
ORIGINAL ARTICLE

Ambient contracts: verifying and enforcing ambient object
compositions à la carte

Christophe Scholliers • Dries Harnie •

Éric Tanter • Wolfgang De Meuter •

Theo D’Hondt

Received: 29 September 2010 / Accepted: 4 December 2010

� Springer-Verlag London Limited 2011

Abstract Current programming languages do not offer

adequate abstractions to discover and compose heteroge-

nous objects over unreliable networks. This forces pro-

grammers to discover objects one by one, compose them

manually, and keep track of their individual connectivity

state at all times. In this paper we propose Ambient Con-

tracts, a novel programming abstraction to deal with the

difficulties of composing objects connected over unreliable

networks. Ambient Contracts provide declarative heterog-

enous group discovery and composition while dealing with

the unreliability of the network. An ambient contract

allows runtime verification and enforcement of the mes-

sages sent between the participants in the contract. The use

of our abstraction significantly reduces the code base and

allows programmers to focus on the core functionality of

their application. Our claims are reinforced by comparing

the implementation of an example scenario in our contracts

with a Java implementation using M2MI.

Keywords Contracts � Programming languages �
Concurrency

1 Introduction

Developing applications which make use of ambient

services is substantially different from developing appli-

cations for fixed computer networks because of two

important reasons [12]: nodes in the network only have

intermittent connectivity (due to the limited communica-

tion range of wireless technology combined with the

mobility of the devices) and applications need to discover

and compose services without relying on a additional

infrastructure such as a centralized server. These proper-

ties do not map well to regular programming languages

[4] which treat disconnections as fatal errors and assume

that all communication references are stable. As a result,

it is currently extremely hard to program and debug

applications that are deployed in such a highly dynamic

environment.

The lack of abstractions for verifying and enforcing

ambient service composition in current systems results in

complex and unmaintainable code [11]. In this paper we

present a novel programming abstraction called Ambient

Contracts to deal with these difficulties. The four main

novelties of our abstraction are:

1. Runtime deployable pre- and post-conditions that

verify the interactions of ambient objects;

2. Declarative heterogenous group service discovery;

3. Disconnection strategies to deal with service discon-

nection in a composition;

4. Ambient access modifiers to shield the access to

services from the ambient.

C. Scholliers (&) � D. Harnie � W. De Meuter � T. D’Hondt

Software Languages Lab, DINF, Vrije Unversiteit Brussel,

Brussel, Belgium

e-mail: cfscholl@vub.ac.be

D. Harnie

e-mail: dries.harnie@vub.ac.be

W. De Meuter

e-mail: wdmeuter@vub.ac.be

T. D’Hondt

e-mail: tjdhondt@vub.ac.be

É. Tanter

PLEIAD Laboratory Computer Science Dept (DCC),

University of Chile, Santiago, Chile

e-mail: etanter@dcc.uchile.cl

123

Pers Ubiquit Comput

DOI 10.1007/s00779-010-0355-z

Before presenting our solution in depth, we use an

example scenario to show how current approaches fall

short and derive requirements for ambient service compo-

sition abstractions. Next we present DEAL, a prototype

implementation of our ambient contracts and show its

effectiveness by comparing the implementation of our

example scenario with an implementation using state of the

art ambient technology. From micro benchmarks of our

prototype we can conclude that the overhead for verifica-

tion is less than 20%. We finish by listing the related work

and the conclusion.

2 Motivation

In this section we present the issues programmers face

when composing ambient services by means of a smart

home environment. Bob has a television and a sound sys-

tem in his living room; he receives a lot of phone calls

because he is an important business person. As his living

room is a smart environment watching television and

receiving phone calls does not pose any problem. When

Bob receives a phone call, his digital television and/or his

sound system will pause to not disturb the conversation.

While this example is an extreme simplification of an

ambient service composition, it already shows the diffi-

culties in implementing such compositions with current

software engineering abstractions.

Pseudo code for implementing the example scenario in a

high-level ambient programming language incorporating

single service discovery is shown in Fig. 1.

The implementation first creates two handlers (lines

3–13) which are called when a television or a sound system

is discovered. Each handler keeps track of the discovered

services by storing a reference in the state array (lines 4

and 10). If the connection is lost, the discovered service is

removed from the state array, and it is reinserted when

the connection is reestablished (lines 5–6 and 11–12). The

third handler (lines 15–27) is invoked when the phone rings:

it uses the contents of state and a chain of if-then-else

statements to determine the appropriate course of action.

As we can see, in this example a large portion of the

code is dedicated to discovery and tracking state changes,

while only a small portion is dedicated to the actual base

functionality (pausing devices when the phone rings). This

is because the programmer does not have appropriate

abstractions for dealing with compositions.

First of all, there is no support for discovering and

maintaining multiple services at once, so programmers have

to discover them separately (lines 3–13) and track their

connectivity manually (lines 5–6 and 11–12). Programmers

have to manually account for the discovery of a group of

heterogenous services. This is particularly difficult when

composing a group of objects from the ambient which can

disconnect during the discovery process.

Secondly, devices can disconnect at any time so pro-

grammers have to write appropriate failure handling and

resumption handlers for all code which communicates with

external services (try-catch blocks, lines 20–24). Pro-

grammers have to manually keep track of the connectivity

state of the individual services at all times in a composi-

tion, this forces them to scatter the connectivity concern

across the rest of the code. This phenomenon has also been

seen in the context-oriented programming community:

composing context-specific behavior (much like discovery

and state handling here) with application logic results in

context-related conditionals (if statements) being scattered

over the program [2].

In current languages [9], once a service is exported to the

ambient environment, all devices within reach can access it

without limit or control: Bob’s phone could start controlling

a television in another room by mistake. Services cannot

refuse access (from within the model) once they have been

exported to the environment: if Alice is watching television

and Bob receives a call in the office, the television should be

able to refuse Bob’s pause command.

3 Requirements

Now that the smart environment scenario has demonstrated

the issues programmers face when composing ambient

services, we present requirements that an abstraction for

ambient service composition should meet.

Fig. 1 Manual service composition

Pers Ubiquit Comput

123

3.1 R1: Multi-service discovery

Currently, there is no language construct for declaratively

discovering multiple services at the same time. As shown

in the scenario, programmers have to emulate this by

discovering services one by one and keeping track of their

connectivity state. The complexity of this kind of statefull

discovery increases exponentially with the number of

services (in the example, the incomingCall() handler

has to be extended for the additional states). Just

like ambient oriented programming languages provide

abstractions for the discovery of a single service, we need

abstractions for the discovery of multiple heterogeneous

services.

3.2 R2: Managing connectivity

Not all disconnections are fatal: sometimes services are not

deemed ‘‘essential’’ for the continuation of an ambient

service composition. This is the case in the scenario: if the

TV disconnects we still want the sound system to be

paused. As the number of participants in a composition

grows, the code for properly handling disconnections and

reconnections grows as well. If there is a variable number

of participants, the set of essential services must addi-

tionally be able to grow or shrink dynamically. An

abstraction for service composition needs a way of making

the set of essential services in a composition explicit and

handle disconnections and reconnections accordingly.

3.3 R3: Ambient composition verification

Programmers need abstractions to express verification

constraints over the services they want to compose. For

example, a programmer could demand that two services are

in the same room or reside on the same device, at discovery

time but also throughout the whole interaction. In the

scenario, if Bob is in his office and Alice is watching

television, a phone call should not pause the television as

Bob is not in the same room as the TV. We cannot easily

express this kind of constraints with current programming

languages.

3.4 R4: Service access control

If a device offers a service to the outside world, everyone

can discover it and start using it. However, there are a

number of situations where controlling the access to

exported services is necessary. For example, a resource-

constrained system could allow only a limited amount of

users simultaneous access and refuse service to additional

clients. In our scenario, this would allow the TV to refuse

Bob’s commands if Alice is already watching it.

Currently no programming language meets all of these

requirements. A system that does meet these requirements

allows programmers to express ambient service composi-

tion without having to write statefull discovery and without

managing disconnections and reconnections manually.

This makes the developed programs more reusable and

evolvable.

4 The ambient contract model

In this section we formulate our solution under the form of

a novel model called ambient contracts. This model is

inspired upon previous work called contracts [8]. The

contracts in this previous work, however, assume a non-

distributed object-oriented setting: they do not meet the

requirements distilled above because they were not

designed with an ambient environment in mind. Our model

extends contracts in order to meet these requirements.

4.1 Ambient-oriented programming

Before giving an operational description of our ambient

contracts we show the object-oriented paradigm in which

we have defined our model.

In ambient-oriented programming (AmOP), all distrib-

uted communication is non-blocking. This allows com-

municating parties to deal with the impact of intermittent

connectivity of devices on the application as their control

flow is not blocked upon sending or receiving. In this paper

we consider an ambient-oriented concurrency model based

on the model of the E language’s communicating event

loops, which is itself an adaptation of the well-known actor

model. In this model, actors are represented as containers

of regular objects encapsulating a single thread of execu-

tion (an event loop) which perpetually take a message from

their message queue and invoke the corresponding method

of the object denoted as the receiver of the message. The

method is then run to completion denoting a turn. A turn is

executed atomically, i.e. an actor cannot be suspended or

blocked while processing a message.

Figure 2 illustrates actors as communicating event

loops. The event loop (represented by dotted lines) pro-

cesses incoming messages one by one and synchronously

executes the corresponding methods on the actor’s owned

objects. Only an object’s owning actor can directly execute

one of its methods. Communication with an object in

another actor happens asynchronously by means of far

references: object references that span different actors. For

example, when A sends a message to B, the message

is enqueued in B’s message queue, which eventually

processes it. As such, a turn consists of the execution of

a number of synchronous method invocation and

Pers Ubiquit Comput

123

asynchronous message sends. This means that the method

invocation stack is empty both at the start and at the end of

a turn.

4.2 Operational description

A contract describes a cooperation between a number of

services, where each service fulfills a well-defined role. A

role is an abstract description of the operations a participant

should support and which constraints it should satisfy

before it enters the contract. Further, a contract describes

how to initially set up the roles and which invariants it

should maintain once the contract is initialized (for

example, requiring that a participant does not disconnect

during the interaction).

In Fig. 3, the different phases of the lifetime of an ambient

contract are shown: discovery, maintenance and termination.

An ambient contract starts in the discovery phase, searching

for remote services which can fulfill the roles specified in the

contract (the hexagon and the triangle in the figure). When

the contract discovers a remote service, it is conceptually put

in a pool of connected services. If the service matches one of

the roles in the contract, the ambient contract also verifies the

invariants that apply to it (shown right below the roles).

These invariants also include relationship constraints that are

verified in this phase (R3). If all the constraints are met, the

newly discovered service is requested (R4) to join the con-

tract, fulfilling this specific role.

The discovery phase lasts until all required roles are

filled in, at which point the contract is initialized and goes

into the maintenance phase: all participants are informed

that the contract has started and the implementation ensures

that all invariants are satisfied. The contract then enters the

maintenance phase which allows the core logic of the

contract to run. From the programmer’s point of view, the

phase change from discovery to maintenance happens

atomically (R1). During this phase, if specified in the

contract, certain services can be replaced by other equiv-

alent services (R2).

Finally, a contract can be terminated normally (all par-

ticipants agree) or abnormally (one or more participants

have violated the invariants).

4.3 Service definition

An important part of our model is how services are defined

and how they are exported into the ambient. As services are

discovered in an ad-hoc manner a programmer can not

expect services to have direct support for a specific com-

position. In our model services only have to offer a well

defined interface and access protocol such that they can be

discovered and used for composition. Once a service is

exported, other entities in the environment can discover it

by requiring a role that matches a subset of the exported

interface. In the next sections we explain in detail how this

matching works.

4.4 Ambient access model

In current languages for programming mobile ad-hoc net-

works [9, 4], once an object is exported to the ambient

environment, all devices in the environment can use it

without limit or control. This model is too restrictive and

does not provide a structured way of limiting the access. In

this section we show ambient views, which form the access

model in our ambient contracts.

Consider a system
P

consisting of objects B, operations

O and invocation triples I. We say that an object b contains a

set of operations, instance variable accessors and mutators

are represented by nullary and unary operations, respec-

tively. In a statically typed language these operations

include a type signature, but in a untyped or uni-typed

language the name is sufficient to identify the operation. An

invocation triple is a tuple of the form (s, c, o), where s 2 B

is called the server object, c 2 B is called the client object,

A
B

Fig. 2 Communicating event

loop model

Fig. 3 Diagram of the different stages of an ambient contract

throughout its lifetime

Pers Ubiquit Comput

123

and o 2 O is an operation of the server object s. A client

c can only invoke an operation o on an object s if a triple

(s, c, o) exists. Objects can always access their own

methods.

A view h is a substitution map of operations to invocation

triples. A client object c can only invoke an operation o on a

server object s by invoking the operation k on a view h, if

the invocation triple (s, c, o) is an element of hk. In order to

clarify this consider Fig. 4 which depicts a system with four

objects and one view h. This view allows b2 to invoke m1

on b1 by invoking the operation k1 on the view h. Similarly

it allows b3 to invoke m2 on b4 by operation k2.

In a closed system B can be described by using an

extensional description, but this is not the case for ambient

systems. As objects are ad-hoc discovered at runtime the

set of client objects of a view h can in general only be

described by using an intensional description. In our model

intensional descriptions are modeled by special invocation

triples (s, Pc, o) where Pc is a predicate on client objects.

These invocation triples allow our model to react to the

dynamically changing set of objects. A client object c1 can

only invoke an operation o on a server object s by invoking

the operation k on a view h if the key k maps h to a tuple

(s, Pc, o) where Pc(c1) holds.

We define the function Uðh; bÞ, which returns the set of

invocation tuples that the object b can invoke on the view h
as follows:

Uðh;bÞ ¼ fðs;b;kÞj 8k 2 DomðhÞ; 8ðs;Pc;oÞ 2 hk;PcðbÞg

By offering views as the interface for remote objects the

programmer can retain control over the functionality

remote objects can invoke, as stated in (R4).

4.5 Role-service matching

Regular programming language abstractions for service

discovery do not deal very well with the dynamic nature of

an ambient environment. Discovery usually involves exact

interfaces to be matched on a centralized naming server (on

its nominal type), where all services have to register

themselves before they can be discovered. A centralized

server for service discovery can not be reconciled with the

characteristics of an ambient environment where devices

discover each other spontaneously, without any infrastruc-

ture. Furthermore, reusability and evolvability of services is

impeded by the requirement for matching on nominal types,

which forces all applications to have a common code base.

In our model, a role is an abstract description of the

operations a service should support before it can enter the

contract. Roles and services are matched based on their

structural type instead of on nominal type in order not to

violate the ad-hoc nature of the applications that we target.

Services discovered in the ambient are only considered

eligible for a role if the role is a subtype of the service

being offered. The subtype relationship between a role r

and a service h is defined as follows:

r\ : h, 8o 2 r : 9ðs;Pc; oÞ 2 Uðh; rÞ

4.6 Modeling compositions

As mentioned before, a service composition is formed by

matching services in the ambient to the roles defined in the

composition. For every role defined in the composition,

there will usually be multiple matching services in the

ambient. Service composition writers often only want to

address a subset of these matching services. In our model

we allow service composition writers to specify the desired

cardinality with three mapping operators: one, exactly

and many, which restrict a role-service mapping to

respectively one, an exact amount, or a minimum amount

of services.

While these mapping operations specify the cardinality

of role-service mappings, they do not assist programmers in

case of failure. Indeed, due to user mobility services might

get disconnected and other services might become avail-

able. There are several ways to handle the disconnection of

a service: the most obvious way is to wait for that service to

reconnect, but this is not always possible. In certain cases it

might be appropriate to replace a disconnected service with

another equivalent service. For example, mobile phones

always rebind themselves to the nearest cellphone tower

while moving about. In our model, services that join the

contract must be annotated with a disconnection strategy.

Our model supports three disconnection strategies: the first

strategy is Frail, which breaks the composition if a ser-

vice annotated with this keyword disconnects. A second

strategy is WeakRebind, which denotes that the compo-

sition pauses until an equivalent service is discovered.

Finally, a service can be annotated with the SturdyRe-

bind strategy, which works like WeakRebind but only

resumes if the original service reconnects.

4.7 Agreement verification

The verification of a contract consists of checking that

certain agreements by the participants are met. These

Fig. 4 Specifying the access rights with an intensional description

Pers Ubiquit Comput

123

agreements are expressed by runtime deployable pre- and

post-conditions. In traditional systems these pre- and post-

conditions are statically defined and interweaved with base

level code. By contrast, our verification is only deployed

when all the participants have joined the contract. Addi-

tionally, these pre- and post-conditions are unweaved when

the contract is terminated or violated. Specifying the pre-

and post-conditions for all the participants of a contract in a

single place makes reasoning about their interactions

easier.

The interception points of our pre- and post-conditions

are defined very similar to pointcuts in aspect oriented

programming. This allows the programmer to modularize

pre- and post-conditions. In our model an agreement is thus

characterized by a pointcut and two functions, one that

verifies the preconditions and one that verifies the

postconditions.

These pre- and post-conditions can be executed either on

the client which deploys the contract, or on the service on

which they are defined. Both have their advantages and

their disadvantages: in the first case the client does not have

to execute untrusted code. Instead, the service will have to

notify the client about the pointcut invocations, which

results in more messages being transmitted. This pattern is

shown in Fig. 5: first the client registers the pre- and post-

conditions to the services. The service will monitor its

execution flow and notify the client when a function

f matches the pointcut defined in the registration. Before

executing f the service will send a preNotification to

the client which will verify the interaction. When the

notification has been acknowledged, f is executed and when

before returning a postNotification is sent to the

client. In case the client or the service crashes or discon-

nects (or both), both will clean up accordingly.

4.8 Enforcing agreements

Traditional contracts are not used for making changes to

the base level functionality. We have observed that in an

ambient context many services are not written such that

they can easily be used in unanticipated compositions.

Therefore in our ambient contract model the programmer

can enforce certain agreements; for example to broadcast a

message to all participants when a phone call is received.

The enforcement of agreements follows the same protocol

for agreement verification.

It is the service itself which decides whether to allow

these kind of agreement enforcements, by allowing con-

tracts to install remote code or not.

4.9 Failures

During the discovery phase, disconnections are not treated

as errors and will be dealt by the underlying model, in our

model the state transfer from discovery to maintenance is

defined as one atomic step. However, once the contract has

entered the maintenance phase all participants are expected

to obey the agreements stated in the contract. One of these

agreements involves the connectivity of the devices: the

programmer can state in the contract that a certain object is

deemed essential for the composition. This is done by

annotating the role of such objects with the disconnection

strategy Frail. When a service marked as Frail dis-

connects during the maintenance phase of the contract, the

contract is said to be violated (satisfying R2) and termi-

nated. Similarly, the contract is also violated when one of

the participants of the contract violates the pre- or post-

conditions stated by the contract.

4.10 Termination

A contract can be terminated gracefully; in this case the

contract is fulfilled and the participants are no longer

obligated to follow the agreements stated in the contract.

However a contract can also be terminated prematurely

when one of the participants violates the agreements stated

in the contract. In this case all the participants of the

contract will be notified of the contract violation, which in

turn will lead to the unweaving of the installed pre- and

post-conditions.

In the ambient contract model, programmers no longer

need to be concerned about device discovery, disconnec-

tions and reconnections: they can declaratively specify

which services are required and which ones are optional

and how they must work together to maintain the invariants

laid down by the contract.

Fig. 5 Registration of pre- and post-conditions on a remote object for

local verification

Pers Ubiquit Comput

123

5 DEAL: an ambient contract framework

In this section we present DEAL:1 a prototype implemen-

tation of the ambient contract model using AmbientTalk

[4], a high level ambient-oriented programming language

following the Ambient-Oriented Programming paradigm as

discussed earlier in Sect. 4.1.

Before showing the implementation of our example

scenario as well as a more complex verification we give an

overview of the abstractions offered by our framework.

5.1 Framework overview

In Table 1 we have summarized the ambient contract

abstractions. They are grouped according to the function-

ality and the requirements that we have stated in Sect. 3.

Many of our abstractions use a keyworded syntax like

Smalltalk, e.g.vector.at: 3 put: ‘foo’.

Programmer can define contracts, roles and services.

Roles can be grouped together in order to easily express the

number of concrete services that should take part in a

contract (R1). Adding a Rolegroup to a contract for dis-

covery always requires the specification of the disconnec-

tion strategy. For example, Frail: one(Phone) states

that exactly one Phone service is necessary in a con-

tract and that a disconnection of that service breaks the

contract.

Agreements are specified over a Rolegroup by registering

a InvariantRegistrations block on them. Inside

of such a block the programmer has the possibility to

register: onCallBack, onCall and stateInvari-

ant invariants. Each of these invariants will be installed to

all the objects within a certain Rolegroup when the contract

enters the maintenance phase.

Services can be exported in the environment by using

the export abstraction. The last group of abstractions are

defined on a contract to start, stop, and signal a failure.

Programmers can also register a callback to be executed if

one of these methods are triggered by for example an

agreement violation.

5.2 Scenario implementation

In this section we show the complete implementation of the

example scenario. We assume that the phone and the audio

devices are not implemented with the base functionality in

mind (pausing the audio devices on an incoming call).

Therefore in this section we will highlight the enforcement

of interactions, in the next subsection we show how to

verify interactions.

First we define two roles, Phone and AudioDevice,

as shown in Fig. 6. Each role contains a list of functionality

that must be matched with a concrete service. For the

Phone role, we specify that it has to support the In-

comingCall method with one argument callerId.

The other two methods, name and location, indicate

that the service can be asked for its name and its where-

abouts. Similarly, the AudioDevice role specifies the

requirement to support a location and pause method

Fig. 7.

We use these roles to define the services which need to

be discovered before the contract can be initialized (lines

12–13). The first line states that exactly one Phone is

necessary and that the contract will be violated when the

phone disconnects, as dictated by the Frail keyword. The

Table 1 Overview of the Ambient Contract Abstractions

Constructor functions

Contract: ContractDefinition ? Contract

Role: RoleDefinition ? Role

Service: ServiceDefinition ? Service

Grouping roles (R1)

One: Role ? Rolegroup

Many: Role? Rolegroup

Exactly: Number of: Role ? Rolegroup

Role-contract binding for discovery (R2)

C.Frail: Rolegroup

C.WeakRebind: Rolegroup

C.SturdyRebind: Rolegroup

Agreements registration (R3)

Invariant: InvariantRegistrations on: Rolegroup

onCallBack: Pointcut pre: kpre post: kpost

onCall: Pointcut pre: kpre post: kpost

stateInvariant: Id on: Rolegroup equals: Value

Exporting views (R4)

Export: service to: kcriteria

Export: service

Contract lifetime functions and callbacks

C.start() | C.stop() | C.fail(reason)

initialise: Block | close: Block | fail: Block

Fig. 6 Definition of the phone and audiodevice roles

1 Available as part of the AmbientTalk distribution: http://tiny.cc/tl6ho

Pers Ubiquit Comput

123

http://tiny.cc/tl6ho

next line (13) binds all AudioDevices discovered in the

environment to the variable devices. This is done by

means of the many keyword. A disconnection of an audio

device is considered non-critical and when an audio device

disconnects it can be replaced by another one. This is

indicated by the keyword WeakRebind.

Next we specify that only those audio devices which are

in the same room as the phone should be included in the

composition, using a stateInvariant over the set of

audio devices.

Finally, lines 20–23 describe a functional invariant: before

the IncomingCall() method is executed on the phone,

all audio devices must receive the pause() message. The

beforeCallBack message installs a callback on the

remote service, but the advice (sending the pause message

to all audio devices) is executed on the deploying client.

Next to the contract, we also show how a service might

be implemented. The Television service is shown in

Fig. 8. We have shown two methods of this service:

pause, which is accessible by the ambient, and up-

dateFirmware which only local clients can use. This

access control is done by making use of the two access

functions Public and Private (which map to a predi-

cate Pc in our model).

5.3 Coordinated atomic actions

While the example scenario showed the enforcement aspect

of ambient contracts, in this section we will highlight the

verification aspect. We show the implementation of a

simplified version of Coordinated Atomic Actions (CAA).

This distributed object-oriented coordination pattern is

used to implement transactional semantics over a group of

objects. A CAA is a contract of limited duration, during

which all the objects that take part of the CAA can only

send messages to each-other, not to outsiders. When one of

the participants disconnects or signals a failure, all side-

effects are rolled back. In case everything goes fine all the

objects commit their changes at the end of the CAA.

An important aspect of a CAA is thus the verification

that no messages are being sent to objects which are out-

side of the CAA. When a message is sent to an object

outside the CAA, the receiving object does not know how

to report eventual failures or disconnections to the CAA. In

Fig. 9 we show the contract which verifies this agreement.

The contract has one invariant registration, onCallBack,

which is triggered for all incoming messages (‘‘.*’’) on

participants of the CAA. The precondition verifies that the

caller is one of the participants of the contract (no messages

may be received from objects outside the CAA). The

postcondition verifies that all messages sent in response to

an incoming message are sent only to participants. On

initialization of the contract, it sends a message to all the

participants to start the atomic action. Likewise, when the

contract fails either due to a violation or a disconnection, it

sends a RollBack message to all participants. Finally it

sends an EndAtomicAction message in case the con-

tract was closed successfully.

6 Evaluation

6.1 Improved software engineering practice

We have evaluated our work by implementing the example

scenario both in our ambient contract model and in Java. In

Java we have implemented the communication layer by

using M2MI [9], a state of the art middleware for the

Fig. 7 Expressing the example scenario by using a contract

Fig. 8 Service definition with DEAL

Fig. 9 Coordinated atomic action verification of incoming and

outgoing messages using DEAL

Pers Ubiquit Comput

123

implementation of ambient applications. While M2MI has

support for discovery and offers different kinds of group

references, we found that it scales badly for the imple-

mentation of service compositions. The implementation in

Java required 168 lines of code, while the DEAL imple-

mentation only used 46 lines of code. We have determined

how the code is distributed between the different require-

ments and core functionality. The result of our analysis is

shown in Table 2.

From this table it is clear that in the Java implementation

a considerable amount of code is spent on requirement one

and two. As the resulting Java code was so entangled we

found it impossible to separate the Multi-Service Discov-

ery concern (R1) from Managing Connectivity (R2). M2MI

discovery is based on interfaces and thus does not support

operations to shield the access to a particular service (R4).

As an access protocol would have blown up the imple-

mentation too much we have not taken this requirement

into account in our comparison. Because a considerable

amount of code in the Java code deals with the declaration

of interfaces and roles, we did not take that code into

account either.

Even though there are significant differences between

the amount of code dedicated to the various requirements,

the LOC for implementing the core functionality is

approximately the same. By making use of ambient con-

tracts the programmer can focus more on the core com-

position, while in Java the programmer has to deal with all

the complexities of an ambient environment manually.

6.2 Computational overhead

In this section, we report on benchmarks of the imple-

mentation of our DEAL framework. The aim of our

benchmarks is to measure the overhead created by our

abstractions compared to a hand-crafted solution which

does not verify the interactions. We benchmarked our

abstraction by applying a contract with one invariant which

verifies a simple identity function of a remote service. As

this function is very simple, it just returns its argument, the

overhead created by the verification process is presumably

high. However as can be seen in Fig. 10 we have deter-

mined the overhead of processing an increasing number of

messages and observed that this overhead stays below

20%. This is relatively low when taking into account that

the execution of the function itself requires almost no time.

One reason for this low overhead is that most of the time is

consumed in the communication layer.

6.3 Discussion and future work

DEAL addresses all of the requirements distilled from the

motivation: first of all, ambient contracts track state

changes automatically; the programmer does not have to

write statefull discovery code by using event handlers

which are difficult to compose and maintain (R1). Sec-

ondly, the use of rebinding strategies explicitly declare

which objects are essential to the contract (R2). The pro-

grammer does not need to be concerned about the indi-

vidual connectivity of objects: if any of the audio devices

disconnects, it is removed from the devices set and the

contract continues. The third issue (imposing constraints on

communication partners) is addressed by functional and

state invariants (R3): the relationship between the phone

and the audio devices is expressed using the state invariant.

On the other hand, the functional invariant takes care of the

desired functionality, namely that an incoming phone call

should silence the audio devices. Finally, services can

declaratively control access to their methods by using

access modifiers (R4).

While we provide hooks in the implementation to deal

with the registration of multiple contracts (which is outside

of the scope of this paper) encoding which object can be

safely included in multiple contracts is still cumbersome.

Future work will investigate of how contracts can be safely

combined.

7 Related work

Our work consists of the model and implementation of a

framework which allows the discovery and composition of

Table 2 Code distribution in terms of percentage

Requirement R1&R2 (%) R3 (%) Core (%)

Java 73.7 19.6 6.5

Contracts 25 37.5 37.5 Fig. 10 Overhead of utilizing pre- and post-conditions on a remote

object for local verification

Pers Ubiquit Comput

123

groups of objects communicating over an unreliable net-

work. Programmers can verify the interaction and the

functionality of a particular service as well as alter its base

functionality. Each aspect of our work is related to existing

approaches, we have listed these below and show why none

of them fulfill all the requirements that we have distilled

from the example scenario.

Design by contract is a software correctness methodol-

ogy which is based on the principle of pre- and post-con-

ditions to assert the change in state caused by certain

functionality of the program.

Design by contract is currently the most requested fea-

ture2 to be added to the Java language. They were popu-

larized in the Eiffel programming language and since then

adopted in many languages including C, C??, Smalltalk,

Haskell, Perl, Python, .NET4 and Scheme [5].

Contracts have been applied in multithreaded object-

oriented systems to coordinate a group of objects [8].

However none of the existing contract frameworks are

applicable in an ambient environment: many do not allow

the replacement of a participant at runtime nor do they

support a discovery mechanism.

Many discovery mechanisms are currently deployed on

mobile phones such as M2MI [9] and Universal Plug and

Play (UPnP). Ambient References [3] were introduced to

deal with object discovery and interaction in a mobile

environment. In order to deal with ad-hoc discovery they

support various references, unihandles (one particular

object), omnihandles (all collocated objects) and multi-

references. They offer similar disconnection strategies as

our work, but only support the discovery of homogenous

groups of objects. Additionally, they do not provide any

abstractions to intercept messages in order to support ser-

vice composition.

Many service composition frameworks for ambient

systems have been developed as summarized in [11].

Contrary to our approach almost all of these systems

assume a centralized server to orchestrate the composition.

Other frameworks for composition [1] also take this

assumption or do not deal with volatile connection [7]. As

pointed out in [11] the real problem lies in the use of

physical proximate services which are combined ad-hoc.

This is one aspect of the problem that Ambient Contracts

offer a solution for.

Aspect-oriented programming has proven to be useful

for dealing with context-awareness [6, 10]. This is not the

focus of this work, where we have used aspects as an

interception abstraction to compose multiple services. The

aspects defined in this work are dynamically installed at

runtime and cross the boundaries of a single device. We are

the first to use remote aspects for coordinating ambient

services which unweave themselves upon failure in order to

deal with device mobility.

8 Conclusion

In this paper we have shown that current programming

practice based on event handlers to discover and compose

services over unreliable networks falls short for the dis-

covery and composition of ambient services. Next we have

proposed our solution: Ambient Contracts, a novel pro-

gramming abstraction to deal with the discovery and

composition of ambient services over unreliable networks.

It does so by incorporating a declarative discovery mech-

anism to address groups of heterogenous services which

then can be composed by means of an aspect-oriented

interception mechanism. We have evaluated our approach

by means of the implementation of an example scenario in

Java and compared it to our approach. In the Java imple-

mentation the programmer clearly needs to spend most of

his time managing the connectivity while in our approach

the programmer can focus on the core functionality.

Acknowledgments Christophe Scholliers is funded by a doctoral

scholarship of the IWT-Flanders. Dries Harnie is funded by the

Prospective Research for Brussels (PRFB) program of IWOIB-IRSIB.

É. Tanter is partially funded by FONDECYT Project 1110051.

References

1. Chen H, Finin T, Joshi A (2004) Semantic web in the context

broker architecture. In: Proceedings of percom 2004, pp 277–286

2. Costanza P, Hirschfeld R (2005) Language constructs for context-

oriented programming: an overview of contextl. In: DLS ’05.

ACM, New York, pp 1–10

3. Van Cutsem T, Dedecker J, Mostinckx S, Gonzalez E, D’Hondt

T, De Meuter W (2006) Ambient references: addressing objects

in mobile networks. In: OOPSLA ’06. ACM Press, New York,

pp 986–997

4. Dedecker J, Van Cutsem T, Mostinckx S, D’Hondt T, De Meuter

W (2005) Ambient-oriented programming. In: OOPSLA ’05.

ACM Press, New York

5. Findler RB, Felleisen M (2002) Contracts for higher-order

functions. SIGPLAN Not 37:48–59

6. Fuentes L, Gámez N (2009) Modeling the context-awareness

service in an aspect-oriented middleware for ami. 3rd Symposium

of Ubiquitous computing and ambient intelligence 2008,

pp 159–167

7. Gu T, Pung HK, Zhang DQ (2004) A middleware for building

context-aware mobile services. In: Proceedings of IEEE Vehic-

ular Technology Conference (VTC)

8. Helm R, Holland IM, Gangopadhyay D (1990) Contracts: spec-

ifying behavioral compositions in object-oriented systems. ACM

SIGPLAN Notices 25(10):169–180

9. Kaminsky A, Bischof HP (2002) Many-to-many invocation: a

new object oriented paradigm for ad hoc collaborative systems.

In: OOPSLA 2002. Citeseer

10. Tanter E, Gybels K, Denker M, Bergel A (2006) Context-aware

aspects. In: Proceedings of the 5th international symposium on2 http://bugs.sun.com/bugdatabase/top25_rfes.do

Pers Ubiquit Comput

123

http://bugs.sun.com/bugdatabase/top25_rfes.do

software composition (SC 2006) LNCS 4089. Springer, New

York, pp 227–249

11. Urbieta A, Barrutieta G, Parra J, Uribarren A (2008) A survey of

dynamic service composition approaches for ambient systems. In:

SOMITAS ’08. ICST, Brussels, Belgium, Belgium, pp 1–8

12. Van Cutsem T, Mostinckx S, Boix EG, Dedecker J, De Meuter W

(2007) Ambienttalk: object-oriented event-driven programming

in mobile ad hoc networks. In: SCCC. IEEE Computer Society,

pp 3–12

Pers Ubiquit Comput

123

	Ambient contracts: verifying and enforcing ambient object compositions à la carte
	Abstract
	Introduction
	Motivation
	Requirements
	R1: Multi-service discovery
	R2: Managing connectivity
	R3: Ambient composition verification
	R4: Service access control

	The ambient contract model
	Ambient-oriented programming
	Operational description
	Service definition
	Ambient access model
	Role-service matching
	Modeling compositions
	Agreement verification
	Enforcing agreements
	Failures
	Termination

	DEAL: an ambient contract framework
	Framework overview
	Scenario implementation
	Coordinated atomic actions

	Evaluation
	Improved software engineering practice
	Computational overhead
	Discussion and future work

	Related work
	Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

