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ABSTRACT. In this paper we deal with existence and uniqueness
of solution to the fully nonlinear equation
—F(D%*u) + |ul*"'u = f(z) in R,

where s > 1 and f satisfies only local integrability conditions. This
result is well known when, instead of the fully nonlinear elliptic
operator F', the Laplacian or a divergence form operator is consid-
ered. Our existence results use the Alexandroff-Bakelman-Pucci
inequality since we cannot use any variational formulation. For
radially symmetric f, and in the particular case where F' is a max-
imal Pucci operator, we can prove our results under less integra-
bility assumptions, taking advantage of an appropriate variational
formulation. We also obtain an existence result with boundary
explosion in smooth domains.

1. INTRODUCTION

The problem we study in this article is the solvability of the differ-
ential equation

—F(D*u) + |ul*'u = f(z) in RY, (1.1)

when F'is a fully nonlinear, uniformly elliptic operator, s > 1 and for
f having only local integrability properties, but without assuming any
growth condition at infinity.

When F is replaced by the Laplace operator, Brezis showed in [1] that
whenever s > 1, one can find a (unique) solution to the above problem
assuming only local integrability of f. This very weak assumption is
enough when the nonlinearity is increasing and super-linear, as in the
case of |u[*"'u with s > 1. This result was extended to the case of
a general quasilinear operator, including the p-Laplace operator, and
to parabolic equations by Boccardo, Gallouet and Véazquez in [2] and
3], respectively. See also the work by Leoni in [17] where more general
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nonlinearities are considered. In all these works, the existence of the
solution is obtained using in a crucial way the variational structure of
the equation by choosing appropriate test functions to obtain a priori
estimates.

On the operator F' we assume uniform ellipticity, that is:

M \(M —N) < F(M) — F(N) < M ,(M — N) for all N,M € Sy,

and F(0) = 0. Here 0 < A < A, M, and Mj, are the extremal
Pucci operators as defined in [5] and Sy is the set of N x N symmetric
matrices. We assume throughout the paper that F' satisfies this condi-
tion. Whenever no confusion arises we will simply write M™ and M,
omitting the parameters. In order to find a solution to (1.1), we have
to work in the viscosity solution framework and we cannot use test
functions and integration by parts to derive a priori estimates. The
use of the viscosity theory forces us to work in the LY (IRY) framework
and indeed, the presence of the |u|*~!u term in the equation allows us
also to prove the existence of a unique L"-viscosity for (1.1) whenever
f € LY (IRN). Since there is no available theory for viscosity solution

loc
when f € L] (RY), at this point we cannot expect to obtain results
under this weaker condition as in [1]. However, in view of our results
in Section §3 for the radially symmetric case, one may expect to find
solutions when f has less than L"-integrability, but at this point we

are not able to do it. Our first theorem is the following

Theorem 1.1. Assume that s > 1. For every function f € LY. (IRY),
the equation (1.1) possesses a unique solution in the L™ -viscosity sense

and if f >0 a.e. then u(x) >0 for all v € RY.

The formal definition of solution is given in Section §2.

It is well known that in the case of super-linear problems one can
find solutions which explode at the boundary of a bounded domain.
This has been shown for various cases of linear and nonlinear second
order elliptic operators in divergence form. See for instance the work by
Keller [14], Loewner and Nirenberg [18], Kondrat’ev and V. Nikishkin
[15], Diaz and Letelier [11], Diaz and Diaz [10], Del Pino and Letelier
[9] and Marcus and Veron [19].

In the case of fully nonlinear operators, the techniques used to prove
Theorem 1.1 can also be used to prove the following theorem on the
existence of solutions in a bounded set, with explosion on the boundary.
The simplest situation is the following

Theorem 1.2. Let s > 1 and Q C RN be a bounded domain in IRN.
Assume that f € LY () and for some g € LY (Q) we have f > g, then

loc
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the equation

—F(D*u) + |ul*'u = f in Q,

lim u(z) = oo

Tr—

possesses at least one solution in the L™ -viscosity sense.

Here we only address this simple situation, but the same kind of re-
sults should also hold true under more general assumptions. Moreover,
the asymptotic study of the blow-up rate, both when f € LY () or as
when f itself explodes at the boundary, is an interesting problem due
to the nonlinearity of the differential operator.

At this point we would like to mention the work of Labutin [16],
where the author studies the local behavior of solutions to the same
type of equations as ours, without the right hand side, establishing
removability of singularities.

In the second part of this paper we analyze the case of radially sym-
metric data f. Here we can prove existence and uniqueness of solutions
under weaker integrability assumptions on f but only in the particular
case when I is the maximal Pucci operator. The reason for this is that
in the radial case we can re-write equation (1.1) as a divergence form
quasilinear ordinary differential equations, for which one can define a
notion of weak solution. In this case we are back to integration by
parts techniques.

Comparison between radial solutions and positivity results however,
are not obtained in a direct way. This is because the coefficient of the
second order derivative in the equation depends on the solution and its
first derivative in a nonlinear way. Thus, when comparing two solutions
we do not have an obvious common factor for the second derivative of
the difference or, if we have it we do not control its integrability at the
origin. An ad hoc argument has to be found to do comparison in this
case, see Lemma 3.3.

Theorem 1.3. Assume s > 1 and f is a radially symmetric function
satisfying

/R PN F(r)|dr < oo, (1.4)

0

for all R > 0. Here N, := 2(N —1)+ 1, with A\ and A being the
parameters defining the Pucci operator Mj\iA. Then equation (1.1)

with F' = /\/lj\iA has a unique weak radially symmetric solution and if
f is nonnegative then u is also nonnegative.
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The formal definition of radially symmetric weak solution and the
proof of Theorem 1.3 are given in Section §3. See also Remark 3.1
where we discuss the assumptions on f in this case.

Remark 1.1. In all our results, the power function |u|*~‘u could be re-
placed with nonlinear functions which are super-linear at infinity, how-
ever for simplicity all throughout the paper we will only deal with the
pure power case. In this direction see [1], [2] and [17]. Let us also stress
that the assumption s > 1 is essential for our results to hold, as we can
see from the discussion in [2].

Acknowledgments. The authors wish to thank the referee for
suggesting to extend the original result to the setting of general fully
nonlinear elliptic operators.

2. THE GENERAL CASE WITH f € L{Y (IRY).

loc

We devote this section to prove Theorem 1.1 by an approximation
procedure together with a local estimate based on a truncation argu-
ment and the application of the Alexandroff-Bakelman-Pucci inequal-
ity.

We start recalling the notion of solution suitable when the right hand
side in (1.1) is only in L (IRY). Following the work by Caffarelli,
Crandall, Kocan and Swiech [4], we first notice that the framework
requires p > N — gy, where ¢y > 0 depends on the ellipticity constants
A and A. Thus the case p = N, which is our framework, is covered
by the theory. Even though the context of the definitions in [4] is
much more general, for the purposes of this article we only consider a

‘semilinear’ case (1.1)

—F(D*u) + G(u) = f(z) in RN, (2.1)
where G is an increasing continuous odd function. According to [4] we
have the following definition:

Definition 2.1. Assume that f € L} _(IRN), then we say that a contin-

loc
uous function u : RY — IR is an LP-viscosity subsolution (supersolu-

tion) of the equation (2.1) in RN if for all ¢ € W2P(IRN) and a point

C
2 € RN at which u — ¢ has a local maximum (respectively, minimum,)

one has

ess lirmrlj%lf(—F(DQQP(ZE)) + G(u(x)) — f(z)) <0 (2.2)
(ess lim sgp(—F(ngo(x)) + G(u(x)) — f(x)) > 0). (2.3)

r—x
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Moreover, u is an LP-viscosity solution of (2.1) if it is both and LP-
viscosity subsolution and an LP-viscosity supersolution.

In what follows we say that w is a C-viscosity (sub or super) solution
of (2.1) when in the definition above we replace the tests function
space ¢ € W2P(IRN) by C?(IRN). In this case the limits (2.2) and
(2.3) become simple evaluation at &, as given in [7].

As we mentioned above, the idea is to consider a sequence of ap-
proximate problems and then take the limit at the end. So, given
f e LY.(IRY) we assume {f,} is a sequence of C°°(IRY) functions so

that for every bounded set €2
lim / f — f|Ndz = 0. (2.4)
Q

n—oo

The sequence {f,,} is easily constructed by mollification and a diagonal
argument.

The following is a basic existence and regularity result we need in
our construction of a solution to (1.1).

Lemma 2.1. For everyn € IN there is a solution u, € C*(B,) of the
equation

1
—F(D*uy) + —up + [un|'u, = folz) in B, (2.5)
n
where B, = B(0,n) is the ball centered at 0 and with radius n.

Proof. We observe that there is a constant M,, so that
—M? < fu(x) < M7 forall ze€ B,

and then v_ = —M,, and v, = M, are subsolution and subsolution of
(2.5), respectively. Then we can use the existence Theorem 4.1 in [7] for
viscosity solutions of (2.5) to find w,, a C-viscosity solution. We observe
that the hypothesis of Theorem 4.1 are fully satisfied by our operator,
which is proper and satisfies the other hypothesis with v = 1/n, see
[7]. Noticing that w,, solves the equation

F(D?*u,) = gy (2.6)

for the continuous function g,(z) = u,(x)/n + |u,(2)|*u,(x) — fu(z),
then u,, € CYP(B,), for certain 8 > 0, by applying the regularity
theory of Caffarelli [6].

Our next lemma is a version of Kato’s inequality for C-viscosity
solutions of equation (2.1) with continuous right hand side.
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Lemma 2.2. Assume Q C RN and u,v,f : Q — IR are continuous
functions and let H(z) = G(u(z)) — G(v(z)). If u—v is a C-viscosity
solution of equation

—F(D*(u—v))+ H(x) < f in (2.7)
then (u — v)™ is a C-viscosity solution of
—F(D*(u—v)") +H" < f* in S (2.8)

Proof. If x € Q satisfies u(z) — v(z) > 0 or u(x) — v(z) < 0 then
obviously u — v satisfies (2.8) at z. If u(xz) — v(z) = 0 then we choose
a test function ¢ so that (u — v)* — ¢ has a local maximum at x, but
then (u —v) — ¢ has a local maximum at = and then we may use (2.7)
to obtain

—F(D*p(x)) < f*

so that (2.8) is satisfies in x, since H(x) =0. O
Now we give a generalization of Kato’s inequality (see [13]) for C-
viscosity solutions of equation (2.1).

Lemma 2.3. If we assume that u, f : 2 — IR are continuous functions
and u is a C-viscosity solution of equation

—~F(D*u)+Gu)=f in Q (2.9)
then |u| satisfies
— ME(D*ul) + G(jul) < [f|  in Q (2.10)
in the C-viscosity sense.

Proof. We first use v = 0 in Lemma 2.2 to get that u™ is a subsolution
with f* as right hand side, and then observe that

~MH(D*(~u)) + G(—u) < [,

since F' < Mt and M~ < M™, that gives that v~ is a subsolution
with f~ as right hand side. We conclude that |u| = max{u™,u"}
satisfies (2.10) O

The following lemma contains the crucial local estimate for solutions
of (2.5). This result was proved by Brezis [1] in the context of the
Laplacian and tells that solutions have local estimates independent of
the global behavior of f. The approach in [1], see also [2], is to use
suitable test functions and integration by parts. This cannot be done
here since the differential operator does not have divergence form. For
this result the fact that s > 1 is essential.
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Lemma 2.4. Let s > 1 and g continuous in Q C RN, an open set.
Suppose that g > 0 in Q and u is a C*()) nonnegative C-viscosity
solution of

1
—~MT(D*u) + ~u+ |ul*fu < g in €,
n
then for all R > 0 and R' > R such that Bg C €2
s;lpu <C(l1+ HgHLN(BR/)), (2.11)
R

where C'= C(s, R, R’ N, X\, \) does not depend on g nor n.

Proof. Let £(z) = (R)?—|z|? and 8 = 2/(s—1) and consider v = £°u.
Now we want to find the equation satisfied by v. Suppose that v — ¢
has a local maximum, v(2) = ¢(z), Dv(2) = De(2) and ¢ € C%. Then
u— &£ P has a local maximum at #. Therefore £ %¢ is a test function
for v and so

1
= ME(D%0) + —p + el Tl <P+ T+ ITHIIT,

(2.12)
I = —B¢& oM (D%) (2.13)
II = B(B+1)E2vMT(DE® DE) (2.14)
I = —B¢ "M (DE® Dy + Dy @ DE) (2.15)
So v satisfies the equation
— M (D) + 15721; +ol] Tt <EPg4+ T+ 11+ 111
" (2.16)

in B(R') in the C-viscosity sense. Here in I, I] and I11 we replace Dy
by Dv.

In what follows we write Q" = {& € Q/v(z) > 0}. Consider the
contact set for the function v, which is defined as
I ={r € Br/3pec RY with v(y) < v(z)+ (p,y — x), Vy € Br'}.

We observe that I’ € Q" N B and that if o is the concave envelope
of v in Bp then for x € Br we have v(z) = v(x) if and only if z € T}
The function v, being concave, satisfies

o(y) <v(x)+ (Dv(x),y — z),
for all z € T} and y € Br. Choosing adequately y € dBp we obtain

|Du(z)| < Rf’(_xfﬂ, for all « €T, (2.17)
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Now we claim that the function v satisfies
~MHT(D*) + ()t =C) < €Pg  forall z el
Notice that in I we have I, 11 < C¢~ %0, and
I1T < c€ 7Y Dv| < ¢(R' + |z))€ %0 < CE 2,

where we used (2.17). Here ¢ and C' are constants depending on R’ and
s. Therefore the claim follows.

Now we define w = max{v — C*®=1 0} in Br and we observe that
't ¢ and T'p C {x € Br /w > 0}. Consequently

—MT(D*w) < &9, a.ein T

Thus, from Alexandroff-Bakelman-Pucci inequality (see for example

[5]),

supw < C1€%]| v (s,

R/
but then
csupu < supv < supw + CVP) < C(1+ |lgllLvs,),
Bgr BR/ BR’
where ¢ and C represent generic constants depending only on s, R, R', N, A
and A but not on g nor n, as desired. O

Remark 2.1. Observe that in this estimate the constant C' does not
even depend on the possibly arbitrary values of u on 0. This fact is
very important in the study solutions of this equation having explosion
on the boundary of ), as we see in Theorem 1.2.

Proof of Theorem 1.1 (Existence) We start with a sequence of
smooth functions {f,} such that for every bounded set €2 (2.4) holds.
Then we use Lemma 2.1 to construct a sequence of solutions {u,} of
equation (2.5). According to Lemma 2.3 and 2.4, for every 0 < R <
R’ < n we have

sup [un| < C(L+ || flly ),
Bgr

where C' does not depend on f nor in n. With this inequality in hand
we look at equation (2.5) and use Proposition 4.10 in [5] to obtain, for
every bounded open set €2,

| tn]|co@) < C,

where C' does not depend on n, but only on f, €2 and the other pa-
rameters. By a diagonal procedure, we then obtain a subsequence of
solutions of equation

—F(D2un) + cply + ‘un|8_1un = fn7
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that we keep calling {u,}, such that u,, converges uniformly over every
bounded subset of IRYN. Here the equation holds in B; Jen> With ¢, — 0
as n — oo, and f, has been renamed. Then using Theorem 3.8 in [4]
we conclude that u is an L¥-viscosity solution of (1.1), completing the
proof of the existence part of the Theorem 1.1. O

The next lemma gives the positivity part of Theorem 1.1.

Lemma 2.5. Assume s > 1. If f <0 a.e. and u solves equation (1.1)
in the LN -viscosity sense then u < 0 in RN and if f > 0 a.e. then
u>0 in RYN.

Proof. We proceed as in [1], considering the function defined by Os-
serman in [20]:

CRP

(R? — [x]?)7
where 3 = 2/(s — 1) and C*! = 28A max{N, 3 + 1}. Since U’ and

U” are positive, we see that MT(D?*U) = AAU and then a direct
computation gives that

—~ MHY(D?*U)+U*>0 in Bg. (2.18)
From here, the equation for v and the non-positivity of f we obtain
~MH(D?*(u = U)) + |[ul*'u—U* <0.

We observe that this inequality is in the L"-viscosity sense, however
since f was dropped, it also holds in the C-viscosity sense. Then by
Lemma 2.2 we find

MY (D*(u = U)") + (Ju]"ru = U")" <0

from where we get

Uz) = in By R>0,

~MT(D*(u—U)") <0 in Bp.

We observe that the function u — U is negative in the set R—§ < |z| <
R, for some sufficiently small § > 0. Then by Alexandroff-Bakelman-
Pucci maximum principle (v — U)" = 0 which implies u — U < 0 in
Bpr. From here, taking point-wise limit as R — oo we find that u < 0.

In case f > 0 we proceed similarly, but relying in Lemma 2.2 with
the operator M, to obtain that u + U > 0 in Bg. From here the
result follows. O

Proof of Theorem 1.1 (Uniqueness). If u; and us are solutions of
(1.1) then the continuous function w = u; — uy satisfies

—~ M (D*w) + |uy [¥ uy — |ug|* tug <0
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in the C-viscosity sense, see for example Proposition 2.1 in Da Lio and
Sirakov [8]. Next we use Lemma 2.2 to obtain

_M+(D2w+) + (|u1|371u1 _ |u2|371u2)+ <0

and using that
l|a|*"ta — |b]*"'b| > |la — b]*, Va,b< IR,
for certain 0 > 0 we conclude that
— MY (D*w™) +6(wh)* <0. (2.19)

Using Lemma 2.5 we obtain that u; — uy < 0. Interchanging the roles
of u; and us we complete the proof. O

Next we give an existence theorem for explosive solutions, whose
proof follows easily from the estimate given in Lemma 2.4. We keep it
in the simplest form, but we think it may be extended to more general
situations.

Proof of Theorem 1.2. We first consider an increasing sequence of
smooth functions {f,} € L™(Q) such

lim/g|fn—f|N:0.

n—oo

Then we find u,, a solution to the problem

—F(D%up) + |ua|tun, = fo in €, (2.20)
U, = n in  09Q. (2.21)

Letting w,, = u,41 — u,, we see that w,, satisfies
_M+(D2wn) + |un+1|871un+1 - |un|571un > fonr1— Jn

the we may use Alexandrof-Bakelman-Pucci inequality to obtain w, 1 >
u, in  for all n € IN. By arguments similar to those given in the proof
of Theorem 1.1 (Existence), using Lemma 2.4, we obtain a subsequence,
we keep calling {u,} so that u, converges uniformly to a solution u of
(1.2). Moreover u > u, in € for all n so that liminf, 9o u > n, for all
n, so that u also satisfies (1.3). O

Remark 2.2. The argument given above allows to prove the existence
of a solution to equation (1.2) assuming that f € LY.(Q). Naturally,
in this case we do not know about the behavior of the solution on the

boundary.
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3. THE RADIAL CASE

In this section we are going to consider only the particular case when
F' is a maximal Pucci operator M™. This operator can be written in a
very simple way when we are dealing with radially symmetric functions.
Since the eigenvalues of D?u are u” of multiplicity one and u’/r with
multiplicity N — 1 and defining 0(s) = A if s > 0 and §(s) = A if s < 0,
then we easily see that for every u radially symmetric,

u'(r)

ME(D*u)(r) = O(u"(r))u"(r) + 0(u/(r)) (N — 1) ——.

r

Then we see that equation (1.1) in the classical sense becomes

— 0" (r)u" — 0(u'(r))(N — 1)u7/ + ul*"u = f(r),
(3.1)

for a radial function f. In order to write this equation in a more simple
form, we make some definitions. First we observe that for solutions of
(3.1) we have

O(u"(r)) = 0{—0(u'(r))(N — 1)% + " — f(r)},
which is more convenient as we see. We define
O(r, u(r), u'(r)) = 0{—0(u'(r)) (N — 1)% + |l = ()},
the ’dimension’

N(r,ulr), /() = b (r)) (N-1)+1

and the weights

" Naum)wl ()-1 4

plr, u(r),u (r)) = el 7

and
plr ), ') = GEE S
If we define
A A
N+:X(N—1)+1, and N,:X(N—l)le

we see that N; < N(r,u(r),«'(r)) < N_ and also,
V=t < plryu(r), o/ (r) < rPMhif0 < r <1

and
<p<

=
>



12 MARIA J. ESTEBAN, PATRICIO L. FELMER, AND ALEXANDER QUAAS
With these definitions we find that (3.1) is equivalent to

—(pu') + plul*"u = pf(r). (3.2)
When no confusion arises we omit the arguments in the functions p
and p, in particular when we write pv’ we mean p(r,v(r),v'(r))v'(r)
and so on. What is interesting about equation (3.2) is that it allows
to define a weaker notion of solution which extends the L¥-viscosity
sense to more general f. With this new notion we can prove a theorem
for the existence of radial solutions of (1.1) with a weaker condition on
f than in the non-radial case of Section §2. See Remark 3.1.

We consider the set of test functions defined as

H={p:[0,00) = R / 3¢ € Wy (IR") such that ¢(z) = o(|z|)},

where W, (IR") denotes the space of functions in W1h°(IRN) with
compact support.

Definition 3.1. We say that v : [0,R] — IR is a weak solution of
(8.2) with Dirichlet boundary condition at v = R, if u is absolutely
continuous in (0, R], u(R) = 0,

R R
/ plul®dr < oo, / plu|dr < oo (3.3)
0 0
and
R R
/ pu' o' 4 plul* tupdr = / pfpdr Yo € H. (3.4)
0 0

Now we state our theorem precisely which is a more complete version
of Theorem 1.3

Theorem 3.1. Assume s > 1 and f is a radial function satisfying for
all R > 0,

/OR PN () dr < oo, (3.5)

Then equation (3.2) has a unique weak solution u and if f is nonneg-
ative then u is also nonnegative.
Additionally, for any 1 < q <2s/(s+1)

/r plu'|%dr < oo for all R > 0. (3.6)
0

Moreover, the function pu' is differentiable a.e. in (0,00) and conse-
quently satisfies

lir%(pu’)('r’) =0, lim plu’|dr = 0. (3.7)
r— r— 0
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In order to prove the theorem above we will perform an approxima-
tion procedure as in the general case. Because the problem is radial
and has a divergence form formulation we can get better estimates and
pass to the limit, under weaker assumptions on f.

By regularizing f and using a diagonal procedure we may find a
sequence of radial smooth functions {f,} such that for all 0 < R

BN
lim T fu(r) — f(r)|dr = 0. (3.8)

n—oo 0

Moreover, we may assume that there exists a function g : (0,00) — IR
such that | f,(r)| < g(r) for all 7 > 0 and fFrN+=1|g(r)|dr < +oo, for
all R > 0.

First we have an existence result for the approximate problems.

Lemma 3.1. For every n there is solution u, in C%[0,n] satisfying
un(n) =0, (3.3) with R =n and

/ pnu;gpl =+ ﬁn(cnun + |un|871un)90 = / pnfne, Vo€ H.
0 0 (3.9)

where py(r) = p(r,u,(r),ul (1)) (similarly for p,). and {c,} is a posi-
tive sequence converging to zero.

Proof. We may use the same argument of Lemma 2.1 together with
Da Lio and Sirakov symmetry result [8]. O

Now we get some estimates following the ideas of Boccardo, Gallouet
and Vazquez in [2].

Lemma 3.2. Let {u,} be the sequence of solutions found in Lemma
3.1. Then, for all0 < R and m € (0,s — 1) there is a constant C
depending on R, m,s, N, X\ and A, but not on [ norn, such that for all
n € IN we have

R 2R
/ pn\un\sds§0(1+/ rNe 1) £ldr) (3.10)
0 0

and
2R /12 R
Pn|u,|*dr / Ny—1
—n (1 + dr). 3.11
b @ g SC0 . @

Proof. We consider the function ¢ defined as

t dt
0= |, g 12

and extended as an odd function to negative ¢, which is smooth and
bounded. We also consider a cut-off function 6 : [0,00) — IR being
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smooth, with support in [0,2R], equal 1 in [0,R], 0 < 6 < 1 and
10'| <2/R.

We define v = ¢(u)0*, where a > 2s/(s — 1 —m). Omitting the
index n in what follows, using v as a test function we obtain

2R "120«d 2R
/0 —mp\u| r —i—/o ﬁ\u\5_1u¢(u)9adr

(14 [uf) 4
2R 2R
< / pfo(u)0%dr — a/ pu' p(u)0* 10 dr (3.12)
0 0

2R 2R
< (N fldr 4 [ plaloetar), (3.13)
0 0

where we drop the term with ¢, in the first inequality. Using Young
inequality, for some ¢ > 0, we have

2R B 2R mp|u/[20*
u'|0° rdr < e/ ——dr
/0 Pl = Sl Ao [u)te

1 2 1+mpa—2
+ —/ p(1+ [u)) 0 2dr  (3.14)
4e Jo
and again

2R 2R
/0 p(1+ |u)) ™0 2dr < 52/0 p(1+ |u])*6%dr

C 2R a(s—m—1)—2s

+ s—m—1 d’r‘

e2 Jo
2R

< Cle?+e? / plul*6%dr), (3.15)
0

where C' is a generic constant independent of . Here we used our
choice of a.

Next we observe that [t|* < [t|*"*¢(t)/¢(1) + 1 for all ¢ € R. Using
this in (3.15) and then using what one gets and (3.14) in (3.13), with the
choice of a sufficiently small € we finally obtain the desired inequalities.
O

Corollary 3.1. For all g € (1,2s/(s + 1)) and for every 0 < R there
18 a constant as in Lemma 3.2, such that

R 2R
/ palul|0dr < O(1 +/ N1 £ dr). (3.16)
0 0

Proof. By Holder inequality we find

2—gq

R R pld)?dr S/ R tm) ) 2
foar < [* =S (]t e d
[ otetvar < ([ ) ([ o ) T
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then by our choice of m in Lemma 3.2 it is possible to choose ¢ > 1
such that (m + 1)q/(2 — q¢) < s and then from Lemma 3.2 we obtain
the result. With the adequate choice of m we can cover the range of q.
O

Proof of Theorem 3.1 (Existence). We consider the sequence of
{u,} of solution found in Lemma 3.1 satisfying (3.9). In what follows
we show that this sequence converges to a weak solution of (3.1).

Now, considering the estimates in Lemma 3.2, we see that the func-
tion p,u! has weak derivatives in any interval of the form (rg, Ry) with
0 < 7o < Ry. Since the function p,, is differentiable a.e., we obtain then
that w, is twice differentiable a.e. and v/ is in L'(ry, Ry), because of
the equation satisfied by w, and estimates in Lemma 3.2. From here
we conclude that u] and u, are uniformly bounded in (rg, Ry). Us-
ing the equation again we conclude then that u” is bounded by an L!
function in (rg, Ry), which implies that w, is equicontinuous. By the
Arzela-Ascoli Theorem there exists a differentiable function u in the
interval (ro, Rp) such that, up to a subsequence, u, and u, converges
to u and u’ respectively, in a uniform way in the interval (rg, Rp).

We may repeat this argument for any interval (rg, Ry), so that by a
diagonal procedure, we can prove that up to a subsequence, {u,} and
{u!,} converge point-wise to a differentiable function u : (0,00) — IR.
Notice that {p,} converges point-wise to p(r) = p(r, u(r),u' (r)).

Next we use the estimate (3.16), to prove that the sequence {p,u,}
is equi-integrable in [0, R] and then it converges in L'[0, R] to pu’, for
all R > 0. It is only left to prove that {p,|u,|*} converges in L'[0, R].
For this purpose we introduce, as in [2], a new function ¢ in IR defined
as ¢(v) = min{r —t,1} if v > 0 and extended as an odd function to
all IR, for a parameter ¢ > 0. Then we consider inequality (3.12) with
the cut-off function ¢(u,)0 to get

~nun8dr</ on| frldr + C Wl |dr,
/E;“m(o,R)p [unfdr < Egm(o,zR)p [ E;m(o,m)p [a]

where E! = {r > 0/ |u,(r)] > t}. From (3.10) and (3.16) it follows
that the second integral approaches zero if ¢ — oo. From here the
equi-integrability of p,|u,|® follows and we conclude.

Finally (3.7) is consequence of the integrability properties just proved
for u,, that also hold for u. This finishes the proof. O

Now we prove the remaining part of Theorem 3.1, that is uniqueness
and non-negativity of weak solutions. For this purpose it would be
natural to use comparison arguments, however those are a bit delicate
in this case. In fact, in a natural way we may define the notion of weak
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subsolutions (supersolution) by writing < and use only nonnegative
test functions in (3.4). It happen that, if u is a weak subsolution and
v is a weak supersolution, we cannot be sure that w = u — v is a weak
subsolution, since we do not have good control of pw’ at the origin.
We first consider the no-negativity of solutions of when f is nonneg-
ative. For that purpose we need to find appropriate test functions.

Lemma 3.3. If u is a solution of (3.1) in the weak sense and f < 0
a.e. in [0,00) then u < 0 for all v > 0.

Proof. As in the general case, we consider the function U given in the
proof of Lemma 2.5, which satisfies (2.18) in Bg. On the other hand
by the regularity of u given above, we have that u(z) = u(r) satisfies
equation (1.1) a.e. We may subtract the equations for U and u and get

~ MY (D*(u—U)) + |ul*'u —U* <0 a.e. in Bg.
If we write w = u — U then we see that
— (pw") + p(|ul*"tu — U®) <0 in (0, R) a.e. (3.17)

Here the function p and p are defined in the natural way with 6(r) =
O(w'(r)) and © given by

O(r) =60(w"(r)) in (0,R)a.e.

We see that the function w is negative near R. If there exists 0 <
r1 < 19 < R such that w > 0 in (r1,73) and w(r) = w(ry) = 0 then
we may choose the function ¢, defined as ¢ = w in (r1,79) and ¢ =0
elsewhere, as a test function in (3.17) to get

R
/ plw'* 4+ p(|u)*~tu — UHwdr < 0.
0

But each term in the left hand side is positive, then w = 0 in (ry, rs).
Thus, either w(r) < 01in (0, R) or there is ry € (0, R) such that w > 0
in (0,79) and w(ry) = 0. To see that the second case is impossible we
just need to prove that
/ ’ p(w)|w'|dr < oo and  lim(p(w)w')(r) = 0,
0 0 (3.18)
since in this case we may use the function ¢, defined as ¢ = w in
(7,r0) and ¢ = w(r) in (0,7), as a test function in (3.17) and get a
contradiction.
Assuming (3.18) for the moment, we see that u < U in [0, R] and
this is true for all R > 0. Taking limit as R goes to infinity, keeping r
fixed, we conclude that u < 0 in [0, 00).
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To complete the proof we show (3.18). To see this, we first observe
that there is 7 € (0,79) such that w'(7) < 0 and then from inequality
(3.17) we find that w"(r) > 0 a.e and w'(r) < 0 in r € (0,7). A
posteriori we see that w”(r) > 0 a.e and w'(r) < 0in r € (0,79) and
consequently p(w) = r¥+~1 there. Next we assume that ' is negative at
some point in (0,79), because otherwise the functions u and «" would
be bounded and then w and w’ are bounded, yielding (3.18). Since
u” > U" > 0in (0,ry) we see then that v’ < 0 near the origin and
consequently p(u) = r™+~1. Since (3.7) holds we see that (3.18) holds.
]

Proof of Theorem 1.1 (Uniqueness). Let u; and us be two solu-
tions of equation (3.1) in the weak sense, then they satisfies (1.1) a.e.
in RN, with abuse of notation u;(z) = u;(|z|), i = 1,2. Then we define
w = uy — ug and proceed as in the Proof of Theorem 1.1 to obtain that
w satisfies (2.19) a.e. in IRY. Now we follows the proof of Lemma 3.3.
]

Remark 3.1. Let us consider a continuous function f in RN \{x; /i =
1,...,k}, such that near each singularity

fx) ~

In order to apply Theorem 1.1 we need o; < 1 for alli =1,....k. In
contrast, assuming that f is radially symmetric with a singularity at
the origin of the form

C :
— " z~w, i=1,..,k.
|z — 2|

f(r)fv%, r~0,r>0,

r

in order to apply Theorem 3.1, we only need o < N,.. We observe that
if AJA — 0 then N, — 1, while if \/A =1 then N, = N.

When we have a radial function f being in LY (IRN) with p > N/N
then f satisfies our hypothesis (3.5) and we may apply Theorem 3.1.
This is particularly interesting if N and Ny are close to each other.

Remark 3.2. Let f be a function in IRN and define

g(r) = max{[f(z)[ / |z = r}

and assume that g satisfies (3.5). This will be the case if f has a
singularity of the form r=* with o < N,.

Then we may construct a solution of (3.2). This solution is a "candi-
date’ for a supersolution for equation (1.1) with f as a right hand side.
However, since the two notion of solutions are not compatible, this is
not posible.
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Remark 3.3. In this section we have considered only the case of the
Pucci operator M™, however these results can be adapted for the oper-
ator M~ as well.
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