ ∈ K(ζk+1),

(2.17)

b(uk+1, q) = 0 ∀q ∈ M(ζk+1)(2.18)

of unknowns (uk+1, pk+1) ∈ K(ζk+1) ×M(ζk+1).
Remark 2.5. The requirement p = 0 in B(ζ) for the definition of M(ζ) allows us

to define the form b on the whole domain O. This extension does not affect the form
b since div(u) = 0 in B(ζ) for all u ∈ K(ζ).

It is well known (see, for example, [12, Corollary I.4.1., p. 61]) that the mixed
formulation (2.17), (2.18) is a well-posed problem, provided that the spaces K(ζ),
M(ζ) and the bilinear form b satisfy an inf-sup condition. The fact that this inf-sup
condition is satisfied in our case follows from the result below.

Lemma 2.6. Suppose that ζ ∈ O is such that d(ζ, ∂O) = 1 + η, with η > 0.
Then there exists a constant β > 0, depending only on η and on O, such that for all
q ∈ M(ζ) there exists u ∈ K(ζ) with∫

O
div(u) q dx ≥ β‖u‖H1(O)‖q‖L2(O).(2.19)

The proof of the above result can be obtained by slightly modifying the approach
used for the mixed formulation of the standard Stokes system (see, for instance [12,
p. 81]), so it is left to the reader.
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1542 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

3. Full discretization and statement of the main result. In order to dis-
cretize the problem (2.17), (2.18) with respect to the space variable we introduce two
families of finite element spaces. We first define a family of finite element spaces that
approximate the space K(ζ) defined in (2.3). Let h denote a discretization parameter,
0 < h < 1, and let P1 be the space of all affine functions in R

2.
Consider a quasi-uniform triangulation Th of O, as defined, for instance, in [2, p.

106] (this assumption will be accepted in the remainder of this paper and will allow
us to make use of inverse estimates). If T ∈ Th is a triangle of vertices x1, x2, and
x3, we denote by ϕ1(x), ϕ2(x), and ϕ3(x) the corresponding barycentric coordinates
of x ∈ R

2 with respect to the vertices x1, x2, and x3 (see, for instance, [4, p. 45]
for the definition of barycentric coordinates). We associate to this triangulation two
classical approximation spaces used in the mixed finite element methods for the Stokes
system. The first space, classically used for the approximation of the velocity field in
the mixed statement of the Stokes system, is denoted by Wh and is defined as the
subspace of H1

0(O) formed by the P1-bubble finite elements associated to Th. More
precisely, ϕ ∈ Wh if and only if

ϕ(x) = ϕ1(x)α1 + ϕ2(x)α2 + ϕ3(x)α3 +
ϕ1(x)ϕ2(x)ϕ3(x)∫

T

ϕ1ϕ2ϕ3 dx

λ ∀ x ∈ T

for some constant vectors α1, α2, α3, λ ∈ R
2. We may notice that all functions in

Wh are continuous.
The second space, classically used for the approximation of the pressure in mixed

statements of the Stokes system, is denoted by Eh and is defined by

Eh =
{
q ∈ C(O)

∣∣ q|T ∈ P1(T )
}
.(3.1)

For our problem we use two spaces that are related to the presence of the rigid
body. The first one, which is used for the approximation of the velocity field, is
denoted by Kh(ζ) and defined by

Kh(ζ) = Wh ∩ K(ζ) ∀ζ ∈ O.

The second one, which is used for the approximation of the pressure, is denoted by
Mh(ζ) and defined by

Mh(ζ) = Eh ∩M(ζ) ∀ζ ∈ O.

We also define the finite element space (see [23])

Rh = {rot ϕh, ϕh ∈ Eh, ϕh = 0 on ∂O}.

We denote by P the orthogonal projection from L2 onto Rh. More precisely, if
u ∈ L2(O), then Pu ∈ Rh satisfies

(u − Pu, rh) = 0 ∀rh ∈ Rh.

Let N be a positive integer. We denote Δt = T/N and tk = kΔt. Assume that
the approximate solution (uk

h, p
k
h, ζ

k
h) of (1.1)–(1.8) at t = tk is known. We describe

below the numerical scheme allowing us to determinate the approximate solution
(uk+1

h , pk+1
h , ζk+1

h ) at t = tk+1. First, we compute ζk+1
h ∈ R

2 by

ζk+1
h = ζk

h + uk
h(ζk

h)Δt.(3.2)
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1543

We denote by Puk
h the projection of uk

h onto Rh. Then we define the characteristic

function ψ
k

h associated to the fully discretized velocity field as the solution of⎧⎪⎨⎪⎩
d

dt
ψ

k

h(t; tk+1,x) = Puk
h(ψ

k

h(t; tk+1,x)),

ψ
k

h(tk+1; tk+1,x) = x.

(3.3)

We also define

X
k

h(x) = ψ
k

h(tk; tk+1,x) ∀x ∈ O,(3.4)

and as for the problem (2.11), one can check that X
k

h(O) = O (see Remark 3.1 below).

Then we define (uk+1
h , pk+1

h ) ∈ Kh(ζk+1
h )×Mh(ζk+1

h ) as the solution of the prob-
lem

(
uk+1
h − uk

h ◦ X
k

h

Δt
,ϕ

)
+ a(uk+1

h ,ϕ) + b(ϕ, pk+1
h ) = (fk+1

h ,ϕ) ∀ϕ ∈ Kh(ζk+1
h ),

(3.5)

b(uk+1
h , q) = 0 ∀q ∈ Mh(ζk+1

h ),(3.6)

where fk+1
h is the L2-projection of fk+1 = f(tk+1) on (Eh)2. We take ζ0

h = ζ0, and

the initial approximate velocity u0
h is the H1

0-projection of u0 onto Kh(ζ0
h).

Remark 3.1. In (3.3), we use the projection of uk
h on Rh rather than the function

uk
h itself because div(Puk

h) = 0 in O. By using a classical result of Liouville, this
implies that detJ

ψ
k

h

= 1 and in particular that detJ
X

k

h

= 1. This property, combined

with the fact that the velocity field Puk
h vanishes along the boundary ∂O, entails the

invariance property of the whole domain O through X
k

h, i.e., X
k

h(O) = O. Moreover,
since Puk

h is constant in each triangle, the initial value problem (3.3) can be solved
exactly.

In what follows, we suppose that

f ∈ C([0, T ];H1(O)), u0 ∈ H2(Ω), div(u0) = 0 in Ω,

u0 = 0 on ∂O, u0(y) = ζ1 + ω0(y − ζ0)
⊥ on ∂B.

(3.7)

The corresponding solution (u, p, ζ, ω) of problem (1.1)–(1.8) will be assumed to sat-
isfy the following regularity hypotheses:⎧⎪⎨⎪⎩

u ∈ C([0, T ];H2(Ω(t))) ∩H1(0, T ;L2(Ω(t))),

D2
tu ∈ L2(0, T ;L2(Ω(t))), u ∈ C([0, T ]; C0,1(O))

p ∈ C([0, T ];H1(Ω(t))), ζ ∈ H3(0, T ), ω ∈ H2(0, T ).

(3.8)

Moreover, we assume that

dist(B(t), ∂O) > 0 ∀t ∈ [0, T ].(3.9)

The hypotheses (3.8) and (3.9) imply the existence of η > 0 such that

dist(B(t), ∂O) > 3η ∀t ∈ [0, T ].(3.10)
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1544 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

Theorem 3.2. Let C0 > 0 be a fixed constant. Suppose that O is the interior of
a convex polygon and that (u, p, ζ, ω) is a solution of (1.1)–(1.8) satisfying (3.8) and

(3.9). Moreover, assume that f and u0 satisfy (3.7). Consider the functions ζk
h, uk

h,
and pkh defined in this section. Then there exist two positive constants C and τ∗ not

depending on h and Δt such that for all 0 < Δt � τ∗ and for all h � C0 (Δt)
2

we
have

sup
1�k�N

(
|ζ(tk) − ζk

h| + ‖u(tk) − uk
h‖L2(O)

)
� CΔt.

Remark 3.3. For the Navier–Stokes system, the same type of result is obtained
in [23] for h � C0Δt and in [26] for h2 � C0Δt � C1h

σ and σ > 1/2 (for h and Δt
small enough).

Remark 3.4. It can be easily checked, by using the fact that detJ
ψ

k

h

= 1, that

our method is unconditionally stable.

4. Some properties of the finite element spaces. Next we give some techni-
cal results on the finite element spaces introduced above. Throughout this section we
consider ζ ∈ O such that dist(B(ζ), ∂O) > 2η and we suppose that h < η. Therefore,
we have that

dist(B(ζ), ∂O) > 2h.(4.1)

Notice that, by definition, if q ∈ Mh(ζ), then q = 0 in B(ζ). Since q is a P1 function
in each triangle, it follows that q|Ah

= 0, where

Ah =
⋃

T∈Th
◦
T∩

◦
B(ζ) �=∅

T.

Moreover, if we denote by Qh the union of all triangles T ∈ Th such that the three
vertices of T are contained in Ah, then, by using again the fact that q is a P1 function
in each triangle, it follows that

q|Qh
= 0 ∀ q ∈ Mh(ζ).

A similar argument shows that

D(u)|Ah
= 0 ∀ u ∈ Kh(ζ).

In order to study the properties of the spaces Kh(ζ) and Mh(ζ) defined above we
divide the triangles in Th into four categories. These categories are defined as follows
(see Figure 1):

• F1 is the subset of Th formed by all triangles T ∈ Th such that T ⊂ B(ζ).
• F2 is the subset formed by all triangles T ∈ Th \ F1 such that T ⊂ Qh.
• F3 is the subset formed by all triangles T ∈ Th such that T ∩ Qh �= ∅ and
T �⊂ Qh.

• F4 = Th \ (F1 ∪ F2 ∪ F3).
Lemma 4.1. There exists a positive constant C1 (not depending on the position

of B(ζ)) such that

inf
vh∈Kh(ζ)

‖v − vh‖L2(O) � C1h
3
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
,

inf
vh∈Kh(ζ)

‖v − vh‖H1(O) � C1

√
h
(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
,

for all v ∈ K(ζ) ∩H2(O \B(ζ)).
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1545

F
F

F3

1
2 

F4 

F1

F2

F3

F4

This kind of triangle is
not included in Ah since
T ∩ B = ∅, but it is
included in Qh since its
three vertices are in Ah.

Fig. 1. Splitting of the triangulation into four families of triangles.

Proof. Let v ∈ K(ζ) ∩H2(O \B(ζ)). This means, in particular, that

v(x) = l + ωx⊥ ∀ x ∈ B(ζ),

for some l ∈ R
2 and ω ∈ R. In the remaining part of this section we denote

R(x) = l + ωx⊥ ∀ x ∈ R
2.

We denote by vIh the unique function in (Eh)
2

which agrees with v at every node
xj of the triangulation Th (recall the definition of Eh in (3.1)). Then we consider the

function vh ∈ (Eh)
2

whose value in a node xj of Th is defined by

vh(xj) =

{
R(xj) if xj ∈ Ah,
vIh(xj) if xj �∈ Ah.

Since vh is affine in each triangle, it follows that

vh(x) = R(x) ∀ x ∈ Qh.(4.2)

We will show that there exists a positive constant C1 (not depending on the
position of B(ζ)) such that

‖v − vh‖L2(O) � C1h
3
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
,(4.3)

‖v − vh‖H1(O) � C1

√
h
(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
.(4.4)

In order to prove the above inequalities, we divide the domain O into four parts:

O = B(ζ) ∪ (Qh \B(ζ)) ∪
( ⋃

T∈F3

T

)
∪
( ⋃

T∈F4

T

)
.

Let us first remark that

v = R in B(ζ).(4.5)
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1546 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

On the other hand it is clear that Qh is contained in the closed ball of center ζ and
radius 1 + h, denoted by Bh(ζ). Let us remark that the ball Bh(ζ) is included in the
domain O due to condition (4.1). According to a classical result (see, for instance,
Lemma 5.11 in Fujita and Sauer [10]), there exists a universal constant C > 0, such
that for all ϕ ∈ H1(O \B(ζ)),

‖ϕ‖L2(Bh(ζ)\B(ζ)) ≤ C
(√

h‖ϕ‖L2(∂B(ζ)) + h‖∇ϕ‖[L2(Bh(ζ)\B(ζ))]4

)
.(4.6)

The above relation with ϕ = v − R and (4.5) imply that

‖v − R‖L2(Bh(ζ)\B(ζ)) � Ch ‖∇ (v − R)‖[L2(Bh(ζ)\B(ζ))]4 .(4.7)

By again applying Lemma 5.11 in [10] (this time for the function ∇ (v − R)), we
obtain that

‖∇ (v − R)‖[L2(Bh(ζ)\B(ζ))]4 � C
(√

h ‖∇ (v − R)‖[L2(∂B(ζ))]4

+ h ‖∇ (v − R)‖[H1(O\B(ζ))]4

)
.

The above inequality, combined with the trace theorem in Sobolev spaces, gives that

‖∇ (v − R)‖[L2(Bh(ζ)\B(ζ))]4 ≤ C
√
h‖v − R‖H2(O\B(ζ)).(4.8)

From (4.7) and (4.8) it follows that

‖v − R‖L2(Bh(ζ)\B(ζ)) � Ch
3
2 ‖v − R‖H2(O\B(ζ)).(4.9)

The above relation implies, by using the fact that Qh ⊂ Bh(ζ) and (4.2), that

‖v − vh‖L2(Qh\B(ζ)) ≤ Ch
3
2 ‖v − R‖H2(O\B(ζ)).(4.10)

Consequently, we have that

‖v − vh‖L2(Qh\B(ζ)) � C1h
3
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
.(4.11)

On the other hand, (4.8) and (4.9) imply that

‖v − R‖H1(Bh(ζ)\B(ζ)) ≤ Ch
1
2 ‖v − R‖H2(O\B(ζ)).

The above relation implies, by using the fact that Qh ⊂ Bh(ζ) and (4.2), that

‖v − vh‖H1(Qh\B(ζ)) ≤ Ch
1
2 ‖v − R‖H2(O\B(ζ)),

which clearly implies

‖v − vh‖H1(Qh\B(ζ)) ≤ C
√
h
(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
.(4.12)

Let us now consider a triangle T ∈ F3. In order to estimate the restriction of
v − vh to T we use the interpolating function vIh. More precisely, we have

‖v − vh‖α ≤ ‖v − vIh‖α + ‖vIh − vh‖α, α ∈ {0, 1},(4.13)
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1547

where ‖ · ‖α stands for the L2-norm or the H1-norm on T . We first estimate the
second term in the right-hand side of (4.13). Since the function vIh − vh is affine in
T , we have

vIh(x) − vh(x) =

3∑
i=1

(vIh(xi) − vh(xi))ϕi(x),

where (xi) are the nodes of T and (ϕi) are the corresponding Lagrange barycentric
functions. We have

‖vIh − vh‖α ≤
3∑

i=1

|vIh(xi) − vh(xi)| ‖ϕi‖α.(4.14)

A simple calculation shows that

‖ϕi‖L2(T ) ≤ Ch(4.15)

and

‖∇ϕi‖L2(T ) ≤ C.(4.16)

Since the mesh is quasi-uniform, the constant C can be chosen independent of the
triangle. We now estimate |vIh(xi) − vh(xi)|. Since T �⊂ Qh, it follows that T has
at most two nodes in Qh and, consequently, at least one node such that vIh(xi) −
vh(xi) = 0. Therefore we tackle only the nodes in Qh. If xi is a node in Qh, then

|vIh(xi) − vh(xi)| = |v(xi) − R(xi)| .(4.17)

Relations (4.14), (4.15), and (4.17) imply that

‖vIh − vh‖L2(T ) � Ch ‖v − R‖L∞(T )

� Ch
(
‖v − vIh‖L∞(T ) + ‖vIh − R‖L∞(T )

)
.

By using a classical interpolation error (see, for example, [2, Corollary 4.4.7]) and
an inverse estimate (see, for example, [2, Lemma 4.5.3]), the above inequality yields

‖vIh − vh‖L2(T ) � Ch
(
h ‖v‖H2(T ) + h−1 ‖vIh − R‖L2(T )

)
,

which implies that

‖vIh − vh‖L2(T ) � C
(
h2 ‖v‖H2(T ) + ‖vIh − v‖L2(T ) + ‖v − R‖L2(T )

)
� C

(
h2 ‖v‖H2(T ) + ‖v − R‖L2(T )

)
.

Above we have used again a classical result on the interpolation error (see, for example,
[2, Theorem 4.4.4]).

Now, summing up the above relation for all triangles T ∈ F3 we obtain that

‖vIh − vh‖
L2

(⋃
T∈F3

T

) � C

⎛⎝h2 ‖v‖H2(O\B(ζ)) + ‖v − R‖
L2

(⋃
T∈F3

T

)⎞⎠ .(4.18)
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1548 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

In order to estimate the last term in the right-hand side of (4.18) we proceed as
previously by introducing the closed ball B2h(ζ) of center ζ and radius 1 + 2h. This
ball is included in O thanks to (4.1). It is clear that all triangles of F3 are contained
in B2h(ζ) \ B(ζ). Then we can once again use Lemma 5.11 in Fujita and Sauer [10]
and prove an estimate similar to (4.9), namely,

‖v − R‖L2(B2h(ζ)\B(ζ)) � Ch
3
2 ‖v − R‖H2(O\B(ζ)).(4.19)

From (4.18) and (4.19) we deduce that

‖vIh − vh‖
L2

(⋃
T∈F3

T

) � Ch
3
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
.(4.20)

The above relation, combined with (4.13) and with an interpolation error estimate
(see [2, Theorem 4.4.4]), implies that

‖v − vh‖
L2

(⋃
T∈F3

T

) � Ch
3
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
.(4.21)

Now we turn to the H1-estimate for the family F3 of triangles. From the usual inverse
inequality (see [2, Lemma 4.5.3]) and the L2-estimate (4.20) we obtain

‖∇ (vIh − vh)‖[
L2

(⋃
T∈F3

T

)]4 ≤ C1h
1
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
,(4.22)

which implies, together with (4.13) and an interpolation error estimate (see [2, The-
orem 4.4.4]), that

‖∇ (v − vh)‖[
L2

(⋃
T∈F3

T

)]4 ≤ C1h
1
2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
.(4.23)

Finally, we consider the case of the triangle family F4. Interpolation error esti-
mates lead to

‖v − vh‖
L2

(⋃
T∈F4

T

) ≤ C1h
2‖v‖H2(O\B(ζ))(4.24)

and

‖∇ (v − vh)‖
L2

(⋃
T∈F4

T

) ≤ C1h‖v‖H2(O\B(ζ)).(4.25)

Relations (4.11), (4.21), (4.24) and the fact that v = vh in B(ζ) imply (4.3). More-
over, (4.12), (4.23), (4.25) and the fact that v = vh in B(ζ) imply (4.4).

Lemma 4.2. There exists a positive constant C2 (independent of the position of
B(ζ)) such that

inf
qh∈Mh(ζ)

‖q − qh‖L2(O) � C2h
1
2 ‖q‖H1(O\B(ζ))(4.26)

for all q ∈ M(ζ) ∩H1(O \B(ζ)).

D
ow

nl
oa

de
d 

03
/1

8/
13

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1549

Proof. The proof of this lemma is similar to that of Lemma 4.1. Consider a
function q ∈ M(ζ) ∩H1(O \B(ζ)). According to a classical result (see, for example,
[3, Theorem IX.7]), there exists q̃ ∈ H1(O) such that

q̃|O\B(ζ) = q, ‖q̃‖H1(O) ≤ C‖q‖H1(O\B(ζ)),(4.27)

and it can be proved that we can choose the constant C independent of the position of
B(ζ). Moreover, by a classical interpolation argument (see, for example, [2, Theorem
4.4.4]), there exists q̃h ∈ Eh such that

‖q̃ − q̃h‖L2(O) ≤ Ch‖q̃‖H1(O).

The above relation and (4.27) clearly imply that there exists a constant C > 0 such
that

‖q − q̃h‖L2(O\B(ζ)) ≤ Ch‖q‖H1(O\B(ζ)).(4.28)

Denote by qh the function in Eh satisfying the conditions

qh(xi) = 0 if xi ∈ Ah,

qh(xi) = q̃h(xi) if xi ∈ Th \Ah.

Then as in the proof of Lemma 4.1, we can show that

‖q − qh‖L2(O) � C2h
1
2 ‖q‖H1(O\B(ζ)).

We next show that the finite element spaces Kh(ζ), Mh(ζ) and the bilinear form
b satisfy a discrete inf-sup condition. This proves in particular that the approximate
problem (3.5)–(3.6) is well-posed (see [12, Theorem II.1.1., p. 114]). More precisely,
the following result holds.

Lemma 4.3. There exists a constant β∗ > 0 such that for all qh ∈ Mh(ζ) there
exists uh ∈ Kh(ζ) with∫

O
div(uh)qh dx � β∗‖uh‖H1(O)‖qh‖L2(O).(4.29)

Proof. Let qh ∈ Mh(ζ). Since Mh(ζ) ⊂ M(ζ), Lemma 2.6 yields the existence of
u ∈ K(ζ) such that ∫

O
div(u)qh dx � β‖u‖H1(O)‖qh‖L2(O),

with β independent of qh. In order to prove the conclusion of the lemma it suffices to
show the existence of uh ∈ Kh(ζ) such that∫

O
div(uh)qh dx =

∫
O

div(u)qh dx,(4.30)

‖uh‖H1(O) � C‖u‖H1(O),(4.31)

where C is a constant independent of qh.
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1550 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

Note that (4.30) is equivalent to∫
O

uh · ∇qh dx =

∫
O

u · ∇qh dx.

Since ∇qh is constant in each triangle and vanishes in any triangle from F1 ∪ F2, in
order to check (4.30), it suffices to show that∫

T

uh dx =

∫
T

u dx ∀ T ∈ F3 ∪ F4.(4.32)

Note first that if uh ∈ Kh(ζ), then for any triangle T ∈ Th of vertices x1, x2, x3 and
of corresponding barycentric functions ϕ1, ϕ2, ϕ3, we have

uh(x) = uh(x) +
ϕ1(x)ϕ2(x)ϕ3(x)∫

T

ϕ1ϕ2ϕ3 dx

λ ∀ x ∈ T,(4.33)

where uh ∈ C(O) satisfies

uh(x) = ϕ1(x)α1 + ϕ2(x)α2 + ϕ3(x)α3 ∀ x ∈ T,(4.34)

for some constant vectors α1, α2, α3, λ ∈ R
2 (these constants depend on the triangle

T ). Notice that, since the restriction of uh to triangles in F1 ∪ F2 is a rigid velocity
field, the constant λ in (4.33) is equal to zero for all triangles in F1∪F2. If uh satisfies
(4.34) and T ∈ F3 ∪ F4, then condition (4.32) holds provided that

λ =

∫
T

(u − uh) dx ∀ T ∈ F3 ∪ F4.(4.35)

Some simple calculations show that there exists a constant C > 0 (independent of the
triangle) such that ∥∥∥∥∥∥∥∥

ϕ1ϕ2ϕ3∫
T

ϕ1ϕ2ϕ3 dx

∥∥∥∥∥∥∥∥
H1(T )

� C

h2
.(4.36)

Moreover, (4.35) and the Cauchy–Schwarz inequality imply that

|λ| � Ch‖u − uh‖L2(T ) ∀ T ∈ F3 ∪ F4,(4.37)

for some constant C. From (4.33), (4.36), and (4.37) it follows that

‖uh‖H1(T ) � ‖uh‖H1(T ) +
C

h
‖u − uh‖L2(T ) ∀ T ∈ F3 ∪ F4.(4.38)

The remaining part of the proof is devoted to the construction of uh such that uh

satisfies (4.31). According to a classical result (see, for instance, [12, Theorem I.A.2.,
p. 101]), there exists a function uc

h ∈ C(O) which is affine in each triangle T ∈ Th
such that

‖u − uc
h‖L2(T ) ≤ Ch‖u‖H1(T ),(4.39)
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1551

‖uc
h‖H1(T ) ≤ C‖u‖H1(T ),(4.40)

with the constant C independent of h. We are now in a position to define uh. This
function is defined by

uh(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uc
h(x) if x ∈

⋃
T∈F4

T ,

R(x) if x ∈
⋃

T∈F1∪F2

T,
(4.41)

where R is the extension of u|B(ζ) (which is a rigid velocity field) to R
2. We remark

that relation (4.41) also defines the values of uh in the triangles of F3. Indeed, the
vertices of each triangle in F3 are also vertices of a triangle in either F2 or in F4. In
order to prove (4.31) we estimate the terms in the right-hand side of (4.38). We first
consider a triangle T ∈ F4. By using the fact that uh = uc

h in T , (4.39), and (4.40),
we obtain that

‖uh‖H1(T ) +
1

h
‖u − uh‖L2(T ) ≤ C‖u‖H1(T ) ∀ T ∈ F4,(4.42)

with the constant C independent of u. We next consider a triangle T ∈ F3. We first
notice that

(4.43) ‖uh‖H1(T ) +
1

h
‖u − uh‖L2(T ) ≤ ‖uc

h‖H1(T ) +
1

h
‖u − uc

h‖L2(T )

+ ‖uc
h − uh‖H1(T ) +

1

h
‖uh − uc

h‖L2(T ) ∀ T ∈ F3.

The first two terms in the right-hand side of (4.43) can be directly estimated by using
(4.39) and (4.40). Moreover, by using inverse estimates (see, for example, [2, Lemma
4.5.3]), there exists a positive constant C independent of h such that

‖uc
h − uh‖H1(T ) +

1

h
‖uh − uc

h‖L2(T ) � C ‖uc
h − uh‖L∞(T ) ∀ T ∈ F3.

The above relation and the fact that uh is equal either to R or to uc
h in the vertices

of a triangle T ∈ F3 imply that

‖uc
h − uh‖H1(T ) +

1

h
‖uh − uc

h‖L2(T ) ≤ C ‖uc
h − R‖L∞(T ) ∀ T ∈ F3.

The above inequality, combined once again with an inverse inequality, implies that

‖uc
h − uh‖H1(T ) +

1

h
‖uh − uc

h‖L2(T ) ≤
C

h
‖uc

h − R‖L2(T ) ∀ T ∈ F3.(4.44)

On the other hand,

‖uc
h − R‖L2(T ) ≤ ‖uc

h − u‖L2(T ) + ‖u − R‖L2(T ) ∀ T ∈ F3.(4.45)

Combining (4.39), (4.45), (4.44), and (4.43), we obtain

‖uh‖H1(T ) +
1

h
‖u − uh‖L2(T ) ≤ C‖u‖H1(T ) +

C

h
‖u − R‖L2(T ) ∀ T ∈ F3.

(4.46)D
ow

nl
oa

de
d 

03
/1

8/
13

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1552 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

We recall that all triangles of F3 are contained in B2h(ζ)\B(ζ). Therefore, by taking
the sum of the above relations for all T ∈ F3 and by using (4.6), combined with the
fact that u = R on ∂B(ζ), we obtain

‖uh‖
H1

(⋃
T∈F3

T

) +
1

h
‖u − uh‖

L2

(⋃
T∈F3

T

) ≤ C‖u‖H1(B2h(ζ)\B(ζ)).(4.47)

Now by combining (4.42) and (4.47) in (4.38), we obtain

‖uh‖
H1

(⋃
T∈F3∪F4

T

) ≤ C‖u‖H1(O\B(ζ)).(4.48)

We next consider the triangles T ∈ F1 ∪F2. By using the fact that uh = uh = R
in T , we obtain that

‖uh‖
H1

(⋃
T∈F1∪F2

T

) = ‖R‖
H1

(⋃
T∈F1∪F2

T

).
A simple calculation shows that the right-hand side of the above relation is bounded
by C‖u‖H1(B(ζ)), where C is a constant independent of h. We thus obtain

‖uh‖
H1

(⋃
T∈F1∪F2

T

) ≤ C‖u‖H1(B(ζ)).(4.49)

If we join (4.48) and (4.49), we see that the function uh satisfies (4.31). This concludes
the proof of the lemma.

Now, we are in position to introduce a projector in Kh(ζ)×Mh(ζ) that will be a
key ingredient in the proof of the convergence result.

Lemma 4.4. Suppose that V ∈ K(ζ) and that P ∈ M(ζ). Then there exists a
unique couple (Vh, Ph) in Kh(ζ) ×Mh(ζ) such that{

a (V − Vh,ϕ) + b (ϕ, P − Ph) = 0 ∀ ϕ ∈ Kh(ζ),

b (V − Vh, q) = 0 ∀ q ∈ Mh(ζ).
(4.50)

Moreover, if we suppose in addition that V|O\B(ζ) ∈ H2 (O \B(ζ)) and that P|O\B(ζ) ∈
H1 (O \B(ζ)), then there exists a positive constant C such that

‖V − Vh‖L2(O) � Ch.

Proof. The result in Lemma 4.3 combined with Theorem 1.1 in [12, p. 114] implies
the existence and uniqueness of (Vh, Ph) in Kh(ζ)×Mh(ζ), satisfying (4.50) together
with

‖V−Vh‖H1(O)+‖P−Ph‖L2(O) � C

{
inf

v∈Kh(ζ)
‖V − v‖H1(O) + inf

q∈Mh(ζ)
‖P − q‖L2(O)

}
.

Using Lemmas 4.1 and 4.2, we obtain

‖V − Vh‖H1(O) + ‖P − Ph‖L2(O) � Ch1/2
{
‖V‖H2(O\B) + ‖V‖H2(B) + ‖P‖H1(O)

}
.

Moreover, by applying the usual Aubin–Nitsche duality argument (see, for example,
[12, p. 119]), one can easily prove

‖V − Vh‖L2(O) � Ch
{
‖V‖H2(O\B) + ‖V‖H2(B) + ‖P‖H1(O)

}
.
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1553

5. Definition and properties of the change of variables. In order to prove
Theorem 3.2, we should be able to compare the exact solution, which is rigid in the
ball B(ζ(tk)), with the approximate solution, which is rigid in the ball B(ζk

h). This
will be achieved by the use of a change of variables that maps the exact ball onto the
approximate one. This section is devoted to the description and main properties of
this transformation.

5.1. Change of variables. In this section, we suppose that O is convex. In
what follows, we need a change of variables, transforming a function in K̂(ζ1) into a

function in K̂(ζ2), where ζi ∈ O are such that

dist(ζi, ∂O) > 1 + 2η, i ∈ {1, 2}, with η > 0.(5.1)

In this case, B(ζi) is contained in O and the distance between B(ζi) and ∂O is greater
than 2η. Let ξ ∈ C∞(R2,R) be a compactly supported function such that

• ξ = 1 if x ∈ O and dist(x, ∂O) > 2η,
• ξ = 0 if x �∈ O or dist(x, ∂O) � η.

Let Λ be the mapping defined by

Λ(x) =
[
(ζ1 − ζ2) · x⊥] (rot ξ) + ξ(ζ1 − ζ2) ∀x ∈ R

2.(5.2)

We need several properties of the field Λ and of the associated flow. Since these
properties are similar to those proved in [27] we state them here without proof.

Lemma 5.1. Let Λ be the mapping defined by (5.2). Then we have
(i) Λ = 0 outside O,
(ii) divΛ = 0 in R

2,
(iii) Λ(x) = ζ1 − ζ2 if x ∈ O and if dist(x, ∂O) > 2η.
In other words, the restriction of Λ to a neighborhood of ∂O is zero and Λ is a

translation when restricted to points of O at distance to ∂O larger than 2η.
We consider next the initial value problem⎧⎪⎨⎪⎩

d

dλ
ψ(λ) = Λ(ψ(λ)), λ > 0,

ψ(0) = y,

(5.3)

with Λ given by (5.2).
Lemma 5.2. For all y ∈ R

2, the initial value problem (5.3) admits a unique
solution ψ(λ,y) on [0, 1]. Denote

Xζ2,ζ1
(y) = X(y) = ψ(1,y).(5.4)

Then X is a C∞-diffeomorphism from O onto itself, and X(B(ζ2)) = B(ζ1). If we
denote by

JX =

(
∂Xi

∂yj

)
i,j

the jacobian matrix of the transformation y 
→ X(y), then the above change of vari-
ables satisfies

detJX(y) = 1 ∀y ∈ R
2.(5.5)

We denote by

Yζ2,ζ1
= Y = X−1(5.6)

the inverse of X on O.
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1554 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

5.2. Properties of the change of variables. In this subsection, we use the
change of variables defined by the mapping X in Lemma 5.2 to transform functions
in K̂(ζ1) (resp., K(ζ1), M(ζ1)) into functions in K̂(ζ2) (resp., K(ζ2), M(ζ2)). We
also give the expressions of Δu and ∇p after the transformation.

Consider (u, p) ∈ H1(O) × L2(O) and define as in [18] the functions (U, P ) ∈
H1(O) × L2(O) by

U(y) = JY(X(y))u(X(y)) ∀y ∈ O,(5.7)

P (y) = p(X(y)) ∀y ∈ O.(5.8)

We can easily check, by using the definition of Λ, that

X(y) = y + ζ1 − ζ2 ∀y ∈ B(ζ2),(5.9)

Y(x) = x − ζ1 + ζ2 ∀x ∈ B(ζ1),(5.10)

Consequently, if u ∈ K(ζ1), then U ∈ K(ζ2) and if p ∈ M(ζ1), then P ∈ M(ζ2).
By using (5.5), we obtain the following result (see, for instance, [18, Proposition

2.4]).
Lemma 5.3. If X is defined by (5.4), then for all u ∈ H1(O), the function U

defined as above satisfies the relation

div [U(y)] = div [u(X(y))] ∀y ∈ O.

This lemma implies in particular that if u ∈ K̂(ζ1), then U ∈ K̂(ζ2).
In order to write down the expressions of Δu and ∇p after the change of variables,

we define (see [18])

(5.11) [LU]i =
∑
j,k

∂

∂yj

(
gjk

∂Ui

∂yk

)
+ 2
∑
j,k,l

gklΓi
jk

∂Uj

∂yl

+
∑
j,k,l

{
∂

∂yk
(gklΓi

jl) +
∑
m

gklΓm
jlΓ

i
km

}
Uj ,

[GP ]i =

2∑
j=1

gij
∂P

∂yj
,(5.12)

where we denote (see, for instance, [7])

gij =
∑
k

∂Yi

∂xk

∂Yj

∂xk
(metric contravariant tensor),(5.13)

gij =
∑
k

∂Xk

∂yi

∂Xk

∂yj
(metric covariant tensor),(5.14)

and

Γk
ij =

1

2

∑
l

gkl
{
∂gil
∂yj

+
∂gjl
∂yi

− ∂gij
∂yl

}
(Christoffel symbol).(5.15)

We are now in position to write down the expressions of Δu and ∇p after the
change of variables (see again [18] for details).
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1555

Proposition 5.4. Suppose that

(u, p) ∈ H2(O \B(ζ1)) ×H1(O \B(ζ1)).

Then, we have that

(U, P ) ∈ H2(O \B(ζ2)) ×H1(O \B(ζ2)).

Moreover, for all y ∈ O \B(ζ2), we have that

[LU](y) = JY(X(y)) [(Δu) ◦ X] (y), [GP ](y) = JY(X(y)) [(∇p) ◦ X] (y).

In the remaining part of this section, we denote by C a positive constant which
may depend only on ξ and O. We give below (without proofs) several estimates of
the dependence of the change of variables defined in (5.4) on the points ζ1 and ζ2.
For the proofs of these estimates, we refer to [27] and [28].

Lemma 5.5. Let Λ be the function defined by (5.2). Then, for all ζ1, ζ2 ∈ O
satisfying (5.1) we have

‖Λ‖L∞(O) � C |ζ1 − ζ2| , ‖∇Λ‖[L∞(O)]4 � C |ζ1 − ζ2| ,∥∥∥∥ ∂2Λ

∂xi∂xj

∥∥∥∥
L∞(O)

� C |ζ1 − ζ2| ,
∥∥∥∥ ∂3Λ

∂xi∂xj∂xk

∥∥∥∥
L∞(O)

� C |ζ1 − ζ2| .

Lemma 5.6. Let Λ, ζ1, ζ2 be as in Lemma 5.5. Then the functions X and Y
defined by (5.4) and (5.6) satisfy the following inequalities:

‖X‖L∞(O) � C, ‖Y‖L∞(O) � C,

‖JX − Id‖[L∞(O)]4 � C |ζ1 − ζ2| , ‖JY − Id‖[L∞(O)]4 � C |ζ1 − ζ2| ,∥∥∥∥ ∂2Yi

∂xj∂xk

∥∥∥∥
L∞(O)

� C |ζ1 − ζ2| ,
∥∥∥∥ ∂2Xi

∂yj∂yk

∥∥∥∥
L∞(O)

� C |ζ1 − ζ2| ,∥∥∥∥ ∂3Yi

∂xj∂xl∂xk

∥∥∥∥
L∞(O)

� C |ζ1 − ζ2| ,
∥∥∥∥ ∂3Xi

∂yj∂yl∂yk

∥∥∥∥
L∞(O)

� C |ζ1 − ζ2| .

Lemma 5.7. Let Λ, ζ1, ζ2 be as in Lemma 5.5. Moreover, suppose that

(U, P ) ∈ H2(O \B(ζ2)) ×H1(O \B(ζ2))

and that L and G are given by (5.11) and (5.12). Then we have

(i) ‖ν[(L − Δ)U]‖L2(O\B(ζ2))
� C |ζ1 − ζ2| ‖U‖H2(O\B(ζ2))

,
(ii) ‖[(∇− G)P ]‖L2(O\B(ζ2))

� C |ζ1 − ζ2| ‖P‖H1(O\B(ζ2))
.

6. Consistency of the fully discretized scheme. This section is devoted
to the consistency of our fully discretized scheme. The main result in this section
asserts that the solution (u, p, ζ, ω) of (1.1)–(1.8) satisfies the scheme (3.2)–(3.6) with
consistency errors that will be estimated. Since (u(tk), p(tk)) belongs to K(ζ(tk)) ×
M(ζ(tk)) and not to K(ζk

h) ×M(ζk
h), we need the change of variables introduced in

the previous section.
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1556 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

6.1. Consistency in time. In this subsection we show that the exact values
at instants t = tk of a strong solution of (1.1)–(1.8) satisfy a perturbed version
of the semidiscretized problem introduced in subsection 2.2 and we estimate these
perturbations with respect to the time step. The precise statement is given in Lemma
6.1 below.

Consider the solution (u, p, ζ, ω) of (1.1)–(1.8) and assume that (3.8) and (3.10)
hold. In what follows, we will use the notation

X̃(x) = ψ̃(tk; tk+1,x) ∀x ∈ O,(6.1)

where ψ̃ is defined by relation (2.6). Note that X̃(O) = O.
Let εk, δk, αk, βk, γk be quantities defined by

εk = ζ(tk+1) − ζ(tk) − ζ′(tk)Δt,(6.2)

δk(t,x) = u(ψ̃(t; tk+1,x), t) − u(ψ̃(t; tk+1,x), tk),(6.3)

αk =
u(tk+1) − u(tk) ◦ X̃

Δt
− d

dt

[
u ◦ ψ̃

]
(tk+1),(6.4)

βk =
ζ′(tk+1) − ζ′(tk)

Δt
− ζ′′(tk+1),(6.5)

γk =
ω′(tk+1) − ω′(tk)

Δt
− ω′′(tk+1).(6.6)

By using the fact that u (ζ(tk), tk) = ζ′(tk) and relations (2.6), (1.1), (1.5), and
(1.6) together with the above definitions, we infer that the exact solution (u, p, ζ, ω)
satisfies

ζ(tk+1) = ζ(tk) + u (ζ(tk), tk)Δt + εk,(6.7)

⎧⎪⎨⎪⎩
d

dt
ψ̃(t; tk+1,x) = u

(
ψ̃(t; tk+1,x), tk

)
+ δk(t,x),

ψ̃(tk+1; tk+1,x) = x

(6.8)

for all x ∈ O and for all t ∈ [tk, tk+1], together with

u(tk+1) − u(tk) ◦ X̃

Δt
− νΔu(tk+1) + ∇p(tk+1) = fk+1 + αk in O \B(ζ(tk+1)),

(6.9)

M
ζ′(tk+1) − ζ′(tk)

Δt
= −

∫
∂B(ζ(tk+1))

σ(tk+1)n dΓ +

∫
B(ζ(tk+1))

fk+1 dx + βk,

(6.10)

(6.11) J
ω(tk+1) − ω(tk)

Δt
= −

∫
∂B(ζ(tk+1))

(y − ζ(tk+1))
⊥ · σ(tk+1)n dΓ

+

∫
B(ζ(tk+1))

(y − ζ(tk+1))
⊥ · fk+1 dx + γk.
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1557

Moreover, if we denote

θ(t) =

∫ t

0

ω(s) ds

and by Rθ the rotation matrix of angle θ, then we also define the matrix Ek by

Rθ(tk+1)−θ(tk) = Id − Δt ω(tk+1)R−π/2 + Ek.(6.12)

By using the Taylor–Lagrange inequality, we easily obtain the following consis-
tency error estimates.

Lemma 6.1. The elements αk, βk, γk, δk, εk, and Ek defined by (6.2)–(6.6)
satisfy the following inequalities:

|εk| � C (Δt)
2
, ‖δk‖L2(O×(tk,tk+1)) � CΔt

∥∥∥∥∂u∂t
∥∥∥∥
L2(O×(tk,tk+1))

,

‖αk‖L2(O) � C
√

Δt

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

,

|βk| � CΔt, |γk| � CΔt, |Ek| � C (Δt)
2
.

(6.13)

6.2. Transformed system. We need to compare u(tk) ∈ K(ζ(tk)), which is a
rigid velocity field in B(ζ(tk)), with uk

h ∈ K(ζk
h), which is a rigid velocity field in

B(ζk
h). This will be done by using the change of variables introduced in section 5.1.

To this end, we suppose that |ζk
h − ζ(tk)| < η. This hypothesis and (3.10) imply that

dist(B(ζ(tk)), ∂O) > 2η.(6.14)

With this assumption, we can transform u(tk) by using the change of variables intro-
duced in section 5.1: we denote (see (5.4), (5.6))

Xk = Xζk
h
,ζ(tk), Yk = Yζk

h
,ζ(tk).(6.15)

We also define (see (5.7) and (5.8))

Uk(y) = JYk(Xk(y))u
(
Xk(y), tk

)
, P k(y) = pk(Xk(y)),

Sk = −P k Id + 2νD(Uk), Fk(y) = JYk(Xk(y))f(Xk(y), tk).
(6.16)

We recall that, according to Lemma 5.3, Uk ∈ K̂(ζk
h) and P k ∈ M(ζk

h). We introduce
the following notation that will be useful in what follows:

X̂ = Yk ◦ X̃ ◦ Xk+1(6.17)

and

Ĵ =
(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
.(6.18)

Before stating the main result of this section, we give some properties on the
characteristics. First note that, according to Lemma 5.2, we have

Xk+1(B(ζk+1
h )) = B(ζ(tk+1)),(6.19)
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1558 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

Yk(B(ζ(tk))) = B(ζk
h).

Moreover, we can easily check that the function X̃ defined by (6.1) satisfies

X̃(x) = ζ(tk) + Rθ(tk+1)−θ(tk)(x − ζ(tk+1)) ∀x ∈ B(ζ(tk+1)).(6.20)

Consequently, we have

X̃(B(ζ(tk+1))) = B(ζ(tk)),

and therefore, we obtain

X̂(B(ζk+1
h )) = B(ζk

h).(6.21)

We summarize some of the above properties in the following diagram:

B(ζk+1
h )

Xk+1

−−−−→ B(ζ(tk+1))

X̂

⏐⏐' ⏐⏐'X̃

B(ζk
h) ←−−−−

Yk
B(ζ(tk))

Next, we turn to the main result of this subsection: we show that Uk+1 and P k+1

satisfy a mixed weak formulation with test functions in K(ζk+1
h ) and M(ζk+1

h ).
Proposition 6.2. The functions (Uk+1, P k+1) defined by (6.16) satisfy

(6.22)

(
1

Δt

[
Uk+1 − Ĵ

(
Uk ◦ X̂

)]
,ϕ

)
+ a(Uk+1,ϕ) + b(ϕ, P k+1)

= (fk+1
h ,ϕ) + (Ak,ϕ) ∀ϕ ∈ K(ζk+1

h ),

b(Uk+1, q) = 0 ∀q ∈ M(ζk+1
h ),(6.23)

with

‖Ak‖L2(O) � C

(
|ζ(tk+1) − ζk+1

h | + h + Δt + C
√

Δt

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

)
.

(6.24)

Proof.
First step. We transform (6.9).
By using Proposition 5.4, we have that Uk+1 and P k+1 satisfy

(
JYk+1 ◦ Xk+1

) u(tk+1) − u(tk) ◦ X̃

Δt
◦ Xk+1 − ν[Lk+1Uk+1] + [Gk+1P k+1]

=
(
JYk+1 ◦ Xk+1

)
(f(Xk+1, tk+1)) +

(
JYk+1 ◦ Xk+1

)
(αk+1 ◦ Xk+1),

in O \B(ζk+1
h ).

The above relation and (6.16) imply

(6.25)
1

Δt

[
Uk+1 −

(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)(
Uk ◦ X̂

)]
− νΔUk+1 + ∇P k+1

= ν[(Lk+1 −Δ)Uk+1] + [(∇−Gk+1)P k+1] +Fk+1 +
(
JYk+1 ◦ Xk+1

)
(αk+1 ◦Xk+1),

in O \B(ζk+1
h ),
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1559

where X̂ is defined by (6.17).
By taking the inner product of the previous equation with ϕ ∈ K(ζk+1

h ) and by
using (6.18), we obtain

(6.26)

∫
O\B(ζk+1

h
)

(
1

Δt

[
Uk+1 − Ĵ

(
Uk ◦ X̂

)]
· ϕ
)

dy

−
∫
O\B(ζk+1

h
)

(
divSk+1 · ϕ

)
dy =

∫
O\B(ζk+1

h
)

Fk+1 · ϕ dy + A1

with

(6.27) A1 =

∫
O\B(ζk+1

h
)

(
ν[(Lk+1 − Δ)Uk+1] + [(∇− Gk+1)P k+1]

)
· ϕ dy

+

∫
O\B(ζk+1

h
)

(
JYk+1 ◦ Xk+1

) (
αk+1 ◦ Xk+1

)
· ϕ dy.

Second step. We transform the integral

∫
B(ζk+1

h
)

Uk+1 − Ĵ
(
Uk ◦ X̂

)
Δt

· ϕ dy

by using (6.10)–(6.11). From (5.3) (with Yk+1 as in (6.15)), combined with (5.9) and
with (5.10), we obtain that

JYk+1(x) = Id ∀x ∈ B(ζ(tk+1)).(6.28)

The above relation, (6.16), and (5.9) imply that for all y ∈ B(ζk+1
h ),

Uk+1(y) = u
(
y + ζ(tk+1) − ζk+1

h , tk+1

)
.(6.29)

In particular, we have that

Uk+1(y) = ζ′(tk+1) + ω(tk+1)(y − ζk+1
h )⊥ ∀y ∈ B(ζk+1

h ).(6.30)

Similarly, we have

Uk(y) = ζ′(tk) + ω(tk)(y − ζk
h)⊥ ∀y ∈ B(ζk

h).(6.31)

Relations (6.19) and (6.21) yield(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
= Id in B(ζk+1

h ).(6.32)

Simple calculations combined with relations (5.9) and (6.20) yield

X̂(y) = Rθ(tk+1)−θ(tk)(y − ζk+1
h ) + ζk

h ∀y ∈ B(ζk+1
h ).

The above relation, (6.32), and (6.31) imply that for all y ∈ B(ζk+1
h ), we have that

Ĵ(Uk ◦ X̂)(y) = ζ′(tk) + ω(tk)Rθ(tk+1)−θ(tk)(y − ζk+1
h )⊥.
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1560 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

By using (6.12), the previous equality can be written as

Ĵ(Uk ◦ X̂)(y) = ζ′(tk) + ω(tk)(y − ζk+1
h )⊥

+ Δt ω(tk)ω(tk+1)(y − ζk+1
h ) + ω(tk)Ek(y − ζk+1

h )⊥ ∀y ∈ B(ζk+1
h ).

By taking the inner product of the above relation with ϕ ∈ K(ζk+1
h ) and by integrating

on B(ζk+1
h ), we obtain that

(6.33)

∫
B(ζk+1

h
)

Ĵ(Uk ◦ X̂)(y) · ϕ dy = M lϕ · ζ′(tk) + Jω(tk)ωϕ

+ ω(tk)

∫
B(ζk+1

h
)

Ek(y − ζk+1
h )⊥ · ϕ dy.

Relation (6.30) implies that, for all ϕ ∈ K(ζk+1
h ), we have∫

B(ζk+1
h

)

Uk+1 · ϕ dy = M lϕ · ζ′(tk+1) + Jω(tk+1)ωϕ.

The above equality and (6.33) yield that, for all ϕ ∈ K(ζk+1
h ), we have

∫
B(ζk+1

h
)

Uk+1 − Ĵ(Uk ◦ X̂)

Δt
· ϕ dy = M lϕ · ζ′(tk+1) − ζ′(tk)

Δt

+ J
ω(tk+1) − ω(tk)

Δt
ωϕ − ω(tk)

Δt

∫
B(ζk+1

h
)

Ek(y − ζk+1
h )⊥ · ϕ dy.

The above relation and (6.10)–(6.11) imply that

(6.34)

∫
B(ζk+1

h
)

Uk+1 − Ĵ(Uk ◦ X̂)

Δt
· ϕ dy = −lϕ ·

∫
∂B(ζ(tk+1))

σk+1n dΓ

− ωϕ

∫
∂B(ζ(tk+1))

(y − ζ(tk+1))
⊥ · σk+1n dΓ + lϕ ·

∫
B(ζ(tk+1))

fk+1 dx

+ ωϕ

∫
B(ζ(tk+1))

(x − ζ(tk+1))
⊥ · fk+1(x) dx

+ lϕ · βk + ωϕγk − ω(tk)

Δt

∫
B(ζk+1

h
)

Ek(y − ζk+1
h )⊥ · ϕ dy.

On the other hand, by using relations (5.9), (5.10), and (6.28), we easily obtain that∫
∂B(ζk+1

h
)

Sk+1n dΓ =

∫
∂B(ζ(tk+1))

σk+1n dΓ

and that∫
∂B(ζk+1

h
)

(y − ζk+1
h )⊥ · Sk+1n dΓ =

∫
∂B(ζ(tk+1))

(y − ζ(tk+1))
⊥ · σk+1n dΓ.
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1561

The above relations and (6.34) yield that

(6.35)

∫
B(ζk+1

h
)

Uk+1 − Ĵ(Uk ◦ X̂)

Δt
· ϕ dy = −

∫
∂B(ζk+1

h
)

(
Sk+1n

)
· ϕ dΓ

+

∫
B(ζk+1

h
)

Fk+1 · ϕ dy + lϕ · βk + ωϕγk − ω(tk)

Δt

∫
B(ζk+1

h
)

Ek(y − ζk+1
h )⊥ · ϕ dy.

Third step. By integrating by parts, we have that

(6.36) 2ν

∫
O\B(ζk+1

h
)

D(Uk+1) : D(ϕ) dy −
∫
O\B(ζk+1

h
)

P k+1 div(ϕ) dy

=

∫
∂B(ζk+1

h
)

(
Sk+1n

)
· ϕ dΓ −

∫
O\B(ζk+1

h
)

div(Sk+1) · ϕ dy.

Summing (6.36), (6.35), and (6.26) yields (6.22) with

(Ak,ϕ) = (Fk+1 − fk+1
h ,ϕ)+ lϕ ·βk +ωϕγk −

ω(tk)

Δt

∫
B(ζk+1

h
)

Ek(y− ζk+1
h )⊥ ·ϕ dy

+

∫
O\B(ζk+1

h
)

(
ν[(Lk+1 − Δ)Uk+1] + [(∇− Gk+1)P k+1]

)
· ϕ dy

+

∫
O\B(ζk+1

h
)

(
JYk+1 ◦ Xk+1

)
(αk+1 ◦ Xk+1) · ϕ dy.

The above relation, combined with relation (3.7) and Lemmas 5.6, 5.7, and 6.1, implies
the proposition.

6.3. Some results on characteristics. In this subsection, we give some results

on the functions Xk, X̂, and X
k

h that will be used in the proof of the main result.
Lemma 6.3. There exists a positive constant C independent of h and k such that

‖Xk+1 − Xk‖L∞(O) � C
(
‖uk

h − Uk‖L2(O)Δt + |εk|
)
.

Proof. We denote by Λk (resp., Λk+1) the mapping defined by (5.2) with ζ1 =
ζ(tk) and ζ2 = ζk

h (resp., ζ1 = ζ(tk+1) and ζ2 = ζk+1
h ). Let ψk and ψk+1 be the

solution of (5.3) corresponding to the velocity fields Λk and Λk+1, respectively.
By using (5.3), we have that

(ψk+1 − ψk)(λ) =

∫ λ

0

Λk+1(ψk+1(μ)) − Λk(ψk(μ)) dμ.

Therefore, by Lemma 5.5, there exists a positive constant C such that for all λ ∈ [0, 1],
we have that∣∣∣(ψk+1 − ψk)(λ)

∣∣∣ � ‖Λk+1 − Λk‖L∞(O) + C

∫ λ

0

∣∣∣(ψk+1(μ) − ψk(μ))
∣∣∣ dμ.

The above inequality and Gronwall’s lemma yield∣∣∣(ψk+1 − ψk)(λ)
∣∣∣ � C‖Λk+1 − Λk‖L∞(O)
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1562 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

for all λ ∈ [0, 1]. In particular, for λ = 1, we have that

‖Xk+1 − Xk‖L∞(O) � C‖Λk+1 − Λk‖L∞(O).(6.37)

By using relation (5.2), there exists a positive constant C such that

‖Λk+1 − Λk‖L∞(O) � C|ζ(tk+1) − ζk+1
h − ζ(tk) + ζk

h|.

The above relation, combined with (3.2) and (6.7), yields

‖Λk+1 − Λk‖L∞(O) � C|uk
h(ζk

h) − u (ζ(tk), tk)|Δt + C|εk|.(6.38)

On the other hand, by (6.29), we have u (ζ(tk), tk) = Uk(ζk
h) and, moreover, uk

h −
Uk ∈ K(ζk

h). Then, owing to (2.5), we readily check that

|uk
h(ζk

h) − Uk(ζk
h)| � 1√

M
‖uk

h − Uk‖L2(O).(6.39)

Therefore, the above relation and (6.38) imply that

‖Λk+1 − Λk‖L∞(O) � C‖uk
h − Uk‖L2(O)Δt + C|εk|.(6.40)

Relations (6.37) and (6.40) yield the conclusion of the lemma.
A similar estimate holds for the jacobian matrices JXk+1 and JXk . Since the

proof of this estimate is completely similar to the proof of Lemma 6.3, we give below
only its statement and skip the proof.

Lemma 6.4. There exists a positive constant C independent of k and h such that

‖JXk+1 − JXk‖L∞(O) � C
(
‖uk

h − Uk‖L2(O)Δt + |εk|
)
.

The functions X̂ and X
k

h are close to the identity in the sense made precise below.

Lemma 6.5. The functions X̂ and X
k

h defined by (6.17) and (3.4) satisfy the
following estimates:

‖X̂ − Id‖L2(O) � C
(
|εk| + Δt‖Uk − uk

h‖L2(O) +
√

Δt‖δk‖L2(O×(tk,tk+1)) + Δt
)
,

(6.41)

‖X̂ − X
k

h‖L2(O) � C
(
|εk| + Δt‖Uk − uk

h‖L2(O) +
√

Δt‖δk‖L2(O×(tk,tk+1)) + hΔt
)
.

(6.42)

Proof. Let us define

ψ̂(t; tk+1,y) = Yk(ψ̃(t; tk+1,X
k+1(y))),(6.43)

where ψ̃ is defined by (2.6). Note that ψ̂(tk; tk+1,y) = X̂(y) for all y ∈ O.
We have that

d

dt
ψ̂(t; tk+1,y) = JYk(ψ̃(t; tk+1,X

k+1(y)))
d

dt
ψ̃(t; tk+1,X

k+1(y)).

By using (6.8) we obtain that

d

dt
ψ̂(t; tk+1,y) =

[
JYk ◦ Xk

]
(ψ̂(t; tk+1,y))

[
u
(
Xk
(
ψ̂(t; tk+1,y)

)
, tk

)]
+
[
JYk ◦ Xk

]
(ψ̂(t; tk+1,y))

[
δk

(
t,Xk

(
ψ̂(t; tk+1,y)

))]
.
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1563

The above relation and (6.16) yield

(6.44)
d

dt
ψ̂(t; tk+1,y) = Uk(ψ̂(t; tk+1,y))

+
[
JYk ◦ Xk

]
(ψ̂(t; tk+1,y))

[
δk

(
t,Xk

(
ψ̂(t; tk+1,y)

))]
.

On the other hand, we have that

ψ̂(tk+1; tk+1,y) = Yk ◦ Xk+1(y).(6.45)

Therefore, by using (6.44) and (6.45), we get

X̂(y) − y = Yk ◦ Xk+1(y) − y −
∫ tk+1

tk

Uk(ψ̂(t; tk+1,y)) dt

−
∫ tk+1

tk

[
JYk ◦ Xk

]
(ψ̂(t; tk+1,y))

[
δk

(
t,Xk

(
ψ̂(t; tk+1,y)

))]
dt,

which yields

(6.46) ‖X̂ − Id‖L2(O) � ‖Yk ◦ Xk+1 − Id‖L2(O)

+

∫ tk+1

tk

∥∥∥Uk(ψ̂(s))
∥∥∥
L2(O)

ds + C
√

Δt‖δk‖L2(O×(tk,tk+1)).

By Lemma 5.6, there exists a positive constant C such that

‖Yk ◦ Xk+1 − Id‖L2(O) � C‖Xk+1 − Xk‖L∞(O).

The above relation and Lemma 6.3 yield

‖Yk ◦ Xk+1 − Id‖L2(O) � C
(
Δt‖uk

h − Uk‖L2(O) + |εk|
)
.(6.47)

Relations (6.46) and (6.47), together with (3.8) and (6.16), imply

‖X̂ − Id‖L2(O) � C
(
Δt‖uk

h − Uk‖L2(O) + |εk|
)

+ CΔt +
√

Δt‖δk‖L2(O×(tk,tk+1)).

Therefore, we deduce (6.41).
Now we turn to the proof of (6.42): by using (3.3), (6.44), and (6.45), we obtain

ψ̂(t; tk+1,y) − ψ
k

h(t; tk+1,y) = Yk ◦ Xk+1(y) − y

−
∫ tk+1

t

(
Uk(ψ̂(s; tk+1,y)) − Puk

h(ψ
k

h(s; tk+1,y))
)

ds

−
∫ tk+1

t

(JYk ◦ Xk)(ψ̂(s; tk+1,y))
[
δk

(
s,Xk

(
ψ̂(s; tk+1,y)

))]
ds,

which yields

(6.48) ‖ψ̂(t) − ψ
k

h(t)‖L2(O) � ‖Yk ◦ Xk+1 − Id‖L2(O)

+

∫ tk+1

t

∥∥∥Uk(ψ̂(s)) − Puk
h(ψ

k

h(s))
∥∥∥
L2(O)

ds + C
√

Δt‖δk‖L2(O×(tk,tk+1)).
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1564 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

Relations (6.48) and (6.47) imply

‖ψ̂(t) − ψ
k

h(t)‖L2(O) � C
(
Δt‖uk

h − Uk‖L2(O) + |εk|
)

+

∫ tk+1

t

∥∥∥Uk(ψ̂(s)) − Puk
h(ψ

k

h(s))
∥∥∥
L2(O)

ds + C
√

Δt‖δk‖L2(O×(tk,tk+1)).

By using (3.8) and Remark 3.1, we have that

‖ψ̂(t) − ψ
k

h(t)‖L2(O) � C
(
Δt‖uk

h − Uk‖L2(O) + |εk| + Δt‖Uk − Puk
h‖L2(O)

)
+ C

∫ tk+1

t

∥∥∥ψ̂(s) − ψ
k

h(s)
∥∥∥
L2(O)

ds + C
√

Δt‖δk‖L2(O×(tk,tk+1)).

Therefore, by Gronwall’s lemma, we get that

‖ψ̂(t) − ψ
k

h(t)‖L2(O) � C
(
Δt‖uk

h − Uk‖L2(O) + |εk| + Δt‖Uk − Puk
h‖L2(O)

+
√

Δt‖δk‖L2(O×(tk,tk+1))

)
.

In particular for t = tk, we obtain that

(6.49) ‖X̂ − X
k

h‖L2(O) � C
(
Δt‖uk

h − Uk‖L2(O) + |εk| + Δt‖Uk − Puk
h‖L2(O)

+
√

Δt‖δk‖L2(O×(tk,tk+1))

)
.

Since P is an orthogonal projection in L2(O), we have that

‖Uk − Puk
h‖L2(O) � ‖Uk − uk

h‖L2(O) + ‖PUk − Uk‖L2(O).(6.50)

Now, since Uk ∈ H1
0(O) and div(Uk) = 0, there exists a stream function ψ ∈

H2(O)∩H1
0 (O) of Uk, i.e., Uk = rot ψ. Let ψh be the Lagrange interpolated function

of ψ on the triangulation Th. We denote Ũk
h = rot ψh. Since Ũk

h ∈ Rh, we have that

‖PUk − Uk‖L2(O) � ‖Ũk
h − Uk‖L2(O) = ‖rot (ψ − ψh)‖L2(O)

� Ch‖ψ‖H2(O) � Ch‖Uk‖H1(O).

The above equation, (6.49), and (6.50) imply the result.

7. Proof of the main result. We can now prove Theorem 3.2.
First step. Assume that h ≤ C(Δt)2. We first show that if (3.10) holds and if

dist(B(ζk
h), ∂O) > 2η, dist(B(ζk+1

h ), ∂O) > 2η,(7.1)

then there exist two positive constants C0 and C1 independent of Δt and h such that
the error ekh = ‖Uk − uk

h‖L2(O) + |ζ(tk) − ζk
h| satisfies the following inequality:

ek+1
h � ekh(1 + C0Δt) + C0Δtβk

h,(7.2)

where

N∑
k=0

βk
h � C1.
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1565

Let us remark that assumption (7.1) together with (3.10) allows us to perform
the change of variables defined in section 5 and to define Uk, Uk+1, and P k+1 (see
(6.16)).

By using (4.50), there exists (Uk+1
h , P k+1

h ) ∈ Kh(ζk+1
h ) ×Mh(ζk+1

h ) such that{
a
(
Uk+1 − Uk+1

h ,ϕ
)

+ b
(
ϕ, P k+1 − P k+1

h

)
= 0 ∀ϕ ∈ Kh(ζk+1

h )

b
(
Uk+1 − Uk+1

h , q
)

= 0 ∀q ∈ Mh(ζk+1
h ).

(7.3)

Subtracting (7.3) and (3.5) from (6.22) yields

1

Δt

(
Uk+1 − uk+1

h ,ϕ
)

+ a(Uk+1
h − uk+1

h ,ϕ) + b(ϕ, P k+1
h − pk+1

h )

=
1

Δt

(
Ĵ
(
Uk ◦ X̂

)
− uk

h ◦ X
k

h,ϕ
)

+ (Ak,ϕ) ∀ϕ ∈ K(ζk+1
h ),

b(Uk+1
h − uk+1

h , q) = 0 ∀q ∈ Mh(ζk+1
h ).

In particular, for ϕ = Uk+1
h − uk+1

h and q = P k+1
h − pk+1

h , we easily obtain that∥∥Uk+1
h − uk+1

h

∥∥
L2(O)

�
∥∥∥Ĵ(Uk ◦ X̂

)
− uk

h ◦ X
k

h

∥∥∥
L2(O)

+ Δt‖Ak‖L2(O) +
∥∥Uk+1 − Uk+1

h

∥∥
L2(O)

.(7.4)

On the other hand, since

Ĵ =
(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
,

we have that∥∥∥Ĵ(Uk ◦ X̂
)
− uk

h ◦ X
k

h

∥∥∥
L2(O)

� C
∥∥∥(JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
− Id

∥∥∥
L2(O)

+
∥∥∥Uk ◦ X̂ − Uk ◦ X

k

h

∥∥∥
L2(O)

+
∥∥∥Uk ◦ X

k

h − uk
h ◦ X

k

h

∥∥∥
L2(O)

.(7.5)

Since
(
JYk+1 ◦ Xk+1

)
JXk+1 = Id , we infer from Lemma 5.6 that∥∥∥(JYk+1 ◦ Xk+1
) (

JXk ◦ X̂
)
− Id

∥∥∥
L2(O)

� C‖X̂ − Id‖L2(O) |ζ(tk) − ζk
h|

+C‖JXk − JXk+1‖L2(O).

By using Lemmas 6.4 and 6.5 and the above inequality, we obtain that

(7.6)
∥∥∥(JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
− Id

∥∥∥
L2(O)

� C
(
Δt|ζ(tk) − ζk

h|

+ Δt‖uk
h − Uk‖L2(O) +

√
Δt‖δk‖L2(O×(tk,tk+1)) + |εk|

)
.

By using (3.8) and Lemma 5.6, we easily check that

‖Uk ◦ X̂ − Uk ◦ X
k

h‖L2(O) � C‖X̂ − X
k

h‖L2(O).
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1566 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

The above inequality, relations (7.4), (7.5), and (7.6), Lemma 6.5, and the fact that
detJ

X
k

h

= 1 imply that

(7.7) ‖Uk+1
h − uk+1

h ‖L2(O) � C
(
Δt|ζ(tk) − ζk

h| + Δt‖uk
h − Uk‖L2(O)

+
√

Δt‖δk‖L2(O×(tk,tk+1)) + |εk| + hΔt
)

+ ‖Uk − uk
h‖L2(O) + Δt‖Ak‖L2(O) + ‖Uk+1 − Uk+1

h ‖L2(O).

By using Lemma 4.4, Proposition 6.2, and Lemma 6.1, we have the following inequal-
ities:

‖Uk+1 − Uk+1
h ‖L2(O) � Ch,

‖Ak‖L2(O) � C

(
|ζ(tk+1) − ζk+1

h | + h + Δt + C
√

Δt

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

)
,

‖δk‖L2(O×(tk,tk+1)) � CΔt

∥∥∥∥∂u∂t
∥∥∥∥
L2(O×(tk,tk+1))

,

|εk| � C (Δt)
2
.

The above inequalities and (7.7) yield that

(7.8) ‖Uk+1 − uk+1
h ‖L2(O) � ‖Uk − uk

h‖L2(O) + C

(
(Δt)

2
+ hΔt + h

+ Δt|ζ(tk+1) − ζk+1
h | + Δt‖Uk − uk

h‖L2(O)

+ (Δt)3/2
∥∥∥∥∂u∂t

∥∥∥∥
L2(O×(tk,tk+1))

+ (Δt)3/2
∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

)
.

On the other hand, (3.2), (6.7), (6.31), and (6.39) imply that

|ζ(tk+1) − ζk+1
h | � |ζ(tk) − ζk

h| + Δt|uk
h(ζk

h) − u (ζ(tk), tk)| + |εk|
� |ζ(tk) − ζk

h| + CΔt‖uk
h − Uk‖L2(O) + |εk|.(7.9)

Combining (7.8) and (7.9), we obtain that

‖Uk+1 − uk+1
h ‖L2(O) + |ζ(tk+1) − ζk+1

h |

� (1 + CΔt)
(
|ζ(tk) − ζk

h| + ‖uk
h − Uk‖L2(O)

)
+ C

(
h + (Δt)

2
+ hΔt + (Δt)3/2

∥∥∥∥∂u∂t
∥∥∥∥
L2(O×(tk,tk+1))

+ (Δt)3/2
∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

)
.

The above inequality and the hypothesis h � C (Δt)
2

imply the existence of a positive
constant C0 such that

‖Uk+1 − uk+1
h ‖L2(O) + |ζ(tk+1) − ζk+1

h |

� (1 + C0Δt)
(
|ζ(tk) − ζk

h| + ‖uk
h − Uk‖L2(O)

)
+ C0Δt

(
Δt +

∥∥∥∥∂u∂t
∥∥∥∥2

L2(O×(tk,tk+1))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥2

L2(O×(tk,tk+1))

)
,
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1567

which is exactly (7.2).
Second step. We show that if Δt is small enough, then the error ekh = ‖Uk −

uk
h‖L2(O) + |ζ(tk)− ζk

h| satisfies ekh � C1Δt with a constant C1 independent of k, Δt,
and h. This fact implies, in particular, that (7.1) holds.

Define

C1 = C0 exp (C0T )

(∥∥∥∥∂u∂t
∥∥∥∥2

L2(O×(0,T ))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥2

L2(O×(0,T ))

)
+ exp (C0T ).

It can be easily checked that

(1 + C0Δt)
n
C0

(∥∥∥∥∂u∂t
∥∥∥∥2

L2(O×(0,T ))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥2

L2(O×(0,T ))

)
+ (1 + C0Δt)

n − 1 � C1 ∀n ∈ {0, . . . , N}.

Moreover, there exists a positive constant C2 such that

‖Uk‖L2(O) � C2.

Let N0 ∈ N be such that (2C1 + C2)Δt < η for all N � N0. Next we prove by
induction over k that for N � N0 and for k ∈ {0, . . . , N} we have

(7.10) |ζ(tk) − ζk
h| + ‖uk

h − Uk‖L2(O) �
[
(1 + C0Δt)k − 1

+ C0 (1 + C0Δt)
k

(∥∥∥∥∂u∂t
∥∥∥∥2

L2(O×(0,tk))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥2

L2(O×(0,tk))

)]
Δt.

The relation (7.10) is true for k = 0. Suppose that we have shown (7.10) for a given
k � 0. Then, we deduce that

|ζ(tk) − ζk
h| � C1Δt < η(7.11)

and therefore, by using (3.10), we have that dist(B(ζk
h), ∂O) > 2η.

By using (3.2) and (3.10), we also have that

|ζk+1
h − ζk

h| � 1√
π

(
‖Uk − uk

h‖L2(O) + ‖Uk‖L2(O)

)
Δt

� C1 + C2√
π

Δt.

The above relation, the fact that (2C1 + C2)Δt < η, and (7.11) imply that

dist(B(ζk+1
h ), ∂O) > 2η.

Thus, we can apply the first step of the proof to obtain that

|ζ(tk+1) − ζk+1
h | + ‖uk+1

h − Uk+1‖L2(O)

� (1 + C0Δt)
(
|ζ(tk) − ζk

h| + ‖uk
h − Uk‖L2(O)

)
+ C0Δt

(
Δt +

∥∥∥∥∂u∂t
∥∥∥∥2

L2(O×(tk,tk+1))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥2

L2(O×(tk,tk+1))

)
.
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1568 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

Fig. 2. Initial position and mesh.

The above relation and (7.10) imply that

|ζ(tk+1) − ζk+1
h | + ‖uk+1

h − Uk+1‖L2(O) � (1 + C0Δt)[(1 + C0Δt)k − 1]Δt

+ C0(1 + C0Δt)k+1

(∥∥∥∥∂u∂t
∥∥∥∥2

L2(O×(0,tk))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥2

L2(O×(0,tk))

)
Δt

+ C0Δt

(
Δt +

∥∥∥∥∂u∂t
∥∥∥∥2

L2(O×(tk,tk+1))

+

∥∥∥∥ d2

dt2
[u ◦ ψ̃]

∥∥∥∥2

L2(O×(tk,tk+1))

)
,

which implies (7.10) for k + 1.
Third step. From the previous steps we conclude that if Δt is small enough and

if h � C(Δt)2, then

|ζ(tk) − ζk
h| + ‖uk

h − Uk‖L2(O) � C1Δt ∀ k ∈ {0, . . . , N}.

The above relation, Lemma 5.6, (3.8), and Lemma 4.4 imply that if Δt is small enough
and if h � C(Δt)2, then

|ζ(tk) − ζk
h| + ‖uk

h − u(tk)‖L2(O) � CΔt ∀ k ∈ {0, . . . , N},

which is the conclusion of the theorem. �
8. Concluding remarks. We implemented the numerical method we proposed,

and several numerical tests have been performed. Let us briefly describe the results
obtained in the case of a rigid ball falling vertically under the action of a vertical force
oriented downward. At instant t = 0 the velocity field in the fluids and in the solid is
supposed to vanish.

We use a mesh with 1432 triangles and 752 vertices (see Figure 2).
Far from the ball the space discretization parameter is h1 ≈ 0.57, whereas in the

neighborhood of the ball it is given by h2 ≈ 0.12. For the time discretization, we
choose the time step Δt = 0.1. Moreover, we choose the radius of the ball equal
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LAGRANGE–GALERKIN METHOD FOR A FLUID-RIGID SYSTEM 1569

k=460,   t=46.0,   Vmax=0.021087

Fig. 3. Position and velocity field at time t = 46.0.
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t
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Fig. 4. Position of the ball.

to 0.3, the viscosity μ = 1, and the downward force of intensity equal to one (all
quantities are given in International System (IS) units). In Figure 3 we represent the
configuration of the system for k = 460 (corresponding to t = 46.0).

We repeated the calculation twice by dividing each mesh size by two (this means
that each triangle was each time divided into four smaller triangles). More precisely,
we used the meshes described in the table below.

D
ow

nl
oa

de
d 

03
/1

8/
13

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1570 SAN MARTÍN, SCHEID, TAKAHASHI, AND TUCSNAK

h Triangles Vertices CPU time

Mesh 1 0.12 1432 752 3 hours
Mesh 2 0.06 5728 2935 11 hours
Mesh 3 0.03 22912 11597 8 days

The last column represents the time used by a Pentium IV computer with a 2.4
GHz CPU clock to achieve the calculation.

In Figure 4 we represented the height of the center of the ball versus the time t
for the different meshes.
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