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A numerical method for 2D LEFM crack propagation simulation is presented. This uses a Lepp–Delaunay
based mesh refinement algorithm for triangular meshes which allows both the generation of the initial
mesh and the local modification of the current mesh as the crack propagates. For any triangle t, Lepp(t)
(Longest Edge Propagation Path of t) is a finite, ordered list of increasing longest edge neighbor triangles,
that allows to find a pair of triangles over which mesh refinement operations are easily and locally per-
formed. This is particularly useful for fracture mechanics analysis, where high gradients of element size
are needed. The crack propagation is simulated by using a finite element model for each crack propaga-
tion step, then the mesh near the crack tip is modified to take into account the crack advance. Stress
intensify factors are calculated using the displacement extrapolation technique while the crack propaga-
tion angle is calculated using the maximum circumferential stress method. Empirical testing shows that
the behavior of the method is in complete agreement with experimental results reported in the literature.
Good results are obtained in terms of accuracy and mesh element size across the geometry during the
process.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of crack propagation as well as the failure predic-
tion of structural components in engineering applications are
important research subjects. In the last decade numerical analysis
of fracture problems have become an effective way of approaching
this problem due to the development of the computing capacity.
Several methods for the numerical analysis of fracture problems
have been developed. The finite element based methods are the
more recurrent in the literature. Another approaches used are
boundary element methods [1], element-free Galerkin methods
[2] or extended finite element methods (X-FEM) [3]. Numerical
methods have been widely used to calculate fracture parameters,
including linear elastic and elastic–plastic fracture mechanics [4],
dynamic fracture mechanics [5], fatigue [6] and quasi-static crack
growth [7].

In general terms, a finite element based numerical method ap-
plied to fracture mechanics proceeds iteratively as follows: an
approximate displacement field solution is numerically obtained;
then a numerical approximation of the fracture parameters is com-
puted by using appropriate data post processing.
ll rights reserved.

).
In any case, mesh generation is a critical aspect of an efficient
crack propagation method. This should consider at least the follow-
ing issues: firstly, generation of a good quality initial mesh of the
complex geometry such as a cracked one. A crack in a 2D geometry
is represented as a 1D entity, where two free surfaces coincides
geometrically but are topologically different, thus the mesh gener-
ator must be able to take into account these free surfaces, both in
the initial mesh generation and in the crack growth steps. Sec-
ondly, in a cracked geometry mesh, elements near crack tip are
much smaller than elements far from crack tip, so the algorithm
must generate a good size transition between these zones, opti-
mizing element size and keeping element quality in all the mesh.
Third, crack propagation simulation implies modification of both
the object geometry and its associated mesh for every time step.
A first crack growth method due to Bittencourt [8] uses a local
method to remesh just the zone close to the crack tip avoiding
the remeshing of all geometry, in order to minimize time con-
sumption in the meshing step. The same method [6] was presented
for triangular meshes using a mesh generator that combines quad-
tree and advancing front technique, and a back tracking procedure
to eliminate bad shape triangles; this method improves mesh qual-
ity at each propagation step but mesh modification is very com-
plex. A similar method generating meshes for cracked geometries
(but not crack growth) was implemented for 3D [9] using tetrahe-
dral meshes. In general terms, these methods have the disadvan-
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Fig. 1. Special elements used for displacement extrapolation method. The mid-side
node (mid) is moved one quarter from its original position in order to modify shape
functions.
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tage of using several intermediate steps in order to obtain a good
quality mesh. Bouchard [10] developed a crack growth method
that includes a remeshing technique that optimizes elements size
and quantity but the geometry is completely remeshed in each
step. The same method has been proved for several linear elastic
and elastic–plastic examples in [4]. Phongthanapanich [11] devel-
oped a method that completely reconstructs the mesh between
refinement steps by using adaptive meshing and Delaunay triangu-
lations. Khoei [7] has developed an adaptive method for crack
propagation that includes analytical crack tip expression in the er-
ror estimation, optimizing the size of elements and remeshing the
whole geometry. Meyer [12] has proposed a crack propagation
method that combines an adaptive iterative solver, mesh refine-
ment and mesh coarsening techniques, and optimization of the
number of nodes. In exchange, Askes et al. [13] have discussed
remeshing strategies, based on relocation of the nodes, for r-adap-
tive and h/r-adaptive analysis of crack propagation.

In this paper a new method for crack growth simulation in 2D
LEFM solids is presented. This method uses a displacement extrap-
olation technique for calculating KI and KII and the maximum cir-
cumferential stress criteria to calculate crack propagation angle. A
Lepp–Delaunay based mesh generation and refinement algorithms
are used. This allows the local refinement of the mesh, preserves
mesh quality, and generates a smooth transition between elements
close to the crack tip and larger elements far from this zone. The
whole process is performed by using a Lepp based integrated algo-
rithm, thus there is neither need of a posteriori mesh improvement
routines, nor pre processing routines such as quad-tree techniques.
The method proposed has the advantage of using local remeshing
techniques but in a simpler and more efficient way than previous
methods, so a better performance is expected. A quantitative anal-
ysis and comparison with other methods reported in the literature
is an extensive and complex work and it is out of the scope of this
paper. The Lepp based method is a robust and automatic tool that
can be generalized both for adaptive finite element methods
including mesh coarsening, and more general crack propagation
studies. This can be also combined with several more general frac-
ture mechanics formulations (e.g. [7,11,12]).
2. Numerical method for SIF calculation

2.1. Stress intensity factors

The relevant parameters in Linear Elastic Fracture Mechanics
are the Stress Intensify Factors (SIFs) which can be calculated by
using either a J integral based equivalent domain integral (EDI)
[14], a virtual crack closure method (VCCM) [15], a virtual crack
extension method [16] or a displacement extrapolation method
[17]. For a comparison of these methods see [8]. In this paper a dis-
placement extrapolation method which obtains the SIF’s values di-
rectly from finite element nodal displacements is used. In polar
coordinates (Fig. 1), the following analytical expression for dis-
placements from theoretical fracture mechanics [18] is used:
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In order to obtain a better approximation of the field near crack
tip, special quarter point finite elements are used [19] where the
mid-side node of the element in the crack tip is moved to 1/4 of
the length of the element, as shown in Fig. 1.

According to Eq. (2), when this method is used with finite ele-
ments, KI is related with the node displacement as follows:

KI ¼
2l
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2p
l

r
ð4vmid � vextÞ ð3Þ

where vmid is the displacement of the mid-side node in the y-direc-
tion, and vext is the displacement of the node opposed to the crack
tip in the y-direction, being the crack aligned with the x-direction,
as shown in Fig. 1. Analogously, for KII
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2l
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where u corresponds to the displacement in the x-direction.
2.2. Angle of propagation

Under complex load conditions, crack growth does not occur in
a straight direction, but follows a complex curved crack path,
where the change of direction is determined by the relation be-
tween KI and KII . To calculate the instantaneous change of direc-
tion of the crack kink, the most common methods used are the
maximum circumferential stress [20], the maximum potential en-
ergy release rate [21] and the minimum strain energy density [22].
In this paper the maximum circumferential stress method is used.

In polar coordinates, the stress field (2D) near crack tip is writ-
ten as follows [18]:
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The crack propagation direction is obtained by imposing the condi-
tion [20] @rhh=@h ¼ 0 or srh ¼ 0 which produces the following
equation:

KI sin hþ KIIð3 cos h� 1Þ ¼ 0 ð7Þ

where h is measured with respect to the crack face. This equation
can be solved numerically by using the Newthon–Raphson
method.
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3. Lepp–Delaunay methods for quality triangulation

3.1. Lepp (Delaunay terminal edge) midpoint method

The algorithm was designed to improve the smallest angles in a
Delaunay triangulation but can be used in general, for refining (and
improving) any target triangle in the mesh. For each target triangle
t0, the algorithm selects a point M which is midpoint of a Delaunay
terminal edge (a longest edge for both triangles that share this
edge) which is then Delaunay inserted in the mesh. This method
uses the longest edge propagating path Lepp(t0) associated to the
target triangle t0 to determine a terminal edge in the current mesh.
The longest edge propagating path associated to
t0; Leppðt0Þ ¼ ft0; t1; . . . ; tn�1; tng, is a sequence of neighbor
increasing triangles in the mesh (ti is neighbor of ti�1 by the longest
edge of ti�1, and longest edge of ti is greater than the longest edge
of ti�1) and where either tn�1; tn share a terminal edge, or tn has a
boundary/constrained terminal edge. For an illustration of the
Leppðt0Þ see Fig. 2a. For an illustration of the ideas of the algorithm,
see Fig. 2b, where the processing of t0 produces the Delaunay
insertion of midpoint M of terminal edge AB. In this particular case,
the insertion of M destroys t0 and the process stops. In the general
case, the processing of t0 is repeated until t0 is destroyed. The algo-
rithm was introduced in a rather intuitive basis as a generalization
of previous longest edge algorithms in [23,24] and studied in
[25,26]. Given an angle tolerance htol, the algorithm can be simply
described as follows: iteratively, each bad triangle tbad with small-
est angle less than htol in the current triangulation is eliminated by
finding Lepp(tbad), a pair of terminal triangles t1; t2, and associated
terminal edge l. If non-constrained edges are involved, then the
midpoint M of l is Delaunay inserted in the mesh. Otherwise a con-
strained point insertion criterion is used. The process is repeated
until tbad is destroyed in the mesh, and the algorithm finishes when
the minimum angle in the mesh is greater than or equal to an angle
tolerance htol.

Fig. 3 shows the use of Lepp–Delaunay terminal edge algorithm
to perform a localized refinement near a corner in a concave
geometry.

The algorithm is given below:

Lepp midpoint algorithm
Input = a CDT, s, and angle tolerance htol
Find Sbad = the set of bad triangles with respect to htol

for each t in Sbad do
while t remains in s do

Find Lepp ðtbadÞ, terminal triangles t1; t2 and terminal edge
l. Triangle t2 can be null for boundary l.

Select Point (P, t1; t2; l)
Perform constrained Delaunay insertion of P into s
Update Sbad

end while
end for
Select Point (P, tterm1; tterm2; lterm)
if (second longest edge of tterm1 is not constrained and second

longest edge of tterm2 is not constrained) or lterm is constrained
then
Select P = midpoint of lterm and return

else
for j = 1, 2 do

if ttermj is not null and has constrained second longest edge
l� then

Select P = midpoint of l� and return
end if

end for
end if
Fig. 2. (a) For target triangle t0; Leppðt0Þ ¼ ft0; t1; t2g. (b) The processing of t0

implies the selection and insertion of M, midpoint of terminal edge AB.
3.2. Lepp-centroid algorithm

In order to improve the performance of the previous Lepp mid-
point algorithm, in [27,28] a new Lepp-centroid algorithm for qual-
ity triangulation is introduced. For any general (planar straight line
graph) input data, and a quality threshold angle h, the algorithm
constructs constrained Delaunay triangulations that have all angles
at least h as follows: for every bad triangle t with smallest angle less
than h, a Lepp-search is used to find an associated convex terminal
quadrilateral formed by the union of two terminal triangles which
share a local longest edge (terminal edge) in the mesh. The centroid
of this terminal quad is computed and Delaunay inserted in the
mesh. The process is repeated until the triangle t is destroyed in
the mesh. In [27] the new Lepp centroid algorithm and geometrical
results which explain the better performance of the Lepp centroid
method, are discussed. Also an empirical study that compares the
behavior of Lepp-centroid and Lepp-midpoint methods is pre-
sented. The centroid method computes significantly smaller trian-
gulation than the terminal edge midpoint variant, produces
globally better triangulations, and terminates for higher threshold
angle h (up to 36�). It is also shown that the Lepp centroid method
behaves better than the off-center algorithm for h > 25�.

4. Mesh generation for cracked geometries

Initial mesh generation is a key step in fracture mechanics prob-
lems. 2D cracked geometries are complex to mesh because a very
fine mesh is needed near the crack tip while a coarse mesh up to
two orders of magnitude larger suffices far from crack tip. Also
the mesh methodology must be able to correctly generate ele-
ments in crack faces, because a crack is a 1D entity where the
two faces are geometrically coincident but topologically different.
To deal with these issues several solutions have been proposed.
Bouchard [10] constructs a Delaunay triangulation to generate
the initial mesh, followed by a mesh improvement strategy. The
crack is obtained by nodal relaxation. Phongthonapanich et al.
[11] use an adaptive Delaunay based mesh generator, where the
shape and size of new elements are controlled by coefficients that
define triangle creation or destruction, followed by a Laplacian
smoothing. Miranda et al. [6] combine a quad-tree method for
defining initial node position, a heuristic advancing front method
for generating an initial mesh, and uses a mesh improvement tech-
nique for eliminating bad shape elements.

4.1. Lepp–Delaunay generation of the initial mesh

In this paper a simple and effective Lepp–Delaunay method,
able to mesh any complex geometry with cracks by producing both
good shape triangular elements in the whole mesh, and a smooth
transition between small and large elements near crack tip and
the rest of the geometry, is presented. This is performed in one



Fig. 3. Localized refinement near a corner over an existing mesh using Lepp–Delaunay terminal edge algorithm.

Fig. 4. Generation of the initial mesh. (a) A border discretization is introduced. (b)
Nodes are Delaunay inserted producing an initial convex mesh. (c) Elements that
are outside the geometry are eliminated. (d) Using Lepp–Delaunay algorithm, the
triangulation is improved.
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step, without requiring any pre-processing and/or post-processing
steps.

The initial mesh is generated as follows:

� An initial discretization of the border is produced (Fig. 4a).
� Nodes are Delaunay inserted in the mesh which produces an ini-

tial convex triangulation that in general does not respect the
geometry (Fig. 4b).
Fig. 5. Methodology for creating special elements in crack tip. (a) Node position is fixed fo
not, a new node is inserted. (c) Lepp–Delaunay algorithm is used in order to eliminate
� External elements are eliminated, which produces a valid initial
mesh (Fig. 4c).

� The triangulation is improved by using a Lepp–Delaunay algo-
rithm until a user defined quality criteria is reached (Fig. 4d).
A study on the geometrical and convergence properties of this
method can be seen in [25].
4.2. Lepp–Delaunay technique for crack propagation

Since the refinement/improvement Lepp–Delaunay algorithms
can be applied to any existing mesh, posterior refinements near
the crack tip are performed by using the same Lepp based refine-
ment technique. Once the initial mesh is ready, the next step con-
sists in generating especial symmetrical elements in the crack tip,
inserting and displacing nodes and then refining the mesh using
the Lepp–Delaunay algorithm. This process generates a mesh with
well shaped elements and smooth transition between small and
large elements.

Fig. 5 illustrates the methodology for generating special ele-
ments in crack tip. First, the positions of external nodes associated
to special elements are fixed (Fig. 5a). These are positioned at a dis-
tance r of the crack tip, where r is the length of the free edge of one
of the crack elements. Then if there exists a node close to this posi-
tion, the old node is moved there, otherwise, a new node is inserted
(Fig. 5b). Since this process can generate bad shaped elements, the
Lepp–Delaunay algorithm is used to improve the mesh quality near
crack tip (Fig. 5c).
5. Crack increment

In this section the quasi-static propagation of a crack, and the
calculation of the crack path is discussed. To this end, linear elastic
problems are considered, but the methodology can be extended to
more complex models such as elastic–plastic or dynamic fracture
mechanics. Crack growth is computed discretly by using a finite
element model for each new crack length step. Crack parameters
and crack propagation direction are calculated as discussed in Sec-
tion 2. Crack is modeled as a 1D entity formed by free surfaces that
are coincident geometrically. For each crack increment, a node is
inserted in the new position of the crack tip and a new free surface
r special elements. (b) If a previous node is close to these positions, thus is moved; if
bad shape triangles generated due node displacement/insertion step.



Fig. 6. Crack growth methodology.(a) Initial position of crack tip. (b) A new crack
tip position is calculated. (c) A new node is inserted in the new position, and a new
edge is generated between old and new crack tip. (d) Nodal relaxation is performed
and a new free edge is obtained. (e) The special elements generation methodology is
performed over the new crack tip.

Fig. 8. (a) Bad shape elements can appear as pair of triangles that have a common
edge that is significantly smaller than other sides. (b) Bad triangles are eliminated.

Fig. 9. Beam with a center crack, loaded in two points and supported in two points.
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is formed from the new edge that joins new and old crack tip, as
shown in Fig. 6.

On the contrary to [6,8], elements near crack tip are not elimi-
nated, but new special elements are generated by moving or
inserting nodes near crack tip (Fig. 5). Then a Lepp–Delaunay
improvement algorithm is used over those elements to generate
a smooth transition between crack tip elements and larger ele-
ments, as shown in Fig. 7. Note that this is a very local work that
leaves unaffected most of the previous mesh.

5.1. Bad shape triangle elimination

Since the generation of new elements can produce a pattern of
bad shape elements due to the displacement of nodes, a bad shape
triangle elimination methodology has been also implemented. This
eliminates pair of triangles that have a common edge that is signif-
icantly smaller than other ones, as shown in Fig. 8.
Fig. 7. (a) Crack remeshing without using Lepp–Delaunay algorithm for mesh improveme
each propagation step. (c) Application of Lepp–Delaunay algorithm with a 25� angle tol
6. Results

In order to test the behavior and performance of the crack prop-
agation method, several test cases have been solved and compared
with previous numerical and experimental solutions. For this pur-
pose a software with a graphical interface has been developed,
based on a previous implementation of Lepp–Delaunay algorithms
presented in [29]. All methods discussed in this paper are inte-
grated in the software, including a user friendly interface which al-
lows the generation of finite element models that can be solved by
Abaqus. This software is able to read output files from Abaqus to
perform Stress Intensify Factors computation and mesh modifica-
tion to simulate crack propagation steps.
6.1. Center cracked beam with a hole

This case corresponds to a single notched beam with a hole,
loaded in two points and supported in two points, as shown in
Fig. 9. This corresponds to a plane strain problem which has been
nt. (b) Application of Lepp–Delauany algorithm with a minimum tolerance of 15� for
erance.



Fig. 10. From top to bottom, meshes associated to steps 0, 20, 50 and 92.
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solved numerically in [6]. The physical parameters of the problem
are E ¼ 205 ðGPaÞ; m ¼ 0:3; P ¼ 100 ðNÞ and a ¼ 2:5 ðmmÞ. Results
presented in this paper are compared with numerical results pre-
sented in [6]. In this case, a local Lepp–Delaunay algorithm has
been applied for each propagation step. Triangles with minimal an-
gle less than 15� are processed to be improved. The size of crack tip
Fig. 11. Details of the mesh in step 92.

Fig. 12. Comparison of the crack paths between numerical results and experimen-
tal results.
elements is l ¼ 0:625 ðmmÞ ðl=a ¼ 1=4Þ. Bad shape triangle elimi-
nation methodology is also applied for each crack growth step.

This problem required 92 steps to be solved. Fig. 10 shows the
meshes constructed for the time steps 0, 20, 50 and 92, whose
associated number of nodes are 1278, 1738, 2518 and 3448,
respectively. Fig. 11 shows a detail of the mesh for the step 92.
Fig. 12 shows a comparison with the experimental results pub-
lished in [6], where good agreement between numerical and exper-
imental results can be seen.
6.2. Cracked beams with three holes

This example corresponds to a cracked beam supported in two
points and with a load in the center as illustrated in Fig. 13. The
beam has three holes that change the trajectory of the crack. This
problem has experimental results for polymethylmethacrylate
(PMMA) beams and has been used as a numerical test case in
[8,11]. Two test cases (I and II) have been considered, for different
values of a and b which produce very different crack paths. For
Fig. 13. Beam with a crack and a center load and supported in two points. The beam
has three holes to create complex crack paths.

Fig. 14. Initial and final mesh after 110 steps for case I of a cracked beam with three
holes.



Fig. 15. Detail of the mesh after 15 steps for case I of a cracked beam with three
holes.
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both cases, the parameters of the problem are P = 1 (lbf) (4.45 (N)),
E ¼ 29� 106 (PSI) ð199:95� 106 (kPa)) and m ¼ 0:3.
Fig. 18. Initial and final mesh after 72 steps for case II of a cracked beam with three
holes.

Fig. 19. Comparison of the crack paths between numerical results and experimen-
tal results for case II of a cracked beam with three holes.
6.2.1. Case I
The Fig. 14 shows the initial and the final mesh after 110 prop-

agation steps. The initial mesh has 2226 nodes and 1042 elements,
while the final mesh has 4496 nodes and 2066 elements. For mesh
modification, Lepp–Delaunay algorithm was applied with a mini-
mum angle tolerance of 15�. At the first steps, the size of crack tips
element are l=a ¼ 1=16, where a is the initial length of the crack
and l is the characteristic length of the crack tip element. After
15 steps, crack tip is near the first hole and a big error is obtained.
This is because crack tip elements are the same order of magnitude
of size of elements on the border of the hole. Considering this fact,
the size of crack tip elements is reduced to l=a ¼ 1=64 and the sim-
ulation continues (Fig. 15). This allows satisfactory crack path com-
puting until the end. A detail of the mesh for the time steps 60 and
100 is shown in Fig. 16, where a smooth transition is obtained from
crack tip elements to far elements, and from elements on the bor-
der of the crack faces to far elements. Finally, crack path and exper-
imental results for case I are shown in Fig. 17.
Fig. 16. Details of the mesh for case I of a cracked beam with three holes (a) for time
step 60 and (b) for time step 100.

Fig. 17. Comparison of the crack paths between numerical results and experimen-
tal results for case I of a cracked beam with three holes.
6.2.2. Case II
Fig. 18 shows initial and final mesh after 72 steps of crack prop-

agation. Initial mesh has 1950 nodes and 906 elements, while final
mesh has 3332 nodes and 1534 elements. Results are similar to
case I in terms of size transition and affected zone remeshing.
Fig. 19 shows a comparison between numerical and experimental
results for this problem.
Fig. 20. Single notched plate, fixed at the bottom and constrained to far-field shear
stress along the top edge.



Fig. 21. From left to right, meshes associated to steps 0, 7 and 14 obtained with the implemented software, and final result obtained in reference [11].
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6.3. Single edge cracked plate under mixed mode loading

This case corresponds to a single notched plate, fixed at the bot-
tom and constrained to far-field shear stress along the top edge.
Fig. 20 shows the geometry and initial conditions of the problem.
The physical parameters are s ¼ 1 unit, E ¼ 30� 106 units and
m ¼ 0:25. This case was solved in [11] and is included here in order
to demonstrate the robustness of the method and the range of
problems, the developed software is able to deal with. The problem
is solved in 14 steps. Fig. 21 shows the meshes constructed for the
time steps 0, 7 and 14, whose associated number of nodes are 357,
468 and 618, respectively. Good agreement is obtained for the
crack path with the results presented in [11].
7. Conclusions

A flexible and stable 2D crack propagation method based on
Lepp–Delaunay mesh refinement/improvement algorithm was
presented. This combines a finite element method for obtaining
displacement values at the nodes with a crack advance technique
which allows to obtain fracture parameters and crack propagation
direction. The method presented uses a local mesh modification
technique that selects and inserts new nodes, by using a Lepp–Del-
aunay algorithm, which in turn produces new elements with geo-
metric quality analogous to those of the initial mesh. The algorithm
can be used either to generate an initial mesh, or to refine/improve
an existing mesh, without reconstructing the whole mesh, and
without requiring mesh improvement post-processing. This char-
acteristic is particularly useful for crack growth numerical method-
ologies, where the mesh needs to be modified in each simulation
step, with meshing time consumption being relevant in global per-
formance. The algorithm produces a new mesh by modifying the
mesh of the previous step in a minimal time in comparison with
alternative published methods. Meshing algorithm works locally,
maintaining mesh element quality and generating a smooth tran-
sition between elements near crack tip and elements in the rest
of the mesh. Three test problems with known numerical and/or
experimental solutions were run in order to test the method,
obtaining good results in terms of crack path prediction and mesh
quality.

It is worth noting that the method presented has a big potential
in crack propagation analysis for large and complex geometries
since its scales very well because this implementation guarantees
robust mesh generation and very little time consumption between
propagation steps, independently of the size or complexity of the
geometry, while alternative methods raise the time consumption
and/or loose reliability in the mesh generation steps. The method
can also be generalized to another fracture mechanics problems,
including elastic plastic, dynamic fracture mechanics or fatigue
crack growth. It is also desirable to generalize this method for
adaptive fracture mechanics models, and to 3D problems, for
which Lepp–Delaunay algorithms implementation are in progress.
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