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Abstract

Transaction management is a known crosscutting concern. Previous research has been conducted to express this concern as
an aspect. However, such work has used general-purpose aspect languages which lack a formal foundation, and most importantly
are unable to express advanced models of transaction management. In this paper, we propose a domain-specific aspect language
for advanced transaction management, called KALA, that overcomes these limitations. First, KALA is based on a recognized
formalism for the domain of advanced transaction management, called ACTA. Second, as a consequence of being based on the
ACTA formalism, KALA covers a wide variety of models for transaction management. Finally, being a domain-specific aspect
language, KALA allows programmers to express their needs at a higher level of abstraction than what is achieved with general-
purpose aspect languages. This paper reports on the design of KALA and its implementation over Java, based on the Reflex AOP
kernel for domain-specific aspect languages.
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1. Introduction

The de facto standard for managing concurrency in large-scale distributed systems are transactions. These systems,
however, are confronted with the limitations of transaction management, because transactions were originally designed
to manage only one specific kind of data access: short, unstructured accesses, working in isolation, that only touch
a few data items. A large body of work in the transaction management community recognizes this problem and
many advanced transaction models (ATMS, sometimes also called extended transaction models) have been developed
[1,2] that address these limitations. A prime example, and arguably the best-known ATMS, is nested transactions [3].
The research in this area also includes a general formalism, ACTA [4,1], which allows a wide variety of ATMS to
be described. The list of ATMS is open-ended as each ATMS addresses a particular subset of the limitations of
transaction management (which, hereafter we refer to as classical transactions), and no single ATMS has been created
which addresses all the known shortcomings of transaction management systems.

The use of such an ATMS in an application, however, poses a significant hurdle for the programmer, because code
must be added to the application to mark the start and the end of transactions, as well as for indicating which data
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Fig. 1. The nested transactions ATMS.

accesses are part of what transaction. A known problem of this demarcation code is that it cannot be modularized
through classical software engineering techniques, because it crosscuts the application structure [5–7]. As a result, the
code for the transaction management concern is scattered throughout the application, where it is tangled with the core
logic of the application. To address these problems, research has been performed which renders classical transactions
into an aspect [5–7]. These proposals allow the programmer to define the transactional behavior of an application
separately from the application logic, yielding the known benefits of separation of concerns.

However, there are two main issues with current proposals of aspectizing transactions: (i) they are limited to
classical transactions; (ii) they do not provide any formal foundation, which would allow them to be extended to
address ATMS in general. Our proposal overcomes these limitations by building upon the formal foundation of
ACTA [4,1]. We transform this formalism into an aspect language that covers a wide variety of ATMS, including
classical transactions. This allows an application programmer to modularize advanced transaction management into
an aspect.

The aspect language we propose is called KALA, which stands for Kernel Aspect Language for ATMS. KALA is
a Domain-Specific Language [8,9] (DSL) created specifically for the domain of ATMS as an aspect, i.e., KALA is a
Domain-Specific Aspect Language (DSAL). As KALA is specific to a particular domain, KALA programs are written
at a much higher level of abstraction than the corresponding demarcation code. Even compared to the research on
classical transactions as an aspect, KALA offers a higher level of abstraction, because these proposals use general-
purpose aspect languages. Therefore, the use of KALA results in specifications which are not only easier to grasp, but
also are more concise. This drastically lowers the amount of code that needs to be written.

In this paper we detail the creation process of KALA. We first give a brief overview of the ACTA formalism,
before considering what was needed to turn this formalism into an aspect language. We then introduce the KALA
language, highlighting its most important features and providing an overview of its syntax. Next, we overview
the implementation of KALA over the Reflex kernel for domain-specific aspect languages. Finally, we discuss the
advantages of using KALA and conclude.

2. The ACTA formalism

In contrast to the earlier work on aspect languages for transaction management, which are not based on a formal
model, we have chosen to base our aspect language on a generally accepted formalism for the domain of ATMS. This
not only yields a strong formal foundation for our aspect language, but also ensures wide applicability of the language.

The formalism we have chosen to base our aspect language on is ACTA [4,1], which is a well-known and accepted
formalism for ATMS. Furthermore, ACTA descriptions are purely concerned with the transactional behavior of the
system, and do not include any information whatsoever on the base concern of the application. Therefore, ACTA is a
good base for the construction of an aspect language for ATMS, as this aspect language will only treat the transactional
behavior of the system [10].

We now give a brief overview of ACTA, focusing on the most important elements of the formalism and using the
nested transactions ATMS as a running example. In Nested Transactions, illustrated in Fig. 1, a tree of transactions is
formed where children T c have access to the intermediate results of the parent T . Also, the work of children is not
written to the database as they commit, but becomes part of the work of the parent. This implies that a child has to
commit before its parent commits and that if a parent aborts, that its children also abort. Lastly, if a child aborts, its
parent is not required to abort.



ACTA formal definitions are based on the transaction history: the sequence of operations performed by the
transactions. These operations are either reads and writes of shared data or the life-cycle operations of the transactions
themselves: begin, commit and abort. In ACTA these life-cycle operations are called significant events. Each ATMS
may define additional significant events which are added to this list. Nested transactions, for example, adds the spawn
significant event, indicating the start of a nested transaction.

In ACTA, an ATMS is formally defined by stating three kinds of axioms that constrain and modify the transaction
history: dependencies, views and delegation.

The first kind of axiom on transaction histories is dependency: a dependency places a relationship between two
transactions, defined in terms of the significant events of these transactions. Dependencies are restrictions placed
on the execution of certain transactions, depending on the result of execution of other transactions. A first example
dependency is the commit dependency (T j CD T i): if transactions T i and T j commit, T i must commit before T j . In
nested transactions, if T p is a parent transaction and T c a child transaction, then (T p CD T c), i.e., the child commits
before the parent commits. A second example is the weak-abort dependency (T j WD T i): If T i aborts and T j has
not yet committed, then T j must abort. For nested transactions, this is expressed as (T c WD T p). The dependencies
we will use in this paper are the following:

commit dependency (T j CD T i): if transactions T i and T j commit, T i must commit before T j .
weak-abort dependency (T j WD T i): if T i aborts and T j has not yet committed, then T j must abort.
abort dependency (T j AD T i): if T i aborts then T j must also abort.
begin-on-commit dependency (T j BCD T i): T j is only allowed to begin executing after T i has committed.
begin-on-abort dependency (T j BAD T i): T j is only allowed to begin executing until T i has aborted.
compensation dependency (T j CMD T i): T j is required to commit if T i aborts.

The second kind of axiom defined by ACTA is view: a view definition allows one transaction to view the
intermediate results of another transaction. The use of views between two transactions remove the isolation barrier
between these two transactions, letting them concurrently work on the same data as if they were the same transaction.
For example, in nested transactions, the child transaction T c sees the intermediate results of the parent T p. This is
specified by defining the view of T c to contain T p.

The third kind of axiom is delegation: one transaction T i delegates the responsibility for a specified number of its
operations to another transaction T j . Conceptually, the transaction history is modified such that the operations which
were performed by T i are now recorded as being performed by T j . For example, in nested transactions, if a child
transaction T c commits, its effects are delegated to its parent T p.

A wide variety of ATMS have been formally described in ACTA [4,1], including classical transactions. This
indicates that ACTA is suitable to use as a foundation to build our aspect language for ATMS.

3. From a formalism to an aspect language

As ACTA allows the formal specification of a wide variety of ATMS, it is beneficial to use it as a basis for the
implementation of an aspect language specific for the domain of ATMS. This domain-specific aspect language can, in
turn, support a wide variety of ATMS.

ACTA, however, is just that: a formalism. It was not conceived with an implementation in mind. This is evident
from the fundamental premise of ACTA: “The correctness properties of different transaction models can be expressed
in terms of the properties of the histories produced by these models” [4]. In other words, ACTA verifies a posteriori
if the produced transaction history is correct. For a running application, however, verification of transaction histories,
i.e., adherence to the ATMS, must be performed while the application is running.

In classical transaction management correctness is provided by a transaction processing monitor [11] (usually
abbreviated as TP Monitor). The TP Monitor is a component of the distributed system, built specifically for this
purpose and its working is steered by the transaction demarcation code present in the application. To support the
use of ATMS we have created a TP Monitor, called ATPMos, that provides an implementation of the three kinds of
axioms present in ACTA: dependencies, views and delegation, in addition to the tasks performed by a TP Monitor for
classical transactions. We will briefly touch on the implementation of ATPMos later, in Section 5. For now, suffice it
to say that ATPMos provides for runtime verification and enforcement of the ACTA axioms for a given application,
provided that this application includes the corresponding transaction demarcation code.



Returning to the a-posteriori verification of transaction histories, as defined in ACTA, this implies that the record of
this history is kept for ever, leading to a potentially infinitely large transaction history. It is clear that an implementation
of a TP Monitor based on ACTA needs to restrict memory usage to a reasonable amount. Therefore, it is best to keep
as little information about the transaction history as possible and remove it from the system when no longer needed. A
common technique to enforce correct transaction histories for classical transactions, without needing to record them,
is the use of locks [11]. Using locks allows for verification while the transactions are running, in contrast to the a
posteriori approach of ACTA. If we wish to use locks in a TP Monitor based on ACTA, the demarcation code needs
to perform additional work, while the transaction is running, to ensure that the resulting history is correct. There are
four main topics to consider in this work: performance; dependency checking; transaction life-cycle; and naming. We
outline these next.

3.1. Performance

The first implementation topic to consider is performance: the expressive power of ACTA is a possible performance
hurdle for the implementation. There are two areas which need to be addressed here. We have already indicated the
need to keep the transaction history as minimal as possible. Second is the issue of limiting the expressiveness of
ACTA: In a number of places in the axioms an arbitrary logic expression can be used as a specification, which can
take an arbitrarily large amount of time to evaluate. A complete implementation of ACTA, therefore, requires the
TP Monitor to be able to not only reflect on the transaction history, but also to evaluate logic expressions given by
the ATMS specification. Not only is this a significant implementation task, but it would also have, in general, an
undefinably large impact on transaction performance. Such a performance impact runs contrary to the expectations
for TP Monitors, which is to process transactions in a short time-frame. It is therefore necessary to consider limiting
the expressiveness of the framework somewhat in favor of a faster TP Monitor. Consequently, we take a representative
subset of ACTA and consider expanding this as required later.

Reviewing the ATMS specifications published in [4,1], we can consider the following simplifications to limit the
transaction history kept by the TP Monitor:

Locks: As we have stated above, enforcement of correct transaction histories is already performed in TP Monitors
through the use of locks. Therefore, we do not need access to the transaction histories to determine conflicts.

Delegation: Modifying the transaction history is only performed simultaneously with a significant event, and we
have established that most frequently all the work of a transaction is delegated to another transaction. Combined with
the use of locks, as above, where owning a lock implies responsibility of an operation, this means that delegation boils
down to changing the ownership of all the locks of the delegator to the delegatee.

The two above simplifications mean that we can remove the explicit transaction history, while still guaranteeing
that a significant number of ATMS are covered. Furthermore, investigation of the ATMS published in [4,1] has shown
that no use is made of full logic expressions. Therefore, we have opted to remove the expression evaluation. To assess,
in general, the full impact of such removal is a hard task, as there are an unlimited number of ATMS which can be
specified in ACTA. If we would need to achieve full compliance to the formalism, we can however add such support
to the TP Monitor later.

3.2. Dependency checking

The second topic to consider are dependencies, which also will indirectly impact performance. As an example,
consider T j CD T i : If T i and T j commit, T i must commit before T j . This is very easy to verify a posteriori, but
this verification is more intricate if performed at runtime. While running, the transactional aspect of the application
will build a dynamically evolving web of related dependencies, depending on the execution of the application. Owing
to this dynamic nature, we cannot statically determine if dependencies are satisfied. Instead, we need to ensure that
we do not violate these dependencies while the application is executing. To achieve this, each transaction will have to
wait before a significant event until its dependencies are satisfied. Furthermore, it may be forced to commit or abort
at that time in order to satisfy a dependency.

For example, taking T j CD T i as above, if T j wants to commit while T i is running, this has to be postponed
until T i has committed. Also, if T i aborts, postponing T j will turn out to be unnecessary. This is because the abort
of T i means that there is no commit restriction on T j . As this is runtime behavior of the system it is impossible to



Fig. 2. The Sagas ATMS.

determine a priori the behavior of T i with regard to commits or aborts, i.e., whether T j needs to wait before a commit
or not. As a result, T j is always required to wait for T i at commit time in the case of T j CD T i . This entails that
the performance of the TP Monitor will not be optimal in all cases. Instead, we trade off performance for guaranteed
correctness in all possible cases.

As said above, dependencies are specified with a link to a significant event of a transaction: begin, commit or
abort. Recall that the list of significant events is open and that each ATMS may add its own significant events to the
list consisting of begin, commit and abort. Such an open list of significant events requires a certain flexibility of the
dependency mechanism, as it may need to be invoked at any point of the execution of a transaction. It is clear that
having a fixed set of significant events eases implementation of the dependency mechanism, which will probably also
open avenues for performance optimization. Investigating the published ATMS in [4,1], we see that this is indeed
possible. In these ATMS, we can map new significant events to begin, commit or abort. For example, consider the
spawn event in nested transactions. This event can be mapped to the begin event, as spawn denotes the beginning
of a nested transaction. Therefore, we limit the significant events to begin, commit, and abort, and implement the
dependency checking mechanism such that it only intervenes at these moments in the execution of a transaction.

3.3. Transaction life-cycle

Third, we need to concern ourselves with the underlying forces that steer the life-cycle of a transaction:
Transactions are started and ended by the underlying application as it executes. However, ACTA does not concern
itself with the application’s execution, but solely with the resulting history. Therefore, to ensure that the resulting
history is correct, we need to consider how we can make certain that transactions start and end when necessary. It is
clear that the main part of the responsibility for this lies with the control flow of the underlying application: at some
points a transactional unit of code will run, resulting in the beginning of a transaction, and when the unit ends, the
transaction will also end. We have chosen to use methods as transactional units of code, an approach which is common
in the field. What this means is that a transaction begins when method execution begins, and the transaction ends as
method execution ends.

A major assumption that we need to make is that the control flow of the methods does not run contrary to the
control flow mandated by the ATMS. We need to make this assumption because, in general, this is impossible to verify
statically or fully enforce dynamically. For example, in nested transactions, the method of a sub-transaction has to end
before the method of its parent has ended. If these methods run in different threads, and the child transaction depends
on user input to terminate, we cannot, at compile-time, verify termination of the child prior to the parent. While this
example can be enforced dynamically others cannot. For example, consider an ATMS that requires some transaction
T i to run before another transaction T j . If in a single threaded program the method of T j is called before T i , we
cannot, at runtime, ensure that T j runs before T i , as this would imply that we modify the order of the statements in
the code.

Secondary transactions
In addition to transactions running in the main control flow of the application, some ATMS require certain

secondary transactions to run. These are conceptually separate from the main control flow of the application. Instead,
they run automatically when their dependencies are satisfied. Usually secondary transactions are present to ensure the
overall consistency of the shared data. For example, consider the Sagas ATMS [12], one of the best-known ATMS
in the domain, illustrated in Fig. 2. In Sagas, a transaction S is split into a sequence of steps T 1 to T n, where each
step is a classical transaction. Also, for each step T i where i : 1, . . . , n − 1, a semantical ‘undo’ action Ci , called



a compensating transaction, is defined. These compensating transactions are secondary transactions that are used to
rollback the Saga when this is required. To perform such a rollback, the currently running step is rolled back and the
compensating transaction for each step which has already committed is fired, in the inverse order of the steps. This
illustrates that such secondary transactions are not related to the application logic per se but are a result of using the
ATMS. Therefore, we should not require the application code to verify these dependencies and run the appropriate
code, but place this extra responsibility at the conceptual level of the ATMS, and not of the application.

Transaction termination
The end of a transaction T i does not immediately imply that the TP Monitor may remove all traces of this

transaction from memory. There may still be dependencies placed on T i that constrain other transactions still running
in the system. For example, consider a dependency that forces a transaction T j to abort if T i has committed.
When T i commits, this dependency may not be removed until T j has also ended. Owing to the dynamic nature
of dependencies, automatically deciding when dependencies can be removed without impacting the consistency of
the ACTA specification is impossible. As a result, we need the programmer of the application to write demarcation
code that explicitly terminates the transaction, notifying the TP Monitor that the transaction can safely be removed
completely from the system.

3.4. Naming

The fourth and last topic to consider is the naming of transactions: while formally representing transactions as T i
and T j , such identifications are not straightforwardly translatable to a transaction at runtime. What we need is to be
able to identify unambiguously a transactional unit of code at runtime. Hence, we need some form of naming support.

Our solution for this is inspired by the concept of name servers in distributed systems: we have added a name
service to the TP Monitor. Transactions can register themselves in this name service under a name of their own
choosing. Other transactions can obtain a reference to a registered transaction by querying the name service for the
transaction with that name.

Also, as we are creating an aspect language, we need to consider how crosscuts are specified. This will allow the
aspect, i.e., a collection of ACTA properties for a transaction, to be associated with the method for that transaction.

This concludes our discussion of the issues we need to take into consideration when using the ACTA formal model
as the basis for an aspect language for ATMS. We first talked about the required runtime component that enforces the
constraints of the model: the TP Monitor. We then touched upon four specific topics that require special attention: the
impact on performance, performing dependency checking, the life-cycle of transactions, and naming and grouping.
Having considered these topics, we can now continue with introducing the aspect language for ATMS which we have
defined: KALA.

4. Introduction to KALA

The KALA aspect language was specifically designed to allow for the separate specification of transactional
properties for ATMS of Java methods. KALA is a domain-specific aspect language based on the ACTA formalism,
thereby ensuring that a wide variety of ATMS can be implemented. In KALA, the programmer declaratively states
the transactional properties of a Java method in a block of statements, using the constructs provided by the ACTA
formalism. In other words, in KALA, dependencies, views, and delegations of a given transaction are defined through
declarations made for the corresponding method.

This section informally discusses the KALA language, without referring to its actual implementation. This topic is
deferred to the next section.

4.1. Naming

To be able to refer to transactions within a KALA program, two naming schemes are required: a scheme for load-
time naming and a scheme for runtime naming and grouping.



Load-time naming
Recall that in Section 3.3, we have chosen to let the transactional units of code be methods. Consequently, to

identify to which transactional unit of code a set of transactional properties belongs, we need to uniquely identify
methods. The identification phase is performed at load time, i.e., when Java class files are loaded into the virtual
machine. Hence this naming is termed load-time naming.

Load-time naming is performed in KALA by giving the full class name and the method signature, separated by a
dot. This allows us to write our first KALA program, below, containing one KALA declaration. This declaration states
that the method with signature root(int foo) of the class util.strategy.Hierarchical is transactional.

util.strategy.Hierarchical.root(int foo) {}

The block after the signature, known as the body of the KALA declaration, is empty. This means that the declaration
does not specify any additional transactional properties.

We provide support for the use of wildcard expressions in the method name of the signature. These wildcard
expressions have the same semantics as in the well-known wildcard expression mechanism of AspectJ [13] pointcuts.
This allows a KALA declaration to apply to multiple methods of the same class, effectively gathering a crosscutting
specification into one module. This naming can indeed be seen as the pointcut specification of the advanced transaction
management aspect.

In AOP terminology, the join-point model [10] of KALA contains method descriptions. The pointcut expressions
for this model are the load-time naming expressions. They define at which points of the base program execution the
code for the aspect, called the advice, will be executed.1 In KALA, the advice code is the code contained in the
body of the KALA program, i.e., the specification of transactional properties. We are aware that the load-time naming
scheme we use for defining pointcuts is simple and that other aspect languages provide much more expressive forms
of defining pointcuts. We have chosen to keep our naming scheme simple, as the use of more expressive pointcuts is
outside of the scope of this research.

Note that, contrary to Java method signature definitions and AspectJ-like crosscut specifications [13], we require
the list of formal parameters to also contain a name for each parameter. These names can be used in the runtime
naming scheme, which we discuss next.

Runtime naming
In addition to the static scheme, we also need a runtime, dynamic, naming scheme, as we discussed in Section 3.4.

This is required to allow a transaction specification to define dependencies, views and delegations between different
transactions at runtime. Our TP Monitor provides a name service for this, and the use of this service is integrated in
KALA by the following keywords: name and alias. Registration of a transaction is performed by adding a name
statement to the transactional properties. This statement takes two parameters: an identifier for a transaction, and a
Java expression that may evaluate to a value of any type. This expression value is used as a key to store the identifier in
the global naming service. In other words, the transaction is given a globally accessible name. Lookup of identifiers is
performed using an alias statement, which takes the same type of arguments. This statement binds the result of the
lookup using that key to a local alias, i.e., the alias is made to refer to a transaction identifier. In both these statements,
the expression for the key may have sub-expressions that refer to an alias or to the name of a formal parameter as
specified in the load-time naming. At runtime, when the expression is evaluated, formal parameters are bound to the
actuals of the method call and aliases are resolved to the unique identifier of an already-running transactional method.
As a result, the sequence of naming statements is of importance; names are accessible only after they have been
defined. A reserved alias is the pseudo-alias self, which always designates the current transaction.

As an example of dynamic naming, consider the above method root. In Section 4.2 it will become the root of a
tree of nested transactions. Methods called by root will be child transactions, and these will need to be able to obtain
a reference to the root transaction. We show here how to provide the required naming infrastructure for this. First the
root transaction adds itself to the name service, i.e., it names itself, using as key the current thread (which is obtained
through the Java expression Thread.currentThread()). If we assume that called methods that match the child*

1 Conceptually, join-points only exist at runtime, and therefore advice code execution can only be determined at runtime. However, due to the
simplicity of our join-point model, this can be determined at load time, which amounts to an optimization.



method name wildcard expression will run in the same thread, these can use the current thread as a key to obtain an
alias to the root transaction. The code for this is shown below:

util.strategy.Hierarchical.root(int foo) {
name(self Thread.currentThread());}

util.strategy.Hierarchical.child*() {
alias(root Thread.currentThread());}

Note that the above specification yields a runtime tree structure with maximum depth of one. Any child* method
called from the root method, directly or indirectly, will refer to this root as its parent. This is even so if a method, say
childG, has actually been indirectly called from the root, through another child method, say childP. In this case, it
can be argued that childG should behave as a grandchild of the root and a child of childP. Such an implementation
is possible in KALA, as we show next.

Within the top-level block, shown in the example above, nested blocks can be placed. These contain statements
to be executed at begin, commit or abort time, and are therefore named begin, commit and abort blocks. We use a
commit and an abort block to define nested transactions with a dynamically determined tree structure as follows:

util.strategy.Hierarchical.child*() {
alias(parent Thread.currentThread());
name(self Thread.currentThread());
commit { name(parent Thread.currentThread());}
abort { name(parent Thread.currentThread());} }

The above code ensures that the Thread.currentThread() key is always associated with the currently active
nested transaction. To achieve this, it overwrites the name of the parent transaction in the naming service on line
3 with the identifier of this transaction. As a result, any other child method, say childG, that gets called from this
method, say childP, will regard childP as its parent. When childP ends either in a commit or abort it restores the
original value of the parent in the naming service.

We have lexical scope of names with regard to nested blocks. Within an inner block names of the enclosing block
are visible. Furthermore, we also allow variable overriding: within a nested block variables are allowed to be locally
redefined.

Runtime grouping
KALA also provides for transactions to be placed in named groups. This is performed using the groupAdd

statement, which takes an alias and a key expression as arguments, as in the name statement. If the group with that key
does not exist, it is automatically created. Only transactions can be added to groups, i.e., groups cannot contain other
groups. Groups can also be registered in the name service through a name statement and looked up using an alias
statement. The expressions in these statements may also refer to names of groups in addition to names of transactions
and formal parameters of the method. We do not provide example code using groups here, an illustration if this is
given in Section 4.3.

The alias statement is used to lookup both groups and transactions. To enable this, the lookup algorithm is
structured as follows:

(1) The key is looked up in the namespace for group names. If it is found, the group is returned;
(2) Otherwise, the key is looked up in the namespace for transaction names. If it is found, the transaction is returned;
(3) If the key is not found (lookup failure), the null transaction is returned.

The null transaction is a dummy transaction: all KALA statements that have the null transaction as one of their
arguments fail, emitting a warning. It is clear that such failure handling is simplistic, and appropriate treatment of
KALA failures is a topic of current research.

The type of the resulting variable binding, i.e., the alias is to a transaction or to a group, is kept as metainformation
of the binding. This allows all KALA statements to have overloaded behavior, depending on the runtime type of the
alias. For example, for the name statement, this means that the new name is either registered in the name space for
transactions or the name space for groups, depending on the type of the alias.



4.2. Dependencies, views and delegations

Dependencies, views and delegations are concepts of ACTA which are directly represented as statements in KALA.
These declarations apply at begin, commit or abort time of a transaction and are therefore placed in begin, commit
and abort blocks. This can be seen in the example (further expanding the description of a child transaction for nested
transactions) shown below:

util.strategy.Hierarchical.child*() {
alias(parent Thread.currentThread() );
name(self Thread.currentThread());
begin { dep(self wd parent, parent cd self);

view(self, parent); }
commit { del(self, parent);

name(parent Thread.currentThread()); }
abort { name(parent Thread.currentThread());} }

In this example, the alias statement looks up the parent transaction and binds it to the variable parent, before
actually overwriting it as discussed previously. In the begin block, the dep statement declares a dependency between
two transactions, in this case the WD and CD dependencies between parent and child. This ensures that the child
does not commit after the parent has committed and that if the parent aborts the child will not commit later on.
Also in the begin block, the view statement declares that the child sees the operations of the parent. In the commit
block, the del statement performs delegation from child to parent transaction. Note that, within a given block, the
sequence of dependency, view and delegation statements is unimportant. This is because these axioms are said to
apply simultaneously at that instant in time.

Recall that KALA does not implement the dependency checking mechanism. This functionality is delegated to the
TP Monitor, in this case ATPMos. As a result, the types of dependencies that can be set in KALA are only limited by
the support of the TP Monitor. In ATPMos this list is open-ended: programmers can add support for new dependencies.
We will touch on this in Section 5.

The dep, view and del statements have overloaded behavior, depending on the type of arguments. If any argument
of these statements is a group, the behavior is to perform the action for each member of the group. For example, if a
view is set from a group to a transaction, this view is set from all members of the group to this transaction. If a view
is set from a group to another group, this view is set between each member of the source group and each member
of the destination group. The only exception is the del statement: as delegation to multiple transactions cannot be
performed, if a group is given as destination the del statement fails.2

An important advantage of the use of KALA is that it hides the process of checking and enforcing dependencies.
Dependencies are verified at begin, commit and abort time. At these times, the transaction communicates with the TP
monitor, and waits either until all dependencies are satisfied and it may proceed, or until it is forced to commit or abort
to satisfy a dependency. Without the use of KALA, the programmer needs to implement this decision logic by hand.
The KALA programmer is relieved from this burden, so that he can concentrate solely on declaring the transactional
properties of the method.

4.3. Transaction life-cycle management

Specifying secondary transactions
Support for secondary transactions, introduced in Section 3.3, is provided by KALA through a specific autostart

statement. The use of this statement, in the top-level block of KALA statements for a method, fully automates starting
a secondary transaction in a separate thread. The autostart statement starts a new thread in which the method of
the secondary transaction, given as the first argument, is immediately called. The second argument to the autostart
statement is the list of actual parameters for that method. Each of these parameters can be any Java expression. As

2 In the current implementation, the failure just emits a warning.



in name and alias, these expressions may also refer to the formal parameters in the load-time naming signature and
to aliases. The third argument is a full KALA specification for the transactional properties of the method when it
runs in the autostart. This argument will typically be used to allow dependencies to be set that restrict the secondary
transaction to only begin when these are satisfied.

For an example of autostarts, we consider the Sagas ATMS that we briefly discussed in Section 3.3 and its
use of compensating transactions. Recall that a compensating transaction implements a semantic ‘undo’ action
for the transaction it is associated with. In this example, we consider a bank transfer saga which has been
split into different steps. One of these steps performs the actual money transfer, implemented in a method
Cashier.transfer(BankAccount source, BankAccount dest, int amount), the KALA code of which is
shown below. The compensating transaction for a bank transfer is the inverse transfer operation, i.e., calling the
transfer method with source and dest swapped. This can be seen in the first and second argument of the
autostart statement below. The third argument solely specifies that the autostart transaction names itself.

Cashier.transfer
(BankAccount source, BankAccount dest, int amount) {
alias (saga Thread.currentThread());
autostart (Cashier.transfer

(BankAccount source, BankAccount dest, int amount)
<dest, source, amount> {
name(self "CompOf"+saga);

});
begin { alias (comp "CompOf"+saga);

dep(saga ad self, self wd saga, comp bcd self); }
commit { alias (comp "CompOf"+saga);

dep(comp cmd saga, comp bad saga);} }

We assume that the transfer method is called from a method that represents the saga. That method implements
the sequencing of the saga by calling the different steps in succession and names itself in a similar way as the root
transaction in Section 4.1. The block of KALA statements in the autostart here use the alias obtained to the saga to
give the compensating transaction a unique name. This name is looked up in the begin and commit blocks of the
top-level KALA specification, which allows dependencies to be placed between the compensating transaction and the
transfer operation, and between the compensating transaction and the saga. These dependencies are in place to ensure
that the compensating transaction for this step only runs if the saga rolls back after this step has already committed.
We do not discuss these dependencies in detail here, as such a description is outside of the scope of this paper. Instead
we refer to the definition of these dependencies in the ACTA formal model [4,1].

Transaction termination
A second life-cycle operation available in KALA is the termination of transactions. As stated in Section 3.3, this

is required because even when a transaction ends, its dependencies may still need to be kept in the system. When
these are no longer needed, the transaction can be stopped and removed from the system by means of the terminate
statement. This statement takes as argument an expression that evaluates to the name of a transaction, as in the alias
statement. Termination can be specified to be performed at any of the significant events of a transaction. Therefore,
these statements are also grouped in begin, commit or abort blocks. Furthermore, terminate has overloaded
behavior similar to dep, view and del: applied to a transaction, this transaction is terminated, and applied to a group
all transactions of this group are terminated.

Termination is illustrated by the example below:

util.strategy.Hierarchical.root(int foo) {
name( self Thread.currentThread());
commit{ terminate("ChildrenOf" + self);

terminate(self); }
abort{ terminate("ChildrenOf" + self);

terminate(self); } }



util.strategy.Hierarchical.child*() {
alias(parent Thread.currentThread() );
name(self Thread.currentThread());
groupAdd(self "ChildrenOf" + parent);
begin { dep(self wd parent, parent cd self);

view(self, parent); }
commit { del(self, parent);

name(parent Thread.currentThread());
terminate("ChildrenOf" + self); }

abort { name(parent Thread.currentThread());
terminate("ChildrenOf" + self);} }

This example completes the previous description of nested transactions: the children now add themselves to a group
uniquely identified by the parent alias. When this parent ends, either by commit or abort, that group is terminated. As
the root is not part of a parent group, it also needs to terminate itself when finished.

4.4. Defining advanced models versus using advanced models

KALA code defines an ATMS by combining the fundamental ACTA building blocks and linking these
combinations to a part of the application being developed. As a result, the transactional behavior of that part of the
application is defined. Consequently, everywhere the same ATMS is used this tedious and complex process is repeated.
This will lead to code duplication, which is better avoided. Furthermore, this process entails that the application
programmer should know the complex technical implementation of the ATMS, which requires intricate work.

It would be better to avoid the need for an application programmer to write low-level code. This programmer,
simply using an ATMS, should not be exposed to the internals of this ATMS. As the application programmer will not
want to modify the ATMS behavior such internals are irrelevant. More importantly, this is dangerous as it needlessly
exposes the internals of the ATMS, breaking encapsulation and more easily allowing errors to be written.3

We have proposed a solution to this problem in [14], of which we provide a brief summary here. Our solution
is based on KALA as a generally applicable programming language for declaring the transactional properties of
code for an ATMS. In other words, KALA can be used as a kernel for other programming languages. These then
further simplify specifying the transactional properties of code for a given ATMS, trading off generality. Such further
simplification is possible by using an extra level of abstraction. These languages abstract from the internals of the
ATMS, instead letting the application programmer reason about the concepts present in that ATMS. As a result,
programmers simply use the ATMS as a black box component. At compile time the DSL code is translated to
equivalent KALA code. This KALA code is then woven into the base concern.

Using KALA as a kernel allows for relatively straightforward definitions of new DSLs once their implementation
in KALA is known. All that is required is a translation from the DSL program to the equivalent KALA program.

We briefly treat two of the DSLs we created here: a DSL for classical transactions, and one for nested transactions.
For a more detailed discussion of these DSLs, and a DSL definition of Sagas we refer to [14].

DSL for classical transactions
In classical transactions only one concept is present, which is the indication that a method is a transaction.

Therefore, the DSL for classical transactions is simple: programs consist of a list of declarations declaring a method
to be transactional. Such a declaration takes the form of a trans keyword, followed by the full signature of a method,
as in load-time naming (see Section 4.1).

For example, consider the method with name methodName with parameter list parameterList, of the class
className, contained in the package packageName. To declare this method transactional, the following line of
code in the transactions DSL suffices:

3 Following the simple rule that the more code is written, the higher chance for errors in that code.



trans packageName.className.methodName(paramList);

The equivalent KALA code for this program is given below:

packageName.className.methodName(paramList) {
commit {terminate(self); }
abort {terminate(self); } }

This code is quite straightforward, only specifying termination of the transaction at commit and abort time.

Nested transactions DSL
The nested transactions ATMS adds the concept of a transaction hierarchy to classical transactions. In general, this

hierarchy can be arbitrarily structured. An arguably convenient structure is the hierarchy of callers, which we have
used in our running example of nested transactions. We therefore also have defined a DSL for this specific case of
nested transactions.

In this DSL, the new concept is therefore that this method is a sub-transaction of the (possibly indirectly) calling
transaction. This is declared by reusing the naming from the DSL for classical transactions and extending it with the
extends caller statement. Root transactions can be stated explicitly in the DSL as well, and as they do not extend
any other transaction, they are therefore specified by omitting extends caller.

Both kinds of transactions can be seen in the example below, which at compile time translates to the example code
for nested transactions we have given in Section 4.3

trans util.strategy.Hierarchical.root(int foo);
trans util.strategy.Hierarchical.child*() extends caller;

To summarize, our solution to the problem of needing to know the internals of an ATMS and the inherent code
duplication is to add an extra layer of abstraction. This is done through the use of a domain-specific language per
ATMS. The use of such model-specific languages allows us to isolate the aspect programmer from the implementation
details of the transaction. Instead, the programmer now focuses solely on the concepts defined in the ATMS being used.

5. KALA implementation

An important facet of any programming language is how it is implemented. In this section we give a brief overview
of the implementation of KALA.

KALA declares, at a high conceptual level, the transactional properties of a method, but these high-level properties
need to be translated to lower-level transaction demarcation code. At runtime, an application that has a KALA
specification needs to run such demarcation code, interfacing with our TP Monitor, ATPMos, which supports the
ACTA axioms. The interplay of the behavior encoded within the demarcation code and the runtime enforcement of
ATPMos yields the overall application behavior that conforms to the ATMS specified in KALA.

ATPMos is a lock-based TP Monitor, of which the standard transactional functionalities have been extended to
provide support for dependencies, views and delegation. Views are implemented by extending the lock conflict
checking to also take into account view relationships. Delegation is straightforwardly implemented by transferring
the locks from the delegator to the delegatee. Dependency support is realized through the use of a constraint engine,
as discussed in Section 3.2. Dependencies are implemented as constraint specifications for this engine. As we have
already mentioned, the list of dependencies supported by ATPMos is open. Support for new dependencies is achieved
by creating a new constraint specification, which can even be added while ATPMos is running. Lastly, ATPMos
provides a basic implementation of a naming and grouping service, as required to enable runtime naming and
grouping. We do not discuss the implementation of ATPMos further in detail here, as it is outside of the scope of
this text. For a more detailed discussion we refer to [15].

In the remainder of this section, we give a brief overview of how the high-level KALA declarations are translated
to demarcation code that properly interacts with ATPMos. First of all, we introduce the infrastructure used to support
KALA in the Java language, and then we discuss some elements of the implementation.



Fig. 3. Architecture of a versatile kernel for multi-language AOP.

Fig. 4. The link model and correspondence to AOP concepts.

5.1. Multi-language AOP and reflex

The KALA domain-specific aspect language is implemented over Reflex,4 a versatile kernel for multi-language
AOP in Java [16]. As such, Reflex is specifically designed as a powerful backend for implementing (domain-specific)
aspect languages. Its three-layer architecture (Fig. 3) consists of: first a general-purpose transformation layer at the
bottom; on top of this transformation layer, a composition layer that takes care of both detection and resolution
of aspect interactions [17]; a plugin architecture for the modular definition of (domain-specific) aspect languages
completes the picture. This last layer supports the translation of aspects expressed in an aspect language into lower-
level kernel constructs.

Of interest to us in this paper are the top and bottom layers. The transformation layer is indeed the weaver. It relies
on a model of partial reflection, both behavioral and structural. The behavioral part is based on a model of explicit
links presented in [18], pictured in Fig. 4. A link binds a hookset (i.e., a set of program points) to a metaobject [19]
implementing the corresponding behavioral extension. The actual communication protocol between the base code
denoted by the hookset and the metaobject is fully customizable.

The language layer is implemented with the MetaBorg approach to language embedding and assimilation [20].
MetaBorg consists of a combination of the SDF syntax definition formalism [21], which is particularly well suited for
parsing languages with complex syntax (such as aspect languages like AspectJ [13]) in a modular fashion [22], and
the rule-based transformation system Stratego/XT [23] for compiling the parse tree produced by the SDF-generated
parser into Java code using the Reflex API for composition and transformation.

5.2. Overview of the KALA implementation

In the above setting, the implementation of KALA is quite straightforward, since weaving is supported by the
Reflex backend, and generation of Java code is handled declaratively in Stratego rules. This section does not enter
into the details of the implementation, as this is extensively discussed in [24]. Here we restrict our discussion to an
overview of how the main elements of KALA are supported.

Runtime behavior. The runtime behavior of KALA is implemented by a reusable metaobject implementing the
core demarcation logic. This metaobject is parameterized by the KALA specification, which in Reflex is expressed as
a number of parameters passed to the KALA metaobject.

The demarcation logic, as in demarcation code for classical transactions, starts and ends the transaction, and
includes data accesses of the method in the transaction. Furthermore, it performs naming and grouping, sets

http://reflex.dcc.uchile.cl/
http://reflex.dcc.uchile.cl/
http://reflex.dcc.uchile.cl/
http://reflex.dcc.uchile.cl/
http://reflex.dcc.uchile.cl/


dependencies and views, and performs delegations at the different phases in the life-cycle of the transaction. Lastly, it
ensures, in cooperation with ATPMos, that dependencies are adhered to. As we discussed in Sections 3.2 and 4.2, at
each phase in the life-cycle it is determined if the transaction may proceed as planned, needs to wait, or is required to
commit immediately or abort immediately to satisfy a dependency.

Load-time naming. The identification of methods in KALA code is straightforwardly expressed in Reflex as
a hookset: declaring in KALA that a method is transactional implies configuring Reflex so that executions of this
method are intercepted and subsequent control is given to the KALA metaobject.

Runtime Naming, Grouping and Termination. ATPMos provides the required naming service for runtime
naming and grouping. KALA code is translated to executable Java code that calls this service. This is implemented
by generating anonymous inner classes with the corresponding code. Similar code is generated for termination, first
calling the name service and second calling ATPMos to perform termination on the resulting transaction or group.

Alias bindings, i.e., local references to transactions, and bindings between formal parameters and their values are
managed using an environment object. This object also takes care of scoping of begin commit and abort blocks and
for autostart statements.

Dependencies, Views, Delegations. The ACTA axioms of dependencies, views and delegations are now
represented simply as objects passed to the KALA metaobject. At begin, commit and abort time, the metaobject
first executes the naming and grouping code generated for that life-cycle phase. Second, dependencies and views are
set and delegations are performed, by looking up the aliases in the environment object and calling ATPMos using the
result of the lookup.

Autostarts. Autostarts are implemented by generating anonymous inner classes as a subclass of Runneable, which
allows instances of them to run in a separate thread. These classes contain one run method, which simply calls the
method of the secondary transaction, as specified in the KALA program. The metaobject for this method call is
given access to the environment in which the autostart statement is nested, and configured with the transactional
properties as specified in the autostart statement. To run the autostart a new thread is started that calls the run
method on the instance, effectively running the method in a separate thread.

6. Benefits of using KALA

To validate the use of KALA, we have implemented the use of five different ATMS: two variations of Nested
Transactions [3], Sagas [12], Relatively Consistent Schedules [25], and Cooperating Nested Transactions [15]. Of
these five, the last two ATMS did not have any formal specification published in ACTA. This not only illustrates that
we can indeed tackle a wide variety of ATMS, but also that we can provide support beyond the ATMS for which a
formal description has been published.

In these implementations, we have seen that using KALA allows us to achieve obliviousness [26] at the level
of the code, i.e., the code for the base concern does not include any transaction-related code. All the code for the
transaction management concern is completely contained in KALA modules. As a result, we achieve a high degree of
separation of concerns for the transaction management concern. Given the known benefits of separation of concerns,
this significantly increases ease of development and maintenance of these applications.

An arguably important form of transaction management in Java that also achieves a degree of obliviousness is
declarative transaction management in the Enterprise JavaBeans (EJB) middleware standard [27]. In this setting, the
use of transactions is specified by defining transaction attributes in a separate file, the deployment descriptor. This
deployment descriptor contains various types of metadata, such as the name of the bean, its type, security properties
for its methods and transaction attributes for its methods. The list of possible transaction attributes is however fixed,
and none of the attributes allow for ATMS. Therefore only classical transactions can be used. Research has been
performed by Procházaka [28] on an extension of this list, as well as an implementation of the standard that supports
this extension. This work is known as Bourgogne Transactions. It allows for a number of ATMS to also be used,
by extending the list of possible transaction attributes to allow the specification of delegation and dependencies. The
types of dependencies are however fixed, in contrast to KALA, where this is open-ended. Furthermore, Bourgogne
transactions provides no support for views, which is required, e.g., for nested transactions.

In addition to yielding the benefits of separation of concerns, KALA raises the level of abstraction of the
specification of the transactional properties involved. In KALA, the programmer solely needs to state the transactional
properties of the code in terms of the ACTA axioms, as well as performing naming and life-cycle management



declaratively. This has to be contrasted to writing demarcation code directly in Java. Transactions also are set to
begin and end on method boundaries, but the programmer has to perform additional tasks: verifying and enforcing
dependencies, explicitly starting and ending transactions and including operations on shared data in the transaction.
Therefore, as a result of raising the level of abstraction using KALA, we obtain much more concise code, where fewer
tasks have to be performed by the programmer.

As an illustration of the degree of conciseness, consider a simple bank transfer operation for which we use the
Sagas ATMS [12], which we have briefly described in Section 4.3. We do not include the full example here, but we
report on the amount of code required to implement it. The Java code for the bank transfer is four methods, totaling
37 lines of code. If we manually add demarcation code this bloats to 267 lines of code, i.e., over seven times as much
code. If we use KALA instead, we only need to add 52 lines of demarcation code to use the Sagas ATMS.

In contrast, if we were to use a general-purpose aspect language, such as in [5–7], where AspectJ [13] is used, we
cannot achieve this large amount of code reduction. We can implement the core logic of the demarcation object as
a reusable part of the aspect, but configuring this metaobject requires some work. Firstly, for each cluster of naming
and grouping operations, i.e., top-level, begin, commit and abort time, an anonymous inner class needs to be written
by hand that evaluates the key expressions. Furthermore, in this expression, sub-expressions which are references to
aliases and parameters of the method need to be replaced with lookups in the environment. Secondly, for termination
a similar anonymous inner class needs to be written by hand. Thirdly, for each autostart an anonymous inner class
needs to be written, also by hand, that calls the method for the secondary transaction.

We have not performed the experiment of implementing the use of Sagas in a general-purpose aspect language.
Therefore, we do not have the data to compare lines of code required. It is however clear that more code is needed
than in KALA as all the support code for parameterizing the metaobject, especially considering the anonymous inner
classes, is more verbose than the equivalent KALA code.

7. Conclusion

In this paper we have detailed the creation process of KALA: a domain-specific aspect language for using advanced
transaction management in a distributed system. In major contrast to other work on treating transactions as an aspect,
KALA is built upon a formal foundation, which is the ACTA formalism. In this paper we first discussed how we
transformed the ACTA formalism into the KALA aspect language. We then proceeded with giving an introduction
to KALA, discussing its implementation with the Reflex AOP kernel, and finally talking about the benefits of using
KALA.

We conclude that, because KALA is built upon a formalism that covers a wide variety of ATMS, KALA also
is able to cover a wide variety of ATMS. Its expressiveness therefore goes much farther than other aspect-oriented
proposals for transaction management. Furthermore, we have a domain-specific aspect language that exposes the
concepts of the ATMS domain, while automating as much of the implementation of these concepts as possible. As a
result, this domain-specific aspect language significantly raises the level of abstraction and makes the specification of
the transactional properties of an application much more concise.
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