
A

Word-based Self-Indexes for Natural Language Text

ANTONIO FARIÑA
NIEVES R. BRISABOA
University of A Coruña, Spain
and
GONZALO NAVARRO
University of Chile, Chile
and
FRANCISCO CLAUDE
University of Waterloo, Canada
and
ÁNGELES S. PLACES
EDUARDO RODŔIGUEZ
University of A Coruña, Spain

The inverted index supports efficient full-text searches on natural language text collections. It requires
some extra space over the compressed text that can be traded for search speed. It is usually fast for
single-word searches, yet phrase searches require more expensive intersections. In this article we introduce a
different kind of index. It replaces the text using essentially the same space required by the compressed text
alone (compression ratio around 35%). Within this space it supports not only decompression of arbitrary
passages, but efficient word and phrase searches. Searches are orders of magnitude faster than those over
inverted indexes when looking for phrases, and still faster on single-word searches when little space is
available. Our new indexes are particularly fast at counting the occurrences of words or phrases. This is
useful for computing relevance of words or phrases.

We adapt self-indexes that succeeded in indexing arbitrary strings within compressed space to deal
with large alphabets. Natural language texts are then regarded as sequences of words, not characters, to
achieve word-based self-indexes. We design an architecture that separates the searchable sequence from its
presentation aspects. This permits applying case folding, stemming, removing stopwords, etc. as is usual on
inverted indexes.

Categories and Subject Descriptors: E.4 [Coding and Information Theory]: Data Compaction and
Compression; H.3.2 [Information storage and retrieval]: Information storage—File organization; H.3.3
[Information Storage and Retrieval]: Information Search and Retrieval—search process

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Self-indexes, compressed data structures, inverted indexes

A preliminary partial version on this work appeared in Proc. SPIRE’08 [Brisaboa et al. 2008].

Authors’ address: Antonio Fariña, Nieves Brisaboa, Ángeles S. Places, Eduardo Rodŕıguez, Department
of Computer Science, University of A Coruña, Facultade de Informática, Campus de Elviña, s/n 15071
A Coruña, Spain. {fari, brisaboa, asplaces, erodriguezl}@udc.es. Gonzalo Navarro, Department of
Computer Science, University of Chile, Blanco Encalada 2120, Santiago, Chile. gnavarro@dcc.uchile.cl.
Francisco Claude, 200 University Avenue West, David R. Cheriton School of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada. fclaude@cs.uwaterloo.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1046-8188/YYYY/01-ARTA $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Antonio Fariña et al.

1. INTRODUCTION AND RELATED WORK

Text indexing is the process of building a data structure in order to achieve reasonable
search times over a large text collection. The most common text collections contain nat-
ural language: digital libraries, searchable online bookstores, news archives, jurisprudence
databases and all sorts of public and private text information systems, are everywhere. The
most prominent example is of course the Web, which contains terabytes of text data.
The term natural language hides several assumptions here. It is used to denote text

that is composed of an alternating sequence of words and separators, which can be easily
distinguished syntactically; where the set of different words follows some statistical laws such
as growing sublinearly with the text size (Heaps’ law [Heaps 1978]); and especially where
only whole words and sequences thereof (called phrases) can be searched for in the text.
Although this definition excludes many human languages (such as Chinese, Korean, other
Far East languages, and even poses problems to agglutinating languages such as Finnish
and German), it fits well many Western languages and it has been widely adopted.
For decades, the inverted index has been a simple and effective solution to accelerate

searches on natural language text collections [Baeza-Yates and Ribeiro-Neto 2011; Witten
et al. 1999]. It is behind all sorts of “search engines” that provide indexed access to text
databases. Those search engines are able to solve various types of queries. These can be
divided into two main classes: document retrieval queries take the document as the basic
unit of retrieval and encompass boolean and ranked retrieval, whereas full-text retrieval
queries aim at locating the precise occurrences of the query terms in the text collection.
Information retrieval systems usually support some combination of those. In this article we
focus on full-text retrieval queries, which are necessary, for example, for finding phrases, or
for highlighting text passages where the query occurs in the text.
The full-text inverted index essentially consists of a vocabulary storing the different words

in the text, and a posting list recording the text positions of each vocabulary word in
increasing order. This simple data structure immediately answers single-word searches, and
can handle phrase searches by essentially intersecting the corresponding posting lists. How
to carry out those intersections is an active area of research [Demaine and Munro 2000;
Barbay and Kenyon 2002; Baeza-Yates 2004; Baeza-Yates and Salinger 2005; Barbay et al.
2006; Sanders and Transier 2007; Culpepper and Moffat 2007; Barbay and Kenyon 2008;
Barbay et al. 2009; Culpepper and Moffat 2010].
Inverted indexes can take much space if represented in plain form (40% to 80% on top of

the space required by the raw text). This is a serious drawback to fit large text collections in
main memory (RAM), or to reduce I/Os. Since early days, compression techniques have been
applied to inverted indexes to reduce their space [Witten et al. 1999; Zobel and Moffat 2006].
The most common approach is to differentially encode each posting list (as its numbers are
increasing) and encode those gaps with an encoding that favors small numbers (so that
longer lists are compressed most). Absolute samples are inserted to allow for direct access,
which is essential to carry out intersections efficiently. There is recent research on this topic
[Culpepper and Moffat 2007; Sanders and Transier 2007], which interacts with the chosen
intersection algorithms.
The text is usually compressed as well. The preferred choice is Huffman coding [Huffman

1952] where source symbols are words and target symbols are bits [Moffat 1989] (hence
called “word-oriented bit-wise Huffman”). To further save space, the text can be divided
into blocks, so that the postings point to the blocks where the word appears. This is called
a block-addressing inverted index [Baeza-Yates and Navarro 2000; Navarro et al. 2000]. At
search time, the resulting blocks must be sequentially scanned to find the exact occurrences.
The block size provides an obvious space/time tradeoff. In this tradeoff, it is advantageous to
opt for a text compression method that permits much faster searches than bitwise Huffman
[Brisaboa et al. 2007; Culpepper and Moffat 2005; Navarro et al. 2000]. Nowadays, very

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:3

efficient indexed searching can be obtained by occupying, with the compressed text plus the
compressed index, 30% to 40% of the original text size.
The situation, up to the last decade, was far less satisfactory with other types of sequences.

Without a concept of word, it is necessary to provide searching for any text substring. This
was accomplished with powerful data structures called suffix trees [Weiner 1973; Apostolico
1985] and suffix arrays [Manber and Myers 1993]. Those were able to locate the occ occur-
rences of a pattern of length m in as little as O(m + occ) time, regardless of the text size.
However, they require 10–20 (suffix trees) or at best 4 (suffix arrays) times the text size,
plus the text, and this rendered them unsuitable for many applications.
This changed drastically with the rise of compressed self-indexes, which were able to

represent the text in space proportional to its (zero or higher, depending on the index)
empirical entropy [Manzini 2001], and within that space, offer indexed searching for any
text substring [Navarro and Mäkinen 2007]. For example, the smallest compressed self-

index [Ferragina et al. 2007] offers searching in O(m⌈ log σ
log logn⌉+ occ · log1+ǫ n) time, where

n is the collection size, σ is the alphabet size, and ǫ is any positive constant. Other self-
indexes, not always reaching the same theoretical bounds, are relevant for this work because
they perform almost equally well (and sometimes better) in practice [Ferragina et al. 2009;
Claude and Navarro 2008] and handle well large alphabets: Sadakane’s Compressed Suffix
Array (CSA) [Sadakane 2003], and the Succinct Suffix Array (SSA) [Mäkinen and Navarro
2005; Ferragina et al. 2007; Mäkinen and Navarro 2008; Claude and Navarro 2008].
For example, on natural language texts, these indexes take around 60% to 70% of the

original text size (and replace it). This is remarkable compared with the 500% (including
the text) needed by suffix arrays, yet not competitive with the 30% to 40% achieved by
compressed inverted indexes over compressed text. However, the comparison is not fair,
because self-indexes can search for any text substring, whereas inverted indexes search only
for whole words and phrases1.
In this article we explore the potential of self-indexing for natural language text collec-

tions. We apply a compressed self-index (as developed for general strings) over the sequence
of words of a natural language text, that is, regarding the words as the basic symbols.
This is promising because a self-index achieving high-order entropy should capture the de-
pendence between consecutive words, which is known to be significant in natural language
[Bell et al. 1990, Chapter 4]. Even the zero-order entropy (which is what some variants of
the SSA achieve) allows one to reach compression ratios around 35% when words are the
source symbols. With respect to time performance, even the theoretically slower CSA is
able to locate the occurrences of a phrase of m words in time O(m logn + occ · log1+ǫ n)
(and know the number of occurrences in just O(m log n) time). This compares favorably
with inverted indexes, which need to carry out intersections when m > 1. For example, for
a phrase of 2 words appearing occ1 and occ2 times, an inverted index can take as much as

min(occ1, occ2) log(
max(occ1,occ2)
min(occ1,occ2)

+ 1) time, where both occ1 and occ2 are (possibly much)

larger than occ, the actual number of occurrences of the phrase.
We note that self-indexes operate in main memory, and therefore require that the com-

pressed text does not exceed the available RAM. Because of their access pattern, self-indexes
are not promising on secondary memory, where inverted indexes perform well. Recently,
however, there has been much interest in inverted indexes that operate in RAM [Strohman
and Croft 2007; Sanders and Transier 2007], motivated by the large main memories avail-
able at reasonable prices (up to 4GiB is standard and 128GiB is not out of reach) and the
common distributed architectures where the text collection resides in the RAM of several

1It is possible to search for more complex patterns, but the process is far more cumbersome [Baeza-Yates
and Ribeiro-Neto 2011, Sec. 9.2.3]. Another path is to use q-gram indexes, which are inverted-index-like
structures for general strings [Puglisi et al. 2006].

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Antonio Fariña et al.

computers (then the problem is how to integrate the results of several indexes across the
slow network). Therefore, main memory data structures are of interest nowadays, unlike
what was assumed 10 years ago.
Applying a self-index to natural language words poses some challenges. A first one is that

the alphabet is very large, and this rules out the theoretically best schemes [Grossi et al.
2003; Ferragina et al. 2007], which achieve k-th order entropy at the price of Ω(σk) extra
space, where in our case σ is the vocabulary size. According to Heaps’ law [Heaps 1978], a
text of n words has a vocabulary of size σ = Θ(nβ), where β is close to 0.5 [Baeza-Yates
and Ribeiro-Neto 2011]. Thus σk may become Ω(n) already for k = 2! However, other
self-indexes such as the CSA [Sadakane 2003] and some variants of the SSA [Mäkinen and
Navarro 2008] approach high-order entropy space without such a dependence on σ. Our first
structures, the word-based self-indexes (WSI), result from regarding the text as a sequence
of word and separator identifiers and representing it with a self-index adapted to deal with
large alphabets. We present in Section 3 two new word-based self-indexes: the word-based
CSA (WCSA) and the word-based SSA (WSSA).
A second challenge is that, in many applications, we wish to have more flexible searching.

For example, inverted indexes often permit to find phrases regardless of whether the words
are separated by a space, two spaces, a tab, a newline, etc. Moreover, it is customary to
apply some filtering on the text words to be searched for [Baeza-Yates and Ribeiro-Neto
2011], that is, users normally want to regard "preprocess", "pre-process", "Preprocess"
and "PRE-PROCESS" as occurrences of "preprocess", and even also "preprocessing" and
"preprocessed" (the latter is achieved by stemming, that is, indexing/searching the roots
of the words). It is also usual to disregard stopwords (articles, prepositions, etc.) in the
searches. This complicates the simple WSI model where the self-index can reproduce the
original text and thus the latter can be discarded. We must store some information on
the separators in order to be able of exactly recreating the original text. We introduce the
concept of a presentation layer, where the text is filtered into the searchable sequence of
(possibly stemmed, lowercase, stopwords removed) bare words, and the presentation se-
quence containing the separators and all extra information on the bare words that permits
recreating the original sequence. The searchable sequence is self-indexed, while the pre-
sentation sequence is just compressed with a technique that permits fast direct access for
displaying purposes. Both sequences are compressed by different means, thus the choice of
what is searchable is not a space/time tradeoff but rather depends on the user’s needs. We
call Flexible WSI (FWSI) this word-based self-index that allows the user to determine what
is searchable. Section 4 describes the general architecture we have developed to separate
self-indexing from presentation aspects, and describes two particular FWSI realizations: the
flexible WCSA (FWCSA) and the flexible WSSA (FWSSA).
Section 5 shows that the resulting self-indexes achieve interesting space/time tradeoffs in

practice. They obtain very good compression results, close to many natural language text
compressors that do not actually provide any indexing. Texts are usually compressed to
around 35-40% of their original size, or even further down to around 30% at the expense
of slower response time. As expected, using different definitions of what is the searchable
sequence has a minimal impact on compression performance. On the other hand, the flexible
variants are slower as they need to recover the presentation aspects.
As full word-addressing inverted indexes would require about twice the space of our word

self-indexes, we developed new block-addressing inverted indexes (IIs) to compare with,
following the ideas in previous work [Witten et al. 1999; Navarro et al. 2000; Culpepper
and Moffat 2007; Moffat and Culppeper 2007; Sanders and Transier 2007]. These IIs can
be parameterized so that they use the same amount of space than our WSI. Experimental
results show that the self-indexes are much faster at counting the number of occurrences
of a pattern than the II; in particular the WSSA is the fastest. For locating and extracting
operations the WSSA is always slower than the WCSA. Nevertheless, both self-indexes

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:5

excell when searching for phrase patterns. In particular, the WCSA clearly overcomes the
II when searching for phrases, what the WSSA achieves only for phrases of 4 words or more.
Consistently with previous work [Transier and Sanders 2010], the II behaves very well on
searches for very frequent single-word patterns, but it only becomes clearly faster than the
WCSA when a large amount of memory is allowed for the indexes (i.e., 40% space or more).
With lower compression ratios the WCSA overcomes the II in most aspects.
From a practical point of view, we paid special attention at creating indexing structures

that could be of interest for our research community. Indeed, our prototypes uncouple the
self-indexing from the presentation layer, so that any self-index on integers implementing
a well-defined software interface automatically generates a FWSI. Open-source implemen-
tations of our self-indexes will be available at http://vios.dc.fi.udc.es/wsi/indexing.
This opens the door for practitioners to test and use our new indexing schemes in Informa-
tion Retrieval applications.

2. SELF-INDEXES SUITABLE FOR LARGE ALPHABETS

Let T [1, n] be a sequence over an alphabet Σ of size σ. A self-index is a data structure that
represents T , hopefully within little space, so that the following operations are supported:

— count(P), where P [1,m] is a pattern over alphabet Σ, gives the number of occurrences of
P in T .

— locate(P) returns the list of positions where P occurs in T , in some order.
— extract(s, e) returns T [s, e].

Since T = extract(1, n), the self-index replaces T , which can thus be discarded. In the
sequel we describe two self-indexes that are practical and cope well with large alphabets.

2.1. Sadakane’s Compressed Suffix Array (CSA)

The suffix array [Manber and Myers 1993] A[1, n] of T is a permutation of [1, n] of all the
suffixes T [i, n] so that T [A[i], n] ≺ T [A[i+1], n] for all 1 ≤ i < n, being ≺ the lexicographic
ordering. Since every substring of T is the prefix of a suffix, and all suffixes prefixed by
a search pattern P [1,m] are contiguous in A, we can binary search A for the interval
A[sp, ep] of the pointers to all the occurrences of (i.e., suffixes starting with) P in T , in time
O(m logn). Note that each step of the binary search needs to access T [A[i], A[i] +m − 1]
for some i, in order to compare that string with P [1,m].
Let us now define another permutation Ψ[1, n] such that Ψ(i) = A−1[A[i] + 1] (or A−1[1]

if A[i] = n) [Grossi and Vitter 2000]. Hence Ψ(i) tells where the pointer to the text position
T [A[i]+1] (i.e., the one that follows T [A[i]]) occurs in A. Assume one has computed C[1, σ],
so that C[c] is the number of occurrences of symbols ≺ c in T . We show how one can obtain
the successive letters of T [A[i]...] (so as to carry out the binary search) with Ψ and C and
without A and T . To extract the first letter, note that all the suffixes starting with c are
in the area A[C[c] + 1, C[c + 1]], and therefore a binary search on C for the c such that
C[c] < i ≤ C[c+ 1] gives the desired first letter, T [A[i]] = c. To extract the next letter, we
use the identity T [A[i] + 1] = T [A[Ψ(i)]], thus we simply have to move to i′ ← Ψ(i) and
carry out the same process again to obtain T [A[i′]], and so on.
The search on C is implemented in constant time as follows. Set up a string S[1, σ′],

σ′ ≤ σ, containing the distinct symbols that actually occur in T , in increasing lexicographic
order. Set up a bitmap D[1, n] with all zeros except D[C[c] + 1] = 1 for all c ∈ Σ. Now, the
c corresponding to an i value is c = S[rank1(D, i)], where rank1(D, i) is the number of 1s
in D[1, i]. This can be (easily) computed in constant time using o(n) further bits [Jacobson
1989; Munro 1996].
The description above is the essential idea of Sadakane’s CSA [Sadakane 2003], where

we have removed several possible optimizations that are not promising for our particular
application (backward searching, compressed bitmaps, etc.). One important remaining point

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Antonio Fariña et al.

is how to compress Ψ, as in principle it is as large as the suffix array A it replaces. Sadakane
shows that, since Ψ is formed by σ increasing subsequences [Grossi and Vitter 2000], it can
be compressed to around the zero-order entropy of T . Let Hk be the k-th order empirical
entropy of T [Manzini 2001]. Then, the data structure requires nH0+O(n log log σ) bits, by
encoding its differential values with δ-codes (in a practical implementation he used γ-codes)
[Witten et al. 1999]. Furthermore, as shown later [Navarro and Mäkinen 2007], Ψ can be
partitioned into at most nHk+σk (for any k) runs of values, so that consecutive differences
equal 1 within each run. Thus, by enriching the gap encoding with run-length compression
of those runs one achieves higher-order compression, that is, one captures the statistical
dependence of a word from its k previous words. Absolute Ψ values at regular intervals tΨ
are retained to permit fast random access to Ψ (constant time can be achieved in theory).
Note that, since we do not have A anymore, determining the interval A[sp, ep] is not

sufficient to locate the occurrences, that is, to output the values A[i] in the interval. For
this sake, the text is sampled at regular intervals l, and the suffix array positions pointing
to sampled text positions are recorded, in suffix array order, into an array AS [1, n/l]. Those
sampled positions in A are marked in a bitmap BA[1, n], thus if BA[i] = 1 we know that
A[i] = AS [rank1(BA, i)]. Otherwise, we try i ← Ψ(i) successively, as we are virtually
moving forward in T by one position at each iteration. Hence, if we determine A[i] = j after
k applications of Ψ, then our original value was j − k. Due to the regular sampling in T we
carry out at most l iterations until finding a sampled position in A.
Finally, in order to discard T , we need to be able to extract any substring T [s, e]. For

the same sampled text positions j · l sampled above2, we store A−1[j · l] in text position
order into an array A−1

S [1, n/l]. Thus, we find the latest sampled position j · l preceding s,

j = ⌊s/l⌋, and know that T [j · l] is pointed from A[i], i = A−1
S [j]. From that i we use the

mechanism we have described to extract a string using C and Ψ, to find out the substring
T [j · l, e] which covers the one of interest to us. (This is not the way Sadakane’s theoretical
description handles this [Sadakane 2003], but the way he implemented it in practice.)
In practice, on a large alphabet of size σ = Θ(nβ), reasonable sampling rates are tΨ = l =

O(log n). Such a CSA requires nH0 +O(n log logn) bits of space, yet in practice the space
is closer to 2nHk +O(n) due to the use of run-length compression and γ-coding. Counting

time is O(m log2 n), yet only O(m log n) accesses are non-local3. Similarly, it solves locate
in time O(log2 n) per occurrence and extract(s, e) in time O((e − s + logn) log n), where
only one out of O(log n) accesses are non-local.

2.2. Succinct Suffix Array (SSA)

The Succinct Suffix Array (SSA) [Mäkinen and Navarro 2005; Ferragina et al. 2007; Mäkinen
and Navarro 2008] is a self-index that builds on the Burrows-Wheeler transform (BWT) of
a text [Burrows and Wheeler 1994]. It belongs to a class of self-indexes called FM-indexes
[Ferragina and Manzini 2000; 2005]. Their main idea is to represent the BWT of text T
(which reorders the positions of T) in compressed space and support searches by emulating
a suffix array.
The BWT T bwt[1, n] of T [1, n] is defined as T bwt[i] = T [A[i]− 1] (except T bwt[i] = T [n]

if A[i] = 1), that is, at the position i it stores the text character that precedes the suffix
pointed from A[i]. The reordered T exhibits more local regularities than T itself (as all the
text characters followed by the same context are put together).

2In practice, different sample periods tA and t−1

A
can be used for A and A−1 instead of using the same

value l. Note that A−1

S
is only needed for extracting data, whereas AS is more profusely used. Therefore, it

is usually a good idea to use a sparser sampling on A−1.
3We say that accesses to memory are local when they fall within a restricted region of the data, so that
most of them do not produce page faults.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:7

A fundamental operation on T bwt is known as LF -mapping. As T bwt[i] can be thought
of as aligned to A[i], j = LF (i) gives the position j that is aligned with A[i] − 1, that is,
LF (i) = A−1[A[i] − 1] (except that LF (i) = A−1[n] if A[i] = 1). Thus LF is precisely the
inverse of function Ψ of Section 2.1.
What makes FM-indexes special is that, unlike Ψ, LF does not need to be represented,

but it can be computed from T bwt. Given a string S, we define rankc(S, i) as the number of
times the symbol c appears in S[1, i]. When S = T bwt, it holds LF (i) = C[c] + rankc(S, i)
[Ferragina and Manzini 2000], where c = T bwt[i] and C is as in Section 2.1 (but in this case
it is better to store it as an array).
Instead of emulating a classical suffix array search, FM-indexes use a concept called

backward search. The idea is to search for P backwards, maintaining all the time the interval
A[sp, ep] of suffixes starting with P [i,m] (we start with i = m + 1, sp = 1 and ep = n),
and at each step updating sp and ep so that the invariant is reestablished for P [i − 1,m].
When they reach i = 1, A[sp, ep] is the result of the search. The formulas to move from
i to i − 1 are similar to that of the LF -mapping: sp ← C[c] + rankc(S, sp − 1) + 1 and
ep← C[c] + rankc(S, ep), where c = P [i− 1].
Thus count is solved with O(m) computations of rank. Operations locate and extract are

solved with sampling, analogously to the CSA: just like Ψ moves forward in T , LF moves
backwards, so the same techniques of sampling A and A−1 are used.
The different FM-indexes differ in how they represent S and how they implement opera-

tions S[i] (called access) and rankc(S, i). The SSA, in particular, represents S using a data
structure called a wavelet tree [Grossi et al. 2003], where in practice these operations are
solved in O(log σ) time. Therefore counting takes time O(m log σ), locate with sampling step
l takes time O(l log σ) per occurrence retrieved, and extract(e, s) requires O((e−s+ l) logσ)
time.
The wavelet tree reduces the general problems of accessing any S[i] and computing

rankc(S, i) to the problems of computing access and rank over bitmaps.
The main idea is to represent the sequence as a tree of bitmaps that correspond to a binary

decomposition of the alphabet. For example, consider the root and a binary partition of the
alphabet into two sets Σ0 and Σ1. The bitmap contained in the root contains a 0 at position
i iff the symbol at position i is in Σ0, in case the symbol is in Σ1 we write a 1. Then, the
left subtree continues recursively considering the subsequence of elements that belong to Σ0

and the right subtree considers the subsequence of elements belonging to Σ1.
The query rankc(S, i) is answered by moving across the tree considering the encoding

of c, which corresponds to the bit used to represent c in each level. Let B be the bitmap
stored at the wavelet tree root. Then, depending on whether c ∈ Σ0 or Σ1, we descend
to the left or right child of the root, now with value i ← rank0(B, i) or i ← rank1(B, i).
Then we continue recursively until reaching the leaves. Accessing S[i] is similar, except that
we descend left or right depending on whether B[i] = 0 or B[i] = 1. The leaf arrived at
corresponds to the symbol c = S[i].
If the binary decomposition of the alphabet consists just in splitting it into halves at

every level, the space required by the wavelet tree is n log σ(1 + o(1)) bits, and the query
time for rank/access is O(log σ). We can further improve the space to be nH0+ o(n log σ) if
we give a Huffman shape [Huffman 1952] to the tree; in this case, the query time is O(H0)
on average. Figure 1 shows an example of a wavelet tree.
In a practical extension of wavelet trees to larger alphabets, Claude and Navarro [2008]

proposed a wavelet tree representation that reduces the number of pointers from O(σ) to
either O(1) or O(log σ).
It was shown [Mäkinen and Navarro 2008] that by representing the bitmaps in the wavelet

tree used by the SSA with the structure by Raman et al. [2002], one can achieve nHk +
o(n log σ) bits of space for any k ≤ α logσ n − 1 and constant 0 < α < 1. On a large

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Antonio Fariña et al.

a b r a c a d a b r a

0 0 1 0 1 0 1 0 0 1 0

a b a a a b a

0 1 0 0 0 1 0

r c d r

1 0 1 1

r d r

1 0 1

ab cdr

a b c dr

d r

Fig. 1. Example of a wavelet tree for the string abracadabra.

alphabet of size σ = Θ(nβ), however, this is similar to the nH0 + O(n log logn) bits of
the CSA. The counting operation takes O(m log σ) time on the SSA, which on a large
alphabet becomes O(m logn) non-local memory accesses. Setting the sampling rates to a
reasonable value l = logn, operation locate takes O(log2 n) per occurrence and extract(s, e)
takes O((e − s + logn) logn) non-local memory accesses on a large alphabet. This is in
accordance with our later empirical findings that, on word identifiers, the SSA is faster for
counting but slower for locating and extracting than the CSA.

3. WORD-BASED SELF-INDEXES

In this section we introduce the concept of a word-based self-index (WSI) and, based on the
classical self-indexes described in Section 2, we define two particular cases: the word-based
CSA (WCSA) and the word-based SSA (WSSA).
The first task required to develop a WSI is to adapt a classical self-index to deal with

very large alphabets, in order to handle the integers that will represent word identifiers.
We will refer to the self-indexes that handle integer alphabets as int-based self-indexes
(ISI). By just coupling an ISI with a word-based parser that maps words into integer ids,
we will obtain a word-based self-index (WSI). We will adapt, from Section 2, the CSA to
obtain the int-based CSA(ICSA), and the SSA to obtain the int-based SSA(ISSA). The
respective word-based self-indexes will be called word-based CSA (WCSA) and word-based
SSA (WSSA), respectively.
In the rest of the section we give the general ideas behind our word-based self-indexes,

and further details that arise from the adaptation of the original self-indexes to int-based
self-indexes.

3.1. General structure and functionality of a word-based self-index

To create a WSI, we first parse the text T into a sequence of words (a user-defined concept,
usually maximal concatenations of letters and symbols) and separators (maximal sequences
between words). We use the spaceless word model [Moura et al. 2000], where separators
consisting of a single blank space are not encoded but assumed by default when two con-
secutive words are encoded. We build a vocabulary V with the different tokens (words and
separators). Then we alphabetically sort V and create an array Sid, by replacing each token
wid in T by the integer id such that V [id] = wid. Finally, the sequence Sid is self-indexed
using an ISI.
The resulting WSI is a two-layer structure: the top layer consists of V , and permits us to

map any token wid into its corresponding id, and the bottom layer is composed of an ISI.
This ISI not only provides a compact representation of Sid to the WSI, but it also gives
support for performing indexed searches. The WSI supports the following operations:

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:9

— countWSI(P) counts the number of occurrences of P , which is a token or a sequence
thereof, in T . The occurrences must be exact, that is, the words and the separators of P
must match exactly in T .

— locateWSI(P) gives the list of the positions of P in T . These positions are given in terms
of token offsets, not character offsets.

— extractWSI(s, e) returns a substring of T formed by the sth to the eth tokens (words or
separators).

Searching for a pattern of m tokens P = 〈w1 . . . wm〉 starts by looking up the tokens wi in
V (using binary search) to make up a new pattern P ′ = 〈id1 . . . idm〉, such that wi = V [idi].
After that, countWSI(P) reduces to count(P ′) on the ISI of Sid, and locateWSI(P) di-
rectly translates into locate(P ′). The last operation, extractWSI(s, e), retrieves Sid[s, e] us-
ing extract(s, e) on the ISI, and then accesses the vocabulary V at positions Sid[s] . . . Sid[e]
to obtain the substring of T . It also adds the implicit blank between any two consecutive
words.

3.2. The word-based CSA (WCSA)

Developing the WCSA implies self-indexing the sequence Sid, and consequently building
an ICSA, that is, adapting the CSA to work over integers.
The first step to build an ICSA over Sid is the construction of the suffix array A and the

bitmap D. We used qsufsort4 algorithm [Larsson and Sadakane 2007] for computing A in
main memory. This algorithm gave us good results on large-alphabet texts. In the next step,
permutations A−1 and Ψ are built in linear time from A. Then, samples from both A−1 and
A are extracted, and arrays A−1

S and AS , as well as the bitmap BA, are created. At this
point A−1 and A are no longer needed and can be discarded. Finally, Ψ is also represented
in a compact way. More details of this compact representation are given in Section 3.2.1.
If we assume that the maximum value in Sid is σ (i.e., there are σ different words),

the vocabulary used by the ICSA consists of the numbers 〈1, 2, . . . , σ〉. Therefore, by just
keeping the value σ, the vocabulary remains implicit and there is no need to store it (nor
S[1, σ′]) as in the traditional CSA.

3.2.1. A compact representation of Ψ. We followed the ideas in Sadakane’s implementation
of Ψ [Sadakane 2003; Navarro and Mäkinen 2007], adapting them to a large alphabet.
Absolute samples at positions k · tΨ, 0 ≤ k ≤ ⌊n/tΨ⌋, are stored compactly in an array. For
each sample we store the absolute Ψ value at that entry and a pointer to the compressed Ψ
bitstream where the next cells are stored in compressed and differential form. Those integers
use the maximum number of bits needed to represent all the stored values.
In Sadakane’s approach, γ-codes are used for compressing the differences, and when a

difference is 1, the next number encodes the length of its run, that is, the number of
consecutive 1s that follow. We explore also other alternatives, such as δ-coding, Huffman
coding, and some combinations.
An important difference with respect to a small alphabet is that, in the word-based

approach, the differential sequence Ψ(i) − Ψ(i − 1) may contain a significant number of
negative values, up to σ − 1. While this is 255 in a byte alphabet, it can be much larger
on words. For example, our 1GiB text (corpus ALL described in Section 5) produced about
228 million words. Of those 228 million differences in Ψ, about half a million are negative
values. Albeit not a very large percentage, encoding those values improperly does impact
compression ratios.
When using δ–codes, negative values must be encoded somehow as exceptions. We also

consider another folklore approach, where instead of representing a difference that may be

4http://www.larsson.dogma.net/research.html

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Antonio Fariña et al.

positive or negative, we represent xi = Ψ(i) xor Ψ(i−1),5 and this is the number δ-encoded.
Note xi is always positive, and if x1 = Ψ(1), then Ψ(i) can be recovered as xi xor Ψ(i− 1).
We will call δ-codes-gaps the variant that represents differences and δ-codes-xor the one that
represents xor. Analogously, we define γ-codes-gaps and γ-codes-xor.
Huffman coding seems in principle to be necessarily better than previous encodings in

terms of space. However, as there are many different values to encode, the model size is a
concern. In practice Huffman coding must be combined with some of the previous encodings.
In addition, run-length encoding for the 1s can be introduced in different ways. Recall that
run-length encoding is necessary to capture inter-word dependences in the compression.
We developed twelve different techniques to represent the non-sampled values of Ψ. These

variants permitted us to study the effect of encoding 1-runs in Ψ, encoding differences versus
encoding the xor of consecutive values, as well as the impact of using either Huffman-codes
or δ-codes instead of γ-codes as in the original CSA.

—Huffman-rle. This strategy is based on combining Huffman coding with the encoding of
runs in Ψ. We use two different Huffman codings: a main coding Hc to represent values
from Ψ, and a secondary coding Hr to represent lenghts of runs that occur within Ψ. The
Huffman-rle representation contains a Huffman code (from Hc) per each non-sampled
value Ψ(i) (except for adjacent positions in Ψ that are encoded with a 1-run). When
representing those Ψ(i) values, three different cases are dealt with depending on the value
di = Ψ(i) − Ψ(i − 1): i) Small gaps are directly encoded by a Huffman codeword Hc

di
.

The number of small values is tuned via a parameter s: the gap values di such that
2 ≤ di < s are encoded with their own Huffman codeword (Hc

2 . . . H
c
s−1). ii) Negative

and large gaps. When either di < 0 or di ≥ s, an escape codeword (Hc
0) is output, and

followed by the number Ψ(i) represented with ⌈log2 n⌉ bits. iii) Run-encoding. If di = 1,
a 1-run is detected in Ψ(i). Assuming that its length is l we encode such run as follows:
First, an escape codeword Hc

1 is output, and then l is represented. As l is usually very
small (1 ≤ l < tΨ, because runs are cut artificially if they reach the next sampled value),
a secondary Huffman coding Hr is used to represent the l values.
Therefore, the Huffman coding Hc is obtained as follows: We consider a vocabulary that
consists in the symbols {0 . . . s − 1}. We compute the frequency of each symbol, so that
freq[i], i ∈ 2 . . . s − 1 counts the number of times that gap value i occurrs. Similarly we
sum in freq[1] the number of runs that occur in Ψ and in freq[0] the number of both
large and negative values. Then we sort the symbols by frequency and apply Huffman
algorithm to obtain the codeword Hc

i that corresponds to each symbol. Similarly, Hr is
obtained by assuming a vocabulary composed of the symbols l ∈ 1 . . . tΨ− 1 and counting
the number of times a run of length l occurs.
To check the effect of not encoding runs, we also developed a simplified version of Huffman-
rle not using run-length encoding. Therefore, each occurrence of the gap value +1 is
represented by a codeword Hc

1 . We refer to it as Huffman variant.
—Huffman-rle-opt. Based on the previous approach, we created an improved format to

compress Ψ that addresses its two main weaknesses: the need for using an escape codeword
(Hc

1) to introduce runs; and, for both large and negative gaps, the need to represent Ψ(i)
with ⌈log2 n⌉ bits after the escape codeword Hc

0 . From the s symbols that can be encoded
through Huffman code Hc we reserve w+w symbols, where w is the machine-word size, to
represent the length of the binary representation of both large positive gaps and negative
gaps. In addition, tΨ symbols are reserved to encode the length of the 1-runs, and the
remaining s− 2w − tΨ symbols are used for small gaps.
Therefore, we have four different cases: i) Codewords Hc

2 . . . H
c
runbeg−1, where runbeg =

s − 2w − tΨ, directly encode gaps di = Ψ(i) − Ψ(i − 1) such that 2 ≤ di < runbeg.

5xor refers to eXclusive OR, represented with ‘ˆ’ in C/C++.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:11

ii) The next tΨ codewords, Hc
runbeg . . . H

c
posbeg−1, where posbeg = runbeg + tΨ, directly

encode 1-runs. Precisely, a run of length l is encoded as Hc
runbeg+l. iii) The codewords

Hc
posbeg . . .H

c
negbeg−1 , being negbeg = posbeg + w, are used as escape codewords to intro-

duce large di values, and implicitly represent the length of the binary representation of
di. Assuming l = ⌈log2 di⌉, Ψ(i) is encoded by codeword Hc

posbeg+l followed by di binary-

represented with just l bits. iv) In a similar way, codewords Hc
negbeg . . .H

c
s−1 are reserved

for negative values. Therefore, we implicitly keep the sign of di and proceed as for the large
positive values, this time representing −di. Assuming l = ⌈log2(−di)⌉, Ψ(i) is encoded by
codeword Hc

negbeg+l followed by l bits representing −di in binary.
As in the previous approach, we also developed a simplified counterpart of Huffman-rle-opt
named Huffman-opt not including encoding of runs.

— δ-codes-gaps and γ-codes-gaps. As δ-codes can only represent positive numbers, we reserve
some positive values (1 value for every K positive integers) to represent negative values.
ParameterK is tuned to maximize compression. Basically, a negative gap di is represented
as δ-code(−Kdi), whereas a positive value di is encoded as δ-code((Kdi − 1)/(K − 1)).
Assuming K = 3, 1 is encoded as δ-code(1), 2 as δ-code(2), 3 as δ-code(4), 4 as δ-code(5),
5 as δ-code(7), etc; whereas −1 is represented by δ-code(3), −2 as δ-code(6), and so on.
Decoding a value C implies applying v ← δ-decode(C). Then, if v mod K = 0 we return
the value −v/K; otherwise, the value v − (v/K) is obtained. γ-coding is analogous.
We have also created variants δ-codes-gaps-rle and γ-codes-gaps-rle that profit from en-
coding 1-runs of length l. Again, the idea is that when a 1-run is to be encoded the value
+1 acts as an escape code that is followed by the encoding of l. That is, we represent that
run as δ-code(1) δ-code(l) or γ-code(1) γ-code(l) respectively.

— δ-codes-xor and γ-codes-xor. Instead of encoding differences as in the previous represen-
tation, we represent the xor with the previous value of Ψ, as explained. Therefore, we
δ-encode or γ-encode xi = Ψ(i) xor Ψ(i− 1). Decoding is simply Ψ(i)← xi xor Ψ(i− 1).
Including encoding of runs to obtain δ-codes-xor-rle requires, as in δ-codes-gaps-rle, to
use the value +1 as an escape code, so that 1-runs of length l are represented as δ-
code(1) δ-code(l). However, since value +1 must be reserved, encoding regular values
xi = Ψ(i) xor Ψ(i−1) requires an extra trick, as it could occur that Ψ(i) xor Ψ(i−1) = 1
even when Ψ(i) 6= Ψ(i − 1) + 1 (hence this is not a run). For example, if Ψi = 8
and Ψi−1 = 9 we obtain that Ψi −Ψi−1 = −1, but (in binary) 1000 xor 1001 = 0001. To
overcome this issue we encode x′

i = (Ψ(i) xor Ψ(i−1))+1 instead of xi = Ψ(i) xor Ψ(i−1).
Decoding is done as Ψ(i) = (x′

i − 1) xor Ψ(i− 1). γ-codes-xor-rle are obtained similarly.

Figure 2 compares the different variants to compress Ψ from the 1GiB corpus, where a
plain representation of Ψ would require around 872MiB. We show the size of the compressed
Ψ representation, and the time needed to access all the values in Ψ, starting at position
i ← 0, and then repetitively at i ← Ψ(i) (that is, we traverse the text from left to right).
For Huffman codes we use s = 214, which allows us to represent most of the interesting
values with a very moderate-size model. We used powers of 2 for tΨ, that is, 1024, 512, 256,
and so on. In the plots we show the case tΨ = 16, and then each point towards the left
represents the next power of 2 (larger tΨ implies less space and more time).
Figure 2-top-left shows that δ-codes-gaps clearly overcomes δ-codes-xor and that δ-codes-

gaps-rle is able to obtain a slight improvement over δ-codes-gaps. This also holds for the
γ-coding-based counterparts, which are clearly overcome by those using δ-coding. The only
exception is γ-codes-xor, which performs the best for very dense sampling values (obtaining
a compression ratio worse than 50%). Figure 2-top-right shows that part of the plot in
detail.
Figure 2-bottom compares the Huffman-based techniques with those using δ-coding. The

bottom-right plot includes a zoomed area of the bottom-left plot. It can be seen that δ-coding

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Antonio Fariña et al.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 250 300 350 400 450

ac
ce

ss
 t

im
e

to
 Ψ

 (
se

c.
)

space (Mbytes)

WCSA (corpus ALL: |Ψ|=228,707,234)

tΨ = 16

tΨ = 16

Huffman-rle-opt, s=214

δ-codes-gaps
δ-codes-gaps-rle

δ-codes-xor
δ-codes-xor-rle

γ-codes-gaps
γ-codes-gaps-rle

γ-codes-xor
γ-codes-xor-rle

 40

 60

 80

 100

 120

 140

 360 380 400 420 440

ac
ce

ss
 t

im
e

to
 Ψ

 (
se

c.
)

space (Mbytes)

zoomed area

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 220 240 260 280 300 320 340 360 380

ac
ce

ss
 t

im
e

to
 Ψ

 (
se

c.
)

space (Mbytes)

WCSA (corpus ALL: |Ψ|=228,707,234)

tΨ = 16

tΨ = 64

Huffman, s=214

Huffman-rle, s=214

Huffman-opt, s=214

Huffman-rle-opt, s=214

δ-codes-gaps-rle
δ-codes-xor-rle

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 300 320 340 360 380

ac
ce

ss
 t

im
e

to
 Ψ

 (
se

c.
)

space (Mbytes)

zoomed area

Fig. 2. Space/access-time tradeoff of the compressed representations of Ψ.

is very competitive when a dense sampling of Ψ is used (tΨ ≤ 32), which leads to a heavy
but fast index. For example, δ-codes-gaps-rle for tΨ = 64 gives a slightly better space/time
tradeoff than that of Huffman-rle-opt with tΨ = 32. However, if a sparser sampling is used,
Huffman-rle-based techniques are preferable. From now on, all our WCSA-based indexes
will compress Ψ using our Huffman-rle-opt technique, setting s = 214.

3.3. The word-based SSA (WSSA)

The practical implementation considers the combinations shown in Table I for wavelet trees
and their corresponding bitmap representations. The implementation of RRR is due to Claude
and Navarro [2008] and the BRW implementation is due to González et al. [2005]. The wavelet
tree implementations are the ones presented by Claude and Navarro [2008]; ptrs considers
the regular pointer-based implementation and noptrs implements the wavelet tree using
only log σ pointers, one per level. The ptrs wavelet tree can be shaped using Huffman codes,
huff, or just as a balanced tree, denoted balanced.
Note that it is not possible to mix the noptrs variant with a Huffman shape, since noptrs

uses the fact that there are exactly n bits per level. As explained in Section 2.2, using RRR
gives space nHk, while using Huffman gives nH0, yet the k values we can achieve are rather

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:13

Table I. Space required for different combinations for representing the BWT in the SSA index.

Base combination balanced huff
ptrs+BRW n log σ + o(n log σ) + O(σ logn) nH0 + o(nH0) +O(σ logn)
ptrs+RRR nHk + o(n log σ) + O(σ logn) nHk + o(nH0) + O(σ logn)
noptrs+BRW n log σ + o(n log σ)
noptrs+RRR nHk + o(n log σ)

low. Huffman shapes also reduce the redundancy from o(n log σ) to o(nH0). On the other
hand, balanced trees reduce the pointer space from O(σ logn) to O(log σ logn) = o(n log σ).

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 30 35 40 45 50 55 60 65

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wa scenario: words freq = [1..100]

ptrs-RRR
ptrs-BRW

noptrs-RRR
noptrs-BRW

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 30 35 40 45 50 55 60 65

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P8 scenario: phrases with 8 words

ptrs-RRR
ptrs-BRW

noptrs-RRR
noptrs-BRW

Fig. 3. Space/Locate-time tradeoff for different configurations of the WSSA.

Figure 3 shows the performance in locate for several configurations of the WSSA built
over our 1GiB corpus. In this particular case, we only include the ptrs variant that uses
Huffman shape (huff), since the balanced version is slower in practice, and the space
required by the huff version tends to be smaller for our alphabet sizes [Claude and Navarro
2008]. The ptrs representation offers a better tradeoff than the noptrs counterpart.
The WSSA supports four tuning parameters, called tsuff , tpos , tbit1 , and tbit2 . The tsuff

and tpos parameters determine the sampling density for the text and suffix array positions
respectively, whereas tbit1 and tbit2 represent sampling parameters for the bitmaps. Both
RRR and BRW support such parameters to adjust the space/time tradeoff. The tbit1 parameter
determines the sampling for the bitmap BA that marks the sampled suffixes (see Section 2.1).
The second parameter, tbit2 , determines the sampling for the bitmaps in the wavelet tree.
In terms of compression, the RRR variant offers the best ratios. Given the space results

obtained by the other indexes, we use the ptrs version, with Huffman shape and RRR, for
the comparison with the other indexes.

4. FLEXIBLE WORD-BASED SELF-INDEXES

Our word-based self-indexes can be adapted so that they can deal with many typical re-
quirements of natural language text searching: the possibility of using stemming, perform-
ing case-insensitive searches, disregarding stopwords and/or separators, etc. In this way,
a search for “compression of a SELF-index” will be able to recover occurrences such
as “compressed self index” or “compressing self-indexes”. We call the resulting in-
dexes Flexible Word-Based Self-Indexes (FWSI).
Instead of indexing the original text, a FWSI uses a normalized version of it. Normaliza-

tion is a user-defined function that maps any token (word or separator) from the original
text to either a (normalized) word or a null word.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Antonio Fariña et al.

A little bird said to me Larry Bird had flown as birds usually fly$

3 10 15 26 32 41 50 64 -=Z

1 2 3 4 5 6 7 8 9

=CT

4 6 8 13 15 20 24 30 -=B

1 2 3 4 5 6 7 8 9

Sequence of ids of valid words

5 2 6 4 2 3 2 3 1=Sid

1 2 3 4 5 6 7 8 9

Original text

P
re

s
e

n
ta

tio
n

la
y

e
r

iC
S

A
la

y
e

r
1 3 10 15 20 23 32 37 41 47 50 56 64

Canonical words & variants

bird fly larry little say$

fly
flown

0
1

bird
Bird

1
01

birds 00
Larry 0

little 0

said 0

2 3 4 5 61

26

fly flown

0 1

birds Bird

bird
0 1

0 1

1 001

had

010

as

011

usually

0000

Separators
1 2 3 4 5

A_

0001

6
1

0 1

0 1

4

0 1

32

0 1

6

0 1

5

_ _to_me_
1 2 3 4 5 6 7 8 9

0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0

1 5 10 15 20 25

0 0

30

9 7 5 2 8 6 4 1 3A =

1 0 1 0 0 0 0 1 0=BA

2 5 8 3 6 9 7 4 1A =
-1

2 5 6 1 8 9 4 3 7=

1 1 0 1 0 0 1 1 1=D

Y

Fig. 4. General Structure of FWCSA.

Normalization gives the desired flexibility to FWSIs. One expects that separators are
mapped to the null word, but this is not necessary; also, some words such as stopwords may
be mapped to the null word. Normalization can be used for other purposes. For example, a
text with many large numbers would have a huge vocabulary if we insisted in regarding each
number as a word. Instead we may choose to regard each digit as a word and assume that
there is an empty-string null word between any pair of digits. Similarly, if normalization
wishes to treat some separators as valid words, we would also insert empty-string null words
between normalized words. Thus any normalized word is followed by at least one null word.
To build a FWSI we process the source text, and for each token we obtain its normalized

form (or the null word). Then, the resulting (non-null) normalized words are mapped to
integer ids, and a sequence of ids (Sid) that represents the normalized version of the text
is created, and an ISI is built over Sid, as in the non-flexible counterpart (Section 3).
Note that, at this point, we would be able to perform searches over the normalized version
of the source text. However, we could not actually recover any part of the original text
(extract), as no information about the variants of a normalized word nor about the null
words has been stored. Therefore, the FWSI must include additional information related to
normalized words, variants and null words, on top of the ISI that represents Sid. All this
extra information is called the presentation layer.
Different indexes can be obtained depending on the ISI chosen, and on how normalization

is defined. In Figure 4 we show the general structure of a FWSI6. Apart from the WSI-like
operations on the normalized text that are naturally inherited from its ISI, a FWSI supports
the following character-based operations:

— countFWSI(P) counts the number of occurrences of the sequence of canonical words that
normalization extracts from P . The separators between those canonical words are ignored.

— locateFWSI(P) gives the list of the positions of T , measured in byte offsets, where the
canonical words of P match.

— extractFWSI(s, e) returns the substring T [s, e].

6In this case we show the structures of a Flexible WCSA. In this example, normalization maps words to
lower-case and use Porter’s stemming algorithm ([Porter 1980]), and skips stopwords and separators.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:15

4.1. Normalization and the Presentation Layer

A first pass over the original text is needed to gather some statistics. We split the text into
“valid words” and “separators”. A “valid word” is a token7 that normalization does not map
to the null word. On the other hand, we redefine “separator” in this section to mean all the
text between valid words, that is, a maximal sequence of tokens that are mapped to the
null word by normalization. Hence valid words and separators alternate strictly in the text8.
A vocabulary of canonical (i.e., normalized) words is built, and kept sorted alphabetically.
For each canonical word, a list with all the variants (i.e., tokens of the source text) that
the normalization has mapped to it is stored (sorted by frequency). Similarly, a vocabulary
containing all the separators in the source text is created and sorted by frequency.
A second pass over the original text permits to fill the structures from the presentation

layer shown in Figure 4, as well as array Sid. Note that Sid[5] = 2 because the fifth valid
word from the text, “Bird” is mapped via normalization to the second canonical word,
“bird”. As shown, once the presentation layer is built, the ISI is constructed over the
sequence Sid (an ICSA in our example).
In the presentation layer, bitmap CT keeps a compressed representation of the presenta-

tion aspect of the text. Based on the alternation between valid words and separators, CT
keeps the codeword of a variant of a canonical word, followed by the codeword of a separator,
and so on. As an example, in Figure 4, we can observe that CT [1 . . . 3] =‘001’ is the code-
word associated to the separator “A ”, CT [4] =‘0’ is the codeword of the variant “little”
of the canonical word “little”, CT [5] =‘1’ refers to a single blank, and CT [6] =‘1’ to the
variant “bird” of the canonical word “bird”, and so on.
Those codewords are obtained as follows. On the one hand, the Huffman algorithm [Huff-

man 1952] is run over the set of separators, based on their frequency of occurrence, and thus
a codeword is assigned to each separator. Storing the shape of the Huffman tree requires
little space overhead by using canonical Huffman [Moffat and Turpin 1997]. On the other
hand, the set of variants of each canonical word is also encoded using Huffman codewords.
Therefore, along with the variants of each canonical word, the shape of the Huffman tree
used to encode the variants of that canonical word has also to be maintained for decoding.
When a canonical word has a unique variant it is not actually encoded in CT (however,
in the example in Figure 4 we used 1 bit for clarity). Section 4.2 discuses how to keep the
information related to canonical words, variants and separators in a compact way. Together
with the information related to the canonical words provided by Sid (which is not explicitly
stored but obtained via the ISI), we can recreate the original text from the beginning, as
Sid[i] indicates which Huffman tree must be used when decoding the ith valid word from
CT .
To enable decoding from any random word position in the text we provide synchronism in

CT via a vector B. Given a position i in Sid, B[i] = p tells the offset in CT from which the
corresponding variant of the canonical word j = Sid[i] can be decoded (using the Huffman
tree associated to the jth canonical word). After decoding one symbol from that point p in
CT, we will find the beginning of the codeword of a separator, and after it the codeword of
the variant of the canonical word in Sid[i+ 1], and so on. In our example, we can see that
B[5] = 15 is the beginning in CT of the codeword ‘01’ that corresponds to a variant of the
second (Sid[5] = 2) canonical word (‘01’ → variant “Bird”). Then, CT [17 · · ·19] =‘010’ is
the codeword of the separator “ had ”.
To support the character-based operations locateFWSI and extractFWSI, a second array

(Z) is needed. It maps any position i from Sid to its actual byte offset in the original text
T : Z[i] = j means that T [j] is the first character of the token represented by Sid[i].

7As explained, what is a token can also be user-defined.
8Since words and separators alternate strictly, we do not use the spaceless word model in our flexible
self-indexes, but rather use separate dictionaries for words and separators.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Antonio Fariña et al.

To save space, both B and Z are sampled at regular positions i·tb and i·tz , respectively, and
only those positions are actually stored. A non-sampled value p from B (i·tb < p < i·(tb+1))
is obtained by just moving to the position B[i · tb] in CT and then decoding alternatively
p− i · tb words and separators9. The number of decoded bits from CT added to the value
B[i · tb] tells us the value of B[p]. A non-sampled value p from Z is obtained similarly
by adding to the previous sampled value Z[i · tz] the number of characters decoded after
processing p − i · tz words and p − i · tz separators. In this case, decoding should start at
position B[i · tz] in CT . Therefore it is wise that tb divides tz .

4.2. Detailed Structures of the Presentation Layer

We present the details of the structures that keep the words and separators of the presen-
tation layer, that is, canonical words, variants, and separators.

4.2.1. Array of canonical words. Each time we need to find the id associated to a canonical
word, a binary search (comparing strings) has to be performed. Figure 5.a) illustrates a sim-
ple setting where those canonical words are kept in plain form in a vector bufferCanonicals,
and O(1) time access to them is obtained with an array of pointers (canonicals). Each cell of
the array occupies ⌈log2 |bufferCanonicals |⌉ bits. The length of the ith word is obtained as
len(i) = canonicals [i+ 1]− canonicals [i]. Note that since there are only 5 canonical words,
canonicals [6] is a virtual pointer to the end of bufferCanonicals just to permit us to easily
compute len(5) = canonicals [6]− canonicals [5].
We also tried a more sophisticated representation of the canonical words applying a Front-

Coding Hu-Tucker technique [Brisaboa et al. 2011] that was recently used to compress string
dictionaries. Basically our (sorted) dictionary of canonical words is partitioned into buckets
of k words. By following a Front Coding approach [Witten et al. 1999], the first word within
each bucket is explicitly stored and the rest are differentially encoded (both the size of
the common prefix and the remaining suffix are stored for each entry). In the Front-coding
Hu-Tucker version, the whole bucket10 is compressed with Hu-Tucker coding. Searches for
a given canonical word involve two phases: i) a binary search over the first entry of the
buckets to find a candidate bucket; and ii) a sequential scan of the candidate bucket that
rebuilds words within that bucket and performs the comparison with the searched word on
the fly. The bucket size yields a time/space tradeoff. We performed some experiments to
adjust that parameter and found that the best choice is to set bucket size to k = 4. In our
1GiB text, this reduced the size of the vocabulary from around 8MiB to around 3MiB while
obtaining similar search times in general.

4.2.2. Variants of each canonical word. The variants of the canonical words are only needed
when the text is decoded (extractFWSI) or for the locateFWSI operation. Recall from
Section 4.1 that the variants of each canonical word are sorted by frequency so that word-
oriented Huffman can be run on them. Yet, those variants are still compressible. We keep
them compressed with a character-oriented Huffman. Figure 5.c) shows the three-level rep-
resentation that gives constant-time access to the codeword associated to the first character
of any variant. The third level stores the compressed variants. The second level (subDir)
keeps both absolute values (for the first) and relative jumps (for the others) for addressing
the codeword of the variants of a given canonical word. Finally, the first level, j = Dir[i],
points to the first position j in subDir where the data related to the ith canonical word is
kept. Note that all the integers in the figure are encoded bitwise to reduce space. Assuming
that an absolute sample in SubDir takes α bits (α = ⌈log2 max abs⌉) and a jump is encoded
with γ bits (γ = ⌈log2 max jump⌉), accessing to the beginning of the codeword of the jth

9Recall that canonical words with one variant have no counterpart in CT , but these are spotted as we
extract the canonical words from the ISI and check their set of variants.
10The length of the common prefixes is also compressed with Vbyte [Williams and Zobel 1999].

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:17

a) Canonical Words b) Separators

c) Variants of canonicals d) Huffman trees of variants

1 21 35 43 51

Dir: Pointer to the 1st variant of a canonical word

1 2 3 4 5

Buffer of compressed variants (char-oriented Huffman)

SubDir: variants of a canonical word

A
b
so

lu
te

va
lu

e

log2(33) = 6 bits / jump

log2(152) = 8 bits / abs pointer

log2(51) = 6 bits / pointer

1 16 55 100

1..8 9..14 15..20 21..28

123 15233

29..34

16

35..42 43..50 51..58

1 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

...

168
jump = +16

b i r d \0 B i r d \0 b

jump = +33

1 5 8 13 19

canonicals

1 2 3 4 5

b i r d f l y l a

1 2 3 4 5 6 7 8 9

r r y

10 11 12

l i t

13 14 15

t l e

16 17 18

s a y

19 20 21 22

Buffer of canonical words

#canonicals = 5

log2 (22) = 5 bits / pointer

22

6

1 2 8 24 34

separators

1 2 3 4 5

0 1 1 0 0 1 0 1 1

1 2 3 4 5 6 7 8 9

1 0 1

10 11 12

0 1 1

13 14 15

1 1 1

16 17 18

1 0 0

19 20

0 0

Buffer of compressed separators (char-oriented Huffman)

21 22

log2(88) = 7 bits / pointer

_ A _ _ h a d _

23

65 88

6 7

0 1

24 25

1 1 1

26 27 28

1 0 0

87 88

_ a _

. . .

#separators = 6

1 3 4 5 6

Ptr: Huffman trees of canonicals

1 2 3 4 5 log2 (7) = 3 bits / pointer

fs
t 0 num0 fs
t 1 num1 fs
t 0 num0 fs
t 0 num0 fs
t 0 num0 fs
t 0 num0

1 2 3 4 5 6

Max (numi) = 2

Max (fsti) = 1
2+1 = 3 bits / bucket

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

7

6

#canonicals = 5

7

Buckets: (fst|num)

Fig. 5. Detailed structures used in FWCSA presentation layer.

variant of the ith canonical word involves: i) reading the absolute value abs from SubDir
at position p← Dir[i]; ii) if j > 1, reading a jump value at position Dir[i] + α+ (j − 2)γ;
and iii) computing offset← abs+ jump.

4.2.3. Huffman trees of variants. Storing the shape of a canonical Huffman tree only requires
to keep its height H , and two H-element vectors known as num (number of elements in
each level) and first (first codeword in each level) [Moffat and Turpin 1997]. This is usually
a very small overhead. However, we must store the shape of the canonical tree of each
canonical word (the tree used to encode its variants). Figure 5.d) shows a compact way to
keep all those Huffman trees that allows constant-time access to any num or first value for
any canonical word.
As an example, in Figure 5.d), Ptr [2]−Ptr [1] = 2 indicates that the height of the Huffman

tree of the variants of the first canonical word is 3− 1 = 2. By accessing bucket [Ptr [1]] and
bucket [Ptr [1] + 1] we obtain the values first and num for the two levels of such Huffman
tree. As in Section 4.2.1, Ptr [6] holds a virtual element that simplifies computing the height
of the Huffman tree of variants for the 5th canonical word: height(5) = Ptr [6]− Ptr [5].
Note that num and first hold very small values in practice, as the maximum number of

variants of a given canonical word is usually small. In our experiments, 4 and 7 bits per
entry were used for first and num, respectively.

4.2.4. Separators. Separators are stored in a similar structure to that of the plain rep-
resentation of the canonical words, but compressed with character-based Huffman. That
structure is shown in Figure 5.b).

4.3. Search Operations in the FWSI

When searching for a pattern P = 〈w1 . . . wM 〉, we apply the same normalization used
when indexing the text, and obtain a new filtered pattern P f = 〈w1 . . . wm〉 (m ≤ M)
composed of normalized words (the null words are discarded). Then, the words in P f are
binary searched for in the vocabulary of canonical words (to obtain their id), and a new
pattern P ′ = 〈id1 . . . idm〉 is obtained.
In a FWSI, the searches typically require accessing Sid (through countISI, locateISI, and

extractISI) in synchronization with array CT . The different search operations in a FWSI
are discussed below.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Antonio Fariña et al.

— countFWSI(P) is converted to countISI(P ′), and answered in time O(m log n).
— locateFWSI (P) returns the char-offsets in the original text T where pattern P occurs. In

this case, locateISI (P ′) gives the word offsets i1, . . . , ik of P ′ in Sid. Then, the byte offsets
in the original text are obtained as Z[i1] . . . Z[ik].

— extractFWSI (s, e) recovers the substring T [s, e] of the original text. An initial search
within Z (first a binary search on the sampled values, completed with a sequential search)
gives the last Z[i] ≤ s. Then we synchronize the compressed text in CT by moving to
position B[i]. From there on, we decompress using CT until the number of decompressed
characters is greater than e − Z[i]. Characters before s and after e are skipped to form
the answer.

We can also support locateWSI and extractWSI, that is, the word-based operations. The
only difference with the WSI is that we have to normalize P first, and that in the case of
extractWSI we have to consider the presentation layer in order to obtain the original text.
Other more complex searches, such as wildcards and approximate matching, could be

supported through scanning the vocabulary. See Moura et al. [2000] for details.

5. EXPERIMENTAL RESULTS

We used for our experiments a text collection of around 1GiB, obtained by aggregating
Calgary corpus11 and several corpora from trec-212: AP Newswire 1988 (AP) and Ziff
Data 1989-1990 (ZIFF), as well as from trec-4: Congressional Record 1993 (CR) and
Financial Times 1991 to 1994.
An isolated Intel R©Xeon

R©-E5520@2.26GHz with 72GiB-DDR3@800MHz RAM was used.
It ran Ubuntu 9.10 (kernel 2.6.31-19-server), using gcc version 4.4.1 with -O9 -m32 options.
Time results refer to cpu user time. All of our experiments and indexes run entirely in
RAM.
We present three main comparisons in this section. First, we compare the effects of either

using or skipping the presentation layer in our self-indexes, by comparing WCSA with its
flexible counterpart FWCSA. These results are shown in Section 5.1. In Section 5.2 we
compare different configurations for a block-addressing inverted index (II) and choose the
best setup depending on its space/time tradeoff. This best setup, that will be referred to
as II stands for the best state-of-art competitor against our WSI variants. Finally, we show
the comparison of the best II with our word-based self-indexes in Section 5.3.
Comparisons are focused on the in-memory size of the indexes, and in three main oper-

ations: countWSI, locateWSI, and extractWSI (or their flexible counterparts). For searches
we used 8 sets of 100 random test patterns. Four sets were composed of single-word pat-
terns with different frequency ranges: Wa, Wb, Wc, and Wd, and other four were formed
by phrases of lengths 2, 4, 6 and 8, and named P2, P4, P6, and P8 respectively. Table II de-
scribes them. Words were chosen uniformly at random from the vocabulary obtained by our
WSIs. Although real-life queries follow a power-law distribution, this is independent of their
distribution of frequencies in the text [Baeza-Yates and Navarro 2004]. This independence
implies that a uniform sampling of queries yields the same average performance as real-life
distributed ones. We discarded patterns consisting in either a separator or a stopword. To
obtain the phrase patterns for our sets Pi, we accessed the source file at random positions
and parsed i words (or separators) from there on, ensuring that each pattern contained at
least one bare word. That is, the sum of words and separators in P6 is 6, and at least one
of them is a bare word. The normalization process in the flexible self-indexes has a perni-
cious effect on phrase searches, as some phrases containing more than one stopword could
become single-word patterns. This could lead to an unfair comparison between flexible and

11ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus
12http://trec.nist.gov/

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:19

Table II. Description of our search patterns.

Set Description total # of occurrences
on WSIs on FWSIs on FWSIs

lowercase Porter’s
Wa 100 Random words with freqs in [1, 100] 1,135 14,789 170,840
Wb 100 Random words with freqs in [101, 1000] 30,664 151,470 668,021
Wc 100 Random words with freqs in [1001, 10000] 258,098 389,967 1,919,131
Wd 100 Random words with freqs in [10001,∞] 2,273,565 3,220,383 5,382,130
P2 100 Random phrases of 2 words 201,956 371,465 568,019
P4 100 Random phrases of 4 words 4,415 677,748 964,047
P6 100 Random phrases of 6 words 144 123,043 257,205
P8 100 Random phrases of 8 words 169 2,032 6,000
P ′

2
100 Random phrases of 2 words 32,359 40,114 58,189

P ′

4
100 Random phrases of 4 words 4,057 8,139 11,442

P ′

6
100 Random phrases of 6 words 131 319 665

P ′

8
100 Random phrases of 8 words 108 303 362

non-flexible variants and explains why P6 occurs 123,043 times on FWSIs and only 144
times on WSIs. To overcome this issue, we created four new sets P ′

2, P
′
4, P

′
6, and P ′

8 and we
manually removed phrases that would become 1-word patterns after normalization. That
is, P ′

i sets contain at least two bare words. Our experiments in Section 5.1 use P ′
i instead

of Pi sets.
For extractWSI experiments, we created three sets of intervals [i, i+w − 1], where i is a

random word-rank on the sequence of words Sid (0 ≤ i ≤ |Sid| − w), and w is the interval
width. We tried three different values for w (10, 100, and 1000 words), so that we start
the extraction of text from the ith word and recover a substring containing the following w
words. We will refer to such sets as 10w, 100w, and 1000w, and they contain respectively
106, 105, and 104 intervals. Therefore, we will extract 106 substrings consisting of 10 words,
105 of 100 words, and 104 substrings with 1000 words respectively. In all cases, we recover
around 45MiB of plain text.
Finally, in Section 5.4 we include experiments on construction time and memory usage.

5.1. Flexible and non-flexible word-based self-indexes

In this section we compare WSIs with FWSIs. We focus the comparison on the CSA-based
structures. In particular, we compare the WCSA with two versions of our FWCSA that
use different normalization functions. The first variant, denoted FWCSAs, uses a simple
normalization that consists in removing stopwords and mapping to lower-case. The second,
called FWCSAp, also removes stopwords, but then it performs stemming using Porter’s
algorithm13 [Porter 1980]. Both map all separators to the null word.
We used three different setups for each self-index by setting the parameters 〈tA, tA−1 , tΨ〉

to 〈16, 64, 16〉, 〈32, 32, 32〉, and 〈128, 256, 128〉. Parameters 〈tZ , tB〉 were set to 〈512, 32〉 for
the FWCSA variants. Table III gives a breakdown of the space.
By indexing only normalized words, the flexible versions have to deal with less than

49% of the words (|Sid|) indexed by the WCSA. In addition, the normalization performed
in the flexible indexes reduces the size of the vocabulary (|V |) from 885, 637 words (and
separators) in theWCSA to 745,512 and 657,826 canonical words in FWCSAs and FWCSAp,
respectively. Note that for FWCSAs and FWCSAp we show the size of the array of canonical
words assuming that it is either kept in plain form (as in WCSA) or compressed using the
Front-Coding Hu-Tucker approach. The smaller vocabulary in FWCSAp leads to a heavier
presentation layer than that of FWCSAs. Since FWCSAp obtains fewer different canonical
words than FWCSAs, FWCSAp produces more variants for each normalized word, and
therefore such variants are encoded with longer codewords. This is the reason why array

13http://tartarus.org/~martin/PorterStemmer/

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Antonio Fariña et al.

Table III. Space breakdown of our CSA-based self-indexes: FWCSAs, FWCSAp, and WCSA.

FWCSAs FWCSAp WCSA

P
a
ra
m
s

tA 16 32 128 16 32 128 16 32 128
tA−1 64 32 256 64 32 256 64 64 256

tΨ 16 32 128 16 32 128 16 32 128
tZ 512 512 512 512 512 512 – – –
tB 32 32 32 32 32 32 – – –

|Sid| 111,885,753 111,885,753 228,707,234
|V | 745,512 657,826 885,637

ratio(%) 40.326 37.747 34.191 40.210 37.610 34.038 45.027 38.079 31.860

Presentation layer (size in KiB)
CT 110,767 110,767 110,767 116,922 116,922 116,922 – – –
B 13,658 13,658 13,658 13,658 13,658 13,658 – – –
Z 854 854 854 854 854 854 – – –

variants 9,897 9,897 9,897 9,546 9,546 9,546 – – –
Huff var 2,662 2,662 2,662 2,872 2,872 2,872 – – –

separators 19,328 19,328 19,328 19,328 19,328 19,328 – – –
canonicals 3,422 3,422 3,422 2,967 2,967 2,967 9,882 9,882 9,882
Hu-Tucker 3,422 3,422 3,422 2,967 2,967 2,967 – – –

plain 8,122 8,122 8,122 6,979 6,979 6,979 9,882 9,882 9,882
total 160,588 160,588 160,588 166,147 166,147 166,147 9,882 9,882 9,882

ICSA layer (size in KiB)
Ψ 193,309 172,920 157,582 186,519 165,910 150,404 318,757 273,352 239,119
D 18,780 18,780 18,780 18,780 18,780 18,780 38,388 38,388 38,388

AS 27,316 13,658 3,414 27,316 13,658 3,414 55,837 27,918 6,980
BA 18,780 18,780 18,780 18,780 18,780 18,780 38,388 38,388 38,388

A−1

S
6,829 13,658 1,707 6,829 13,658 1,707 13,959 13,959 3,490

total 265,013 237,795 200,263 258,223 230,785 193,085 465,328 392,005 326,364

CT occupies around 5MiB more than in FWCSAs. This loss of compression is partially
compensated by storing data for fewer canonical words (variants and Huffman trees of
variants). A different situation arises at the ICSA layer. Both FWCSAs and FWCSAp are
built over a sequence of ids (Sid) of the same length. However, since |V | is smaller in the
FWCSAp (fewer different canonical words), it obtains a more compressible Sid sequence.
Finally, we can see that the overall compression is slightly better in FWCSAp than in
FWCSAs in all cases.
Comparing the similar compression ratio of the WCSA (which self-indexes 228 million

words) with that of its flexible counterparts (that index only 111 million words), we can
conclude that the information that is not implicitly self-indexed is instead kept compressed
explicitly in the presentation layer. Also we can see that WCSA can be tuned to obtain
a compression ratio around 30% whereas its flexible counterparts are hardly able to reach
the 33% limit. The reason behind that is the redundancy introduced by compressors like
Huffman.
Although WCSA and FWCSA offer different search capabilities, we also performed some

experiments to compare their performance on searches. A first difference is due to normal-
ization, as the average number of bare words in the sets of patterns P ′

2, P
′
4, P

′
6, and P ′

8
are respectively 2.00, 2.56, 3.42, and 3.81. Therefore, FWCSA searches for shorter patterns
than WCSA in practice.
Figure 6 compares average count time for our self-indexes. Note that we have obtained ad-

ditional dots in our plots by trying more parameter values. In addition, to have a fairer com-
parison with theWCSA, we include the regular FWCSA versions and two additional variants
that do not compress the array of canonical words. We refer to them as FWCSAs|p(plain).
Compressing the canonical words saves some space (around 0.3 percentage points in com-
pression ratio) but almost doubles count times for single-word patterns. Yet, it has a neg-
ligible influence in phrase queries.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:21

As expected, the performance at counting for single words (with an uncompressed vocab-
ulary) is similar in both the regular and the flexible self-indexes; this is shown in Figure 6-
top-left where we include average count times when searching for all the patterns in the sets
Wa to Wd. However, the flexible versions are a bit faster at count than the WCSA when
searching for phrases due to the reduced vocabulary and because they search for fewer bare
words. The only exception occurs for compression ratios ≤ 34.5% where FWCSA must use
a much sparser sampling than that of WCSA.

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 32 33 34 35 36 37 38 39

co
un

t t
im

e
(m

ic
ro

se
c/

pa
tte

rn
)

compression ratio (%)

Words scenario: all words in {Wa,Wb,Wc,Wd}

WCSA
FWCSAs

FWCSAp

FWCSAs(plain)

FWCSAp(plain)

 0

 10

 20

 30

 40

 50

 32 33 34 35 36 37 38 39
co

un
t t

im
e

(m
ic

ro
se

c/
pa

tte
rn

)
compression ratio (%)

P2
, scenario: phrases with 2 words

WCSA
FWCSAs

FWCSAp

FWCSAs(plain)

FWCSAp(plain)

 0

 20

 40

 60

 80

 100

 120

 140

 32 33 34 35 36 37 38 39

co
un

t t
im

e
(m

ic
ro

se
c/

pa
tte

rn
)

compression ratio (%)

P6
, scenario: phrases with 6 words

WCSA
FWCSAs

FWCSAp

FWCSAs(plain)

FWCSAp(plain)

 20

 40

 60

 80

 100

 120

 140

 160

 32 33 34 35 36 37 38 39

co
un

t t
im

e
(m

ic
ro

se
c/

pa
tte

rn
)

compression ratio (%)

P8
, scenario: phrases with 8 words

WCSA
FWCSAs

FWCSAp

FWCSAs(plain)

FWCSAp(plain)

Fig. 6. Count space/time tradeoff for WCSA, FWCSAs, and FWCSAp.

Figures 7 and 8 show our experiments for locate and extract operations. We do not include
here FWCSAs|p(plain) variants as they obtained the same locate times as the regular FWCSA
counterparts. Recall also that the array of canonical words is not used during extract. In
the case of extract the sets of intervals 10w, 100w, and 1000w contain respectively: i) 10,
100, and 1000 words for WCSA (as explained before), and ii) 6, 51, and 501 bare words
for FWCSA. In all cases, the sum of the lengths of the snippets extracted range from 45 to
50MiB.
Now, the flexible self-indexes have to pay for the synchronization required between the

presentation layer (position in CT) and the ICSA layer. Therefore, at locating, WCSA
obtains the best results except when a very dense sampling is used (ratio ≤38%). At extract,
that costly synchronization can be partially compensated if long substrings of text are
extracted (synchronizations occur only at the beginning). This is the reason why FWCSA
performs best in the 1000w scenario, and why WCSA performs much better as we decrease
the number of words in the extracted text. Of course, it is not a matter of choosing one of
them, since they fit different scenarios.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Antonio Fariña et al.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 32 33 34 35 36 37 38 39

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Words scenario: all words in {Wa,Wb,Wc,Wd}

WCSA
FWCSAs

FWCSAp

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 32 33 34 35 36 37 38 39

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P2
, scenario: phrases with 2 words

WCSA
FWCSAs

FWCSAp

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 32 33 34 35 36 37 38 39

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P6
, scenario: phrases with 6 words

WCSA
FWCSAs

FWCSAp

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 32 33 34 35 36 37 38 39

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P8
, scenario: phrases with 8 words

WCSA
FWCSAs

FWCSAp

Fig. 7. Locate space/time tradeoff for WCSA, FWCSAs, and FWCSAp.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 33 34 35 36 37 38 39

ex
tr

ac
t t

im
e

(m
ic

ro
se

c/
ch

ar
)

compression ratio (%)

WCSA (10w)
WCSA (100w)

WCSA (1000w)
FWCSAs (10w)

FWCSAs (100w)
FWCSAs (1000w)

FWCSAp (10w)
FWCSAp (100w)

FWCSAp (1000w)

Fig. 8. Extract time/space tradeoff for WCSA, FWCSAs, and FWCSAp.

5.2. Implementing a good baseline block-addressing inverted index (II)

The main goal of our experimental section is to compare our word-based self-indexes with
an inverted index with similar features and space requirements. For such reason, we opted
for comparing with a good main-memory block-addressing inverted index built over com-
pressed text [Navarro et al. 2000]. To save space, instead of keeping the exact position where
each word occurs, the text is logically partitioned into fixed-length blocks and the block-
addressing inverted indexes point to just blocks, Thus, all the occurrences of a given word
inside the same block are stored only once in the corresponding posting list. The cost to pay

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:23

is that the posting lists are no longer enough to perform most search operations, and some
scanning of the text is needed. Searches proceed as follows: First, the posting lists are tra-
versed to identify candidate blocks that could contain a given pattern. When searching for
a single word, this step requires fetching the block numbers from the posting list. Searches
for phrases imply performing the intersection of the posting lists of the words in the phrase
to obtain a list of candidate blocks. Finally, a further scanning of those candidate blocks is
required to complete the search for the pattern.
The block size yields a space/time tradeoff. On the one hand, using small blocks leads to

large indexes, but the inverted index is able to discard many blocks, and little data must
typically be scanned during searches. On the other hand, using large blocks leads to smaller
and slower inverted indexes. Note that the occurrences of phrases spanning through block
boundaries could be skipped by the index as all the words in the phrase must occur within
the same candidate block. This issue can be overcome by just adding some overlap between
blocks. For example, an N -words overlap would ensure that all the occurrences of phrases
including up to N+1 words would be found. Of course, this overlap would lead to some loss
of compression and search time (the block is a bit larger), which would be more noticeable
when using a small block-size. In our experiments we are giving some advantage to IIs over
their competitors and do not use overlapping blocks. Therefore, we permit II s to miss some
occurrences.
Apart from the effect of the block size, the space/time tradeoff of the inverted indexes

potentially depends on two additional parameters: the compression of the posting lists, and
the compression technique applied to the source text.

—Compressing and intersecting posting lists. Most of the list compression algorithms rely on
the fact that the posting lists are increasing, and that the differences between consecutive
entries are smaller on the longer lists. Thus, a scheme that represents those differences
with encodings that favor small numbers works well [Witten et al. 1999]. In this case,
we opted for using rice-codes and vbyte-codes [Williams and Zobel 1999] to encode such
differences. The problem of compressing the posting lists with variable-length codes is
that the intersection of lists can only be carried out using a merge-type algorithm. This is
known to be a good choice only when the intersected lists have similar lengths, typically
if |N | ≤ 20|M |, being M the shortest list, and N the longest one [Baeza-Yates 2004]. If
|N | > 20|M | a set-versus-set algorithm (svs) is preferred. The svs approach is based on
searching the longest list for the elements of the shortest (typically using either binary or
exponential search). However, this requires direct access to the longest list.
Different schemes to represent the posting lists have been devised to allow svs-type in-
tersection over compressed lists [Culpepper and Moffat 2007; Sanders and Transier 2007;
Moffat and Culppeper 2007], hence avoiding the decompression of the whole lists. These
schemes store some sampled absolute values (so that direct access is provided to the sam-
pled positions), and only partial decompression from the previous sample is required to
access any position. We will refer to the scheme by Culpepper and Moffat [2007] as cm-
svs, and to that by Sanders and Transier [2007] as lookup. Moffat and Culppeper [2007]
proposed a hybrid representation for the lists, so that the lists of the most frequent words
are represented with bitmaps (the ith bit is set if that word occurs in block i), and the
remaining lists are represented following the scheme by Culpepper and Moffat [2007]. We
will refer to this scheme as cm-hybrid.
We have implemented five different alternatives to compress the posting lists in our II,
and combined all of them with both rice-codes and vbyte-codes. The resulting variants are:
i) Using no-sampling and no-bitmap approaches, denoted rice and vbyte respectively; ii)
rice-bitmap and vbyte-bitmap, where either rice or vbyte codes are used for the shorter
lists and bitmaps for the longer ones. No sampling is used. As proposed by Moffat and
Culppeper [2007] and assuming that u is the number of blocks, the list L of a given word

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Antonio Fariña et al.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 35 36 37 38 39 40 41 42 43 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c)

Compression ratio (%)

Wd scenario: words freq > 10000

rice
rice-bitmap
rice-cm-svs

rice-cm-hybrid
rice-lookup

vbyte

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 35 36 37 38 39 40 41 42 43 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c)

Compression ratio (%)

P8 scenario: phrases with 8 words

rice
rice-bitmap
rice-cm-svs

rice-cm-hybrid
rice-lookup

vbyte

Fig. 9. Locate time/space tradeoff for the different strategies to compress the posting lists. Left: Wd (fre-
quent words). Right: P8 (long phrases).

is stored as a bitmap if |L| > u/8; iii) rice-cm-svs and vbyte-cm-svs using exponential
search over the samples; iv) rice-lookup and vbyte-lookup; and finally, v) rice-cm-hybrid
and vbyte-cm-hybrid approaches.
Figure 9 compares the rice-based variants and the vbyte technique. We measured the
average locate time per occurrence of the II for the sets of patterns Wd and P8. Different
points were obtained by varying the block-size parameter. The source text was compressed
with (s, c)-dense codes [Brisaboa et al. 2007], as we discuss soon. The results show that
either the fetch time or the intersection time are a negligible part of the overall search
time. Note that all the values within the highlighted rectangles in the plots are obtained
by setting the block-size to 16KiB. Consequently, the gaps in locate time within those
rectangles depend only on the fetch/intersection time, as searches scan exactly the same
candidate blocks. Therefore, since the gaps in locate time among the different strategies
are negligible, it is a good idea to choose the list compression technique yielding the
best compression. This permits us to save some space that can be used to reduce the
block size, that greatly affects the search time. The only exception is when we have many
(small) blocks and we search for long phrases containing both short and long lists that
are intersected in a merge-type fashion. This is the case of the rice variant (see Figure 9-
right). In general, using vbyte-based compression of the lists is not promising in our
inverted indexes due to its poor compression ratio. Among the rice-based variants, we
can see that it is not worth to use sampling (except when we permit compression ratios
over 42-43% and block size under 2KiB), as variants without sampling can typically trade
that sampling space by almost halving the block size. For example, the II using rice with
block size of 16KiB obtains a compression ratio around 36.8%, whereas rice-cm-svs obtains
36.7% with a block size of 32KiB and 37.4% with a block size of 16KiB, respectively. To
sum up, rice and rice-bitmap obtain the best space/time tradeoff. However, rice-bitmap
behaves much better on phrase-based searches. Thus we opt for rice-bitmap as the best
choice for the II.

—Compressing the source text. As shown, searches in a block addressing inverted index re-
quire scanning some blocks. Such scanning can be boosted if direct searches are performed
over the compressed text. It is well-known that performing searches over compressed text
can be much faster than searching uncompressed text [Navarro et al. 2000; Brisaboa et al.
2007] if the text is compressed with a byte-oriented word-based compressor. Among these
compressors, Tagged-Huffman code [Navarro et al. 2000] and the Dense Codes [Brisaboa
et al. 2007] are the most successful techniques since they enable very fast Boyer-Moore-
type direct searches over the compressed text (that is, the pattern is compressed and
directly searched for over the compressed text, hence decompression is not needed for

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:25

searching). We choose (s, c)-Dense Code (SCDC) due to is excellent space/time tradeoff
[Brisaboa et al. 2007]: Compression ratio around 30-35% (33.02% in our 1GiB text) and
very fast at decompression and searches.
In addition, we also are interested in checking the viability of using a more powerful com-
pressor such as the well-known bit-oriented Huffman coupled with a word-based modeler
(Huffword) [Witten et al. 1999]. By using a bit-oriented encoding, Huffword compresses
more than SCDC (compression ratio is 29.22% in our 1GiB corpus). However, it is much
slower at decompression and does not permit Boyer-Moore type direct searching. Indeed,
searches over text compressed with Huffword require simulating decompression one code-
word at a time and checking if the decoded codeword belongs to the searched pattern.
Aiming at performing decompression as fast as possible, we used canonical Huffman in
our Huffword implementation and created an optimized decoder based on previous work
[Moffat and Turpin 1997].
Figure 10 compares the resulting block-addressing inverted indexes built over both SCDC
and Huffword. We show the average time per occurrence needed for locating. Space usage
for II refers to the memory usage of the inverted index plus the size of the compressed
text, that is, the amount of memory required to perform searches.
As expected, SCDC is always the best choice if we permit the index to use over 36% of
the original text size. With a compression ratio around 36-34% the SCDC-based II is still
able to overcome the Huffword-based counterpart in most cases (with the exception of the
low/medium frequency single-word patterns). In this case, the II with SCDC must use a
block size in the range 32KiB-16MiB, whereas the Huffword-based variant uses very small
blocks of only 2-8KiB. For compression ratios around 34% searches are typically slow,
being the SCDC variant close to its lower bound in space usage.
We can also see that when searching for phrase-patterns, the II built over text compressed
with SCDC clearly benefits of scanning blocks in a Boyer-Moore-fashion, which is much
faster than that over blocks compressed with Huffword.

To sum up, we have shown that the best block-addressing inverted index is generally
obtained when we compress the text with SCDC and the posting lists with the rice-bitmap
approach.

5.3. Word based self-indexes vs block addressing inverted indexes

In this section we compare our self-indexes with IIs built over text compressed with either
SCDC or Huffword and using the rice-bitmap approach to compress the posting lists.
We focus our comparison on three different setups of the indexes with different memory

requirements, so that the indexes could occupy around 43%, 38%, and 35% of the size of
the original text. We will refer to this scenarios as large-index (l), medium-index (m), and
small-index (s) and to the corresponding indexes as II l|m|s, WCSAl|m|s, and WSSAl|m|s.
Such configurations were obtained by tuning the parameters of the indexes in the following
way:

— II: As no sampling is done when II uses rice-bitmap to represent the posting lists, the only
parameter for II is the block size. This parameter is set to 512 bytes in IIl, 32KiB in IIm,
and 512KiB in IIs. Unless otherwise stated II will refer to the variant that compresses the
text with SCDC.

—WCSA: We set the parameters 〈tA, tA−1 , tΨ〉 from the WCSA as follows: 〈32, 32, 16〉 for
WCSAl; 〈32, 64, 32〉 for WCSAm; and 〈64, 64, 64〉 for WCSAs.

—WSSA: We set the parameters 〈tpos/suff , tbit1 , tbit2 〉 to 〈32, 16, 16〉, 〈64, 32, 32〉, and

〈128, 64, 64〉 to build WSSAl, WSSAm, and WSSAs, respectively.

We compare the times for operations count, locate, and extract.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Antonio Fariña et al.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 33.5 34 34.5 35 35.5 36 36.5 37 37.5 38

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wa and Wb scenarios: words freq = [1..100], [101..1000]

(Wa) II-scdc
(Wa) II-huff
(Wb) II-scdc
(Wb) II-huff

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 33 34 35 36 37 38

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wc and Wd scenarios: words freq = [1001..10000], [10001 .. inf]

(Wc) II-scdc
(Wc) II-huff
(Wd) II-scdc
(Wd) II-huff

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 33 34 35 36 37 38 39 40 41 42

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P2 and P4 scenarios: phrases with 2 and 4 words

(P2) II-scdc
(P2) II-huff
(P4) II-scdc
(P4) II-huff

 0

 10

 20

 30

 40

 50

 60

 35 36 37 38 39 40

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P6 and P8 scenarios: phrases with 6 and 8 words

(P6) II-scdc
(P6) II-huff
(P8) II-scdc
(P8) II-huff

Fig. 10. Space/time tradeoff for locate obtained by the II using either SCDC or Huffword as text compressor.

Table IV. Counting time comparison of II with WCSA and WSSA.

II WCSA WSSA
l m s l m s l m s

Ratio (%) 43.848 37.964 34.670 43.704 38.079 34.596 43.069 37.620 34.901

ti
m
e
(µ

se
c/
p
a
t)

Wa 12.164 112.876 5955.999 1.720 1.700 1.720 1.112 1.184 1.336
Wb 282.722 3071.000 121319.970 1.699 1.699 1.699 1.119 1.199 1.380
Wc 2944.898 33849.553 582098.743 1.807 1.807 1.703 1.136 1.187 1.368
Wd 25145.629 218489.597 743410.284 1.819 1.819 1.819 1.137 1.137 1.364
P2 3041.457 31101.224 263350.624 7.109 11.390 22.094 5.130 5.897 7.190
P4 1679.687 26205.939 185649.999 19.000 32.200 57.500 11.980 13.620 16.360
P6 1237.500 6945.000 119825.001 23.800 39.600 71.700 20.160 22.620 27.040
P8 1335.808 3230.001 92420.001 30.600 50.800 92.400 27.740 31.020 36.720

Count time. Table IV shows the results. One important advantage of our new self-
indexes is that the time needed to count the occurrences of a pattern is O(log n), independent
of the number of occurrences, whereas in the II the same operation as for locating the
occurrences is required (i.e., an intersection of lists followed by the scanning of candidate
blocks). In this operation the II cannot compete with our self-indexes. A possible way
of partially avoiding this problem is to include the number of occurrences for each word
along with the vocabulary (worsening compression ratio by around 0.75 percentage points).
However, counting on phrases would not be improved. This feature makes our WSIs very
interesting, for example, to estimate relevance of phrases at very low cost.
Among our self-indexes, the WSSA stands as the best choice for count in all scenarios.

The WCSA is around 25-40% slower than WSSA on single-word patterns and 50-300%
slower on phrase-patterns.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:27

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wa scenario: words freq = [1..100]

II-scdc
II-huff
WCSA
WSSA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wb scenario: words freq = [101..1000]

II-scdc
II-huff
WCSA
WSSA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wc scenario: words freq = [1001..10000]

II-scdc
II-huff
WCSA
WSSA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

Wd scenario: words freq > 10000

II-scdc
II-huff
WCSA
WSSA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P2 scenario: phrases with 2 words

II-scdc
II-huff
WCSA
WSSA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P4 scenario: phrases with 4 words

II-scdc
II-huff
WCSA
WSSA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P6 scenario: phrases with 6 words

II-scdc
II-huff
WCSA
WSSA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 32 34 36 38 40 42 44

lo
ca

te
 ti

m
e

(m
se

c/
oc

c.
)

compression ratio (%)

P8 scenario: phrases with 8 words

II-scdc
II-huff
WCSA
WSSA

Fig. 11. Locate time/space tradeoff for II, WCSA, and WSSA.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Antonio Fariña et al.

Locate time. Figure 11 compares locate times. Again, we have included not only the 3
previous setups for our indexes, but also have added more dots in the plots by varying their
parameters. In this operation the WSSA is clearly overcome by the WCSA in all cases. For
example, with ratios around 43%, WCSAl is 5 to 20 times faster than WSSAl. These gaps
decrease slightly as we reduce the memory utilization of the self-indexes.
The II is clearly the best choice to search for single-word patterns when compression

ratios are above 38%, or for very frequent patterns (where most of the blocks are probably
being scanned and many occurrences are found in each block). In practice, IIl overcomes
WCSAl by around 8-9 times, and IIm is still slightly faster than WCSAm in most cases.
However, for ratios below 35% IIs can only overcome WCSAs for very frequent words (the
set Wd). When searching for phrase-patterns, on the other hand, the WCSA is the clear
winner, with the unique exception of short phrases (P2) for compression ratios over 39%.
Finally, we can also see that our assumption that compressed text with SCDC was to be

preferred over Huffword holds also for locate. Recall that the only exception is the search for
single words when compression ratios are below 36%. Yet, we can see that in such scenario
II s are clearly overcome by WCSA for operation locate.

Extract time. Recall that self-indexes contain an implicit representation of the indexed
text. In this section we compare the extractWSI (s,e) time for WCSA and WSSA, that
is, the time needed to recover the substring from the sth to the eth word in the source
text. Note that II does not implement extractWSI as it indexes blocks rather than keeping
complete positional information. Therefore, II cannot extract the same intervals as our self-
indexes. However, as a rough approximation, we are also including extract time measures
for our IIs. In this case, we generated random byte-offsets within the SCDC compressed
data and bit-offsets within the Huffword compressed data. For each of those offsets, IIs pay
for synchronization from the previous block beginning up to the given position, and finally
extract 10, 100, or 1000 words from there on.
Figure 12 shows the results for different setups of WSSA, WCSA, and IIs. On the one

hand, by showing average extract time (in µsec) per character extracted, we observe that
times decrease as the width of the interval increases. This happens because the extraction
of the first word is very costly (recall it requires a synchronization step due to the sampling
in the ISI layer, or from the previous block beginning), and from there on, extracting the
following words proceeds sequentially. On the other hand, results show that WCSA is 3-
8 times faster than WSSA for operation extract (Figure 12-bottom-right focuses on the
comparison of WCSA with WSSA). Also we can observe that IIs are typically faster than
the self-indexes when using small block-sizes (hence synchronization is not a expensive
operation) due to the fast decompression of SCDC and Huffword. For ratios ≤ 36%, the
SCDC-based II is clearly overcome by the WCSA. The Huffword-based II behaves much
better and overcomes WCSA in almost all cases. The only exception is when only 10-word
snippets are extracted.
Although the whole collection will not probably be extracted in a real-case scenario, we

have also measured the time needed byWCSA andWSSA to recover the whole original text.
That is, we run extractWSI (0,228707233). It took 183, 243, and 376 seconds for WCSAl,
WCSAm, and WCSAs respectively, whereas 1046, 1197, and 1366 seconds were needed for
WSSAl,WSSAm, andWSSAs respectively. Of course, these times are much worse than those
of a typical sequential text decompression such as the ones in our II structures. For example,
SCDC decompresses our 1GiB text in just 10.6 seconds, and our Huffword implementation
requires 20.5 seconds.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:29

 0

 2

 4

 6

 8

 10

 12

 14

 16

 32 34 36 38 40 42

ex
tr

ac
t t

im
e

(m
ic

ro
se

c/
ch

ar
)

compression ratio (%)

Extract words: 10 words (106 times)

WCSA
WSSA
II-scdc
II-huff

 0

 0.5

 1

 1.5

 2

 2.5

 3

 32 34 36 38 40 42

ex
tr

ac
t t

im
e

(m
ic

ro
se

c/
ch

ar
)

compression ratio (%)

Extract words: 100 words (105 times)

WCSA
WSSA
II-scdc
II-huff

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 32 34 36 38 40 42

ex
tr

ac
t t

im
e

(m
ic

ro
se

c/
ch

ar
)

compression ratio (%)

Extract words: 1000 words (104 times)

WCSA
WSSA
II-scdc
II-huff

 0

 2

 4

 6

 8

 10

 32 34 36 38 40 42

ex
tr

ac
t t

im
e

(m
ic

ro
se

c/
ch

ar
)

compression ratio (%)

WCSA (10w)
WCSA (100w)

WCSA (1000w)
WSSA (10w)

WSSA (100w)
WSSA (1000w)

Fig. 12. Extract time/space tradeoff for II, WCSA, and WSSA.

5.4. Construction time and memory usage

We now present additional information regarding the construction cost of our indexes in
our 1GiB text. We show both cpu user-time (in seconds), measured with command time,
and peak memory usage (in MiB) obtained from file /proc/<pid>/status.

Table V. Construction time and peak memory usage for II, WCSA, and WSSA.

Construction time (sec.) Peak memory (MiB) Comp. ratio (%)
large small large small large small

FWCSAs 189 191 1,807 1,806 40.326 34.191
WCSA 172 171 3,007 2,925 43.704 34.596
WSSA 792 951 5,023 4,928 43.069 34.901
II (SCDC) 66 57 1,476 592 43.848 34.670
II (Huffword) 110 102 1,408 559 39.433 31.035

We show two setups for each index, large and small, leading to different compression
ratios. For WCSA, WSSA, and II (SCDC) we used exactly the same configurations as in
Table IV. For II (Huffword) we set the block size to 512 bytes (large) and 256KiB (small),
respectively, and compressed the posting lists with rice-bitmap. Finally, for FWCSAs we
used the same setups as in Table III. Note that our programs for building the indexes are
not heavily optimized to reduce memory utilization. We can see that the inverted indexes
are the fastest and least memory demanding structures, requiring typically less memory
than the size of the source file. The WCSA and FWCSA structures are built in around 3
minutes. In WCSA most of this time (around 130 sec.) is spent in the suffix sorting, whereas
FWCSAs spends only around 70 sec. for suffix sorting and around 120 seconds for building

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Antonio Fariña et al.

the presentation layer. Finally, WSSA is clearly the most time and memory demanding
structure at construction.

5.5. Replicability and parameter tuning

Although we have considered one single collection for our experiments, the conclusions are
most likely to apply in most other natural language scenarios. The collection is itself a
standard one used in trec benchmarks, and composed of various subcollections of different
types.
Moreover, the performance of our indexes depend on rather stable characteristics of nat-

ural language collections. The space usage directly depends on the zero-order word-based
entropy of the collection, which is always closely around 25% of the plain text size [Bell
et al. 1990, Chapter 4], and on the vocabulary size, which is negligible on large collections
[Heaps 1978]. Additional space depends deterministically on sampling parameters such as
tΨ, etc. The time performance depends also deterministically on the pattern length and var-
ious sampling steps. That is, the effect of those parameters on the space/time performance
is independent of the text data.
Finally, although there are various parameters in the indexes, these affect different aspects

of the retrieval performance (such as text extraction speed, time to locate one occurrence,
etc.), therefore they are easily tuned to fit different retrieval needs. We have explored various
options for these, usually considering powers of 2, to cover a significant range of space/time
tradeoffs.
As an external example of the robustness of our conclusions, recently Transier and Sanders

[2010] compared our WCSA with inverted indexes in main memory. Using a denser sampling,
they achieved compression ratios in the range 42%–53%, and confirmed that the WCSA is
superior to inverted indexes for phrase searches.

6. CONCLUSIONS AND FUTURE WORK

We have shown how well-known self-indexes such as the CSA and the SSA, typically built
over characters, can be adapted to deal with very large alphabets obtaining what we call
integer self-indexes (ISI). We have also discussed how to apply them for self-indexing natural
language text. The resulting word-based self-indexes (WCSA and WSSA) have shown to be
very appealing alternatives to the traditional inverted indexes (II). Self-indexes compress
the text and the index within a unique data structure. For compression ratios over 38-40%
the II is still a relevant alternative, being actually the best choice for locating very frequent
patterns. However, with compression ratios around 32-38%, the WCSA was shown to be
the best choice to search for words and phrases.
The improvement in the case of phrases is particularly striking, because our self-indexes

search for them in the same way as for words, whereas the II must carry out expensive
intersection processes. This is probably the most important aspect where the new self-
indexes deserve attention.
In addition, the new self-indexes overcome by several orders of magnitude the performance

of the II at counting the number of occurrences of a given pattern, which can be relevant
for example to estimate relevance of phrases at very low cost. Among them, the WSSA
overcomes the WCSA at counting in all scenarios.
We have also presented in detail our flexible word-based self-indexing approach. We show

that by plugging a presentation layer over an ISI we obtain new self-indexes that allow
one to use typical operations of natural language retrieval, such as stemming, case-folding,
skipping stopwords, etc. In addition, the resulting indexes are still very compact and fast,
being directly comparable to their non-flexible counterparts.

As future work, following several recent research [Sadakane 2007; Hon et al. 2009; Gagie
et al. 2010; Culpepper et al. 2010], we are targeting at enabling word-based self-indexes to

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:31

solve document-based queries instead of performing only text searches. Queries like listing
the documents where a pattern appears (instead of all of its individual occurrences), deter-
mining the frequency of a pattern in a document, the number of distinct documents where
it appears, or listing a few documents where the pattern is most frequent, can be used as
a basis to carry out meaningful Information Retrieval operations on the text collection, for
example implementing tf-idf based ranking. These kind of activities have been traditionally
supported using a variant of inverted indexes [Baeza-Yates and Ribeiro-Neto 2011]. How-
ever, some recent results [Culpepper et al. 2010] suggest that the novel sequence-oriented
indexes may be able to overcome inverted indexes on natural language collections. A recent
example of adapting a word-based self-index to solve some document retrieval queries is
given by Arroyuelo et al. [2010].
Albeit, as explained in the Introduction, indexes that run in main memory are of interest

nowadays, it might still be interesting to try to compete with inverted indexes in secondary
memory, which is the scenario in several applications. Our (F)WCSA is not a promising
candidate as such. However, it is possible to combine recent advances in self-indexes for
external memory [González and Navarro 2007; Chien et al. 2008; Sinha et al. 2008] with a
word-based scheme.
Another point is the space needed to build the index in main memory. While the inverted

index can be built in almost the same space of the final index, our (F)WCSA prototype needs
to build the suffix array first. Recent advances in building self-indexes within compressed
space [González and Navarro 2008; Okanohara and Sadakane 2009; Hon et al. 2009] should
easily carry on to our scenario as well.

ACKNOWLEDGMENTS

Funded in part by MICINN grants TIN2009-14560-C03-02 and TIN2010-21246-C02-01, Ministerio de Cien-
cia e Innovación grant CDTI CEN-20091048, and Xunta de Galicia grant 2010/17 (for the Spanish group);
by NSERC Canada and David R. Cheriton Scholarships Program (F.C.); and by Fondecyt grants 1-080019
and 1-110066, Chile (G.N).

REFERENCES

Apostolico, A. 1985. The myriad virtues of subword trees. In Combinatorial Algorithms on Words. NATO
ISI Series. Springer-Verlag, 85–96.

Arroyuelo, D., González, S., and Oyarzún, M. 2010. Compressed self-indices supporting conjunctive
queries on document collections. In Proc. 17th International Symposium on String Processing and
Information Retrieval (SPIRE). LNCS 6393. 43–54.

Baeza-Yates, R. 2004. A fast set intersection algorithm for sorted sequences. In Proc. 15th Annual Sym-
posium on Combinatorial Pattern Matching (CPM). LNCS 3109. 400–408.

Baeza-Yates, R. and Navarro, G. 2000. Block-addressing indices for approximate text retrieval. Journal
of the American Society for Information Science (JASIS) 51, 1, 69–82.

Baeza-Yates, R. and Navarro, G. 2004. Modeling text databases. In Recent Advances in Applied Proba-
bility. Springer, 1–25.

Baeza-Yates, R. and Ribeiro-Neto, B. 2011. Modern Information Retrieval 2nd Ed. Addison-Wesley.

Baeza-Yates, R. and Salinger, A. 2005. Experimental analysis of a fast intersection algorithm for sorted
sequences. In Proc. 12th International Symposium on String Processing and Information Retrieval
(SPIRE). LNCS 3772. 13–24.

Barbay, J. and Kenyon, C. 2002. Adaptive intersection and t-threshold problems. In Proc. 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 390–399.

Barbay, J. and Kenyon, C. 2008. Alternation and redundancy analysis of the intersection problem. ACM
Transactions on Algorithms 4, 1, article 4.

Barbay, J., López-Ortiz, A., and Lu, T. 2006. Faster adaptive set intersections for text searching. In
Proc. 5th International Workshop on Experimental Algorithms (WEA). 146–157.

Barbay, J., López-Ortiz, A., Lu, T., and Salinger, A. 2009. An experimental investigation of set inter-
section algorithms for text searching. ACM Journal of Experimental Algorithmics 14, 3, article 7.

Bell, T., Cleary, J., and Witten, I. 1990. Text compression. Prentice Hall.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Antonio Fariña et al.

Brisaboa, N., Cánovas, R., Claude, F., Mart́ınez-Prieto, M., and Navarro, G. 2011. Compressed
string dictionaries. In Proc. 10th International Symposium on Experimental Algorithms (SEA). LNCS
6630. 136–147.

Brisaboa, N., Fariña, A., Navarro, G., and Paramá, J. 2007. Lightweight natural language text com-
pression. Information Retrieval 10, 1–33.

Brisaboa, N., Fariña, A., Navarro, G., Places, A., and Rodŕıguez, E. 2008. Self-indexing natural
language. In Proc. 15th International Symposium on String Processing and Information Retrieval
(SPIRE). LNCS 5280. 121–132.

Burrows, M. and Wheeler, D. J. 1994. A block-sorting lossless data compression algorithm. Tech. rep.,
Digital Equipment Corporation.

Chien, Y.-F., Hon, W.-K., Shah, R., and Vitter, J. 2008. Geometric Burrows-Wheeler transform: Linking
range searching and text indexing. In Proc. Data Compression Conference (DCC). 252–261.

Claude, F. and Navarro, G. 2008. Practical rank/select queries over arbitrary sequences. In Proc. 15th
International Symposium on String Processing and Information Retrieval (SPIRE). LNCS 5280. 176–
187.

Culpepper, J. and Moffat, A. 2007. Compact set representation for information retrieval. In Proc. 14th
International Symposium on String Processing and Information Retrieval (SPIRE). LNCS 4726. 137–
148.

Culpepper, J. S. and Moffat, A. 2010. Efficient set intersection for inverted indexing. ACM Transactions
on Information Systems (TOIS) 29, 1, 1:1–1:25.

Culpepper, S. and Moffat, A. 2005. Enhanced byte codes with restricted prefix properties. In Proc. 12th
International Symposium on String Processing and Information Retrieval (SPIRE). LNCS 3772. 1–12.

Culpepper, S., Navarro, G., Puglisi, S., and Turpin, A. 2010. Top-k ranked document search in general
text databases. In Proc. 18th Annual European Symposium on Algorithms (ESA). LNCS 6347. 194–205
(part II).

Demaine, E. and Munro, I. 2000. Adaptive set intersections, unions, and differences. In Proc. 11th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 743–752.

Ferragina, P., González, R., Navarro, G., and Venturini, R. 2009. Compressed text indexes: From
theory to practice. ACM Journal of Experimental Algorithmics 13, article 12.

Ferragina, P. and Manzini, G. 2000. Opportunistic data structures with applications. In Proc. 41st IEEE
Symposium on Foundations of Computer Science (FOCS). 390–398.

Ferragina, P. and Manzini, G. 2005. Indexing compressed texts. Journal of the ACM 52, 4, 552–581.

Ferragina, P., Manzini, G., Mäkinen, V., and Navarro, G. 2007. Compressed representations of se-
quences and full-text indexes. ACM Transactions on Algorithms (TALG) 3, 2, article 20.

Gagie, T., Navarro, G., and Puglisi, S. J. 2010. Colored range queries and document retrieval. In Proc.
17th International Symposium on String Processing and Information Retrieval (SPIRE). LNCS 6393.
67–81.

González, R., Grabowski, S., Mäkinen, V., and Navarro, G. 2005. Practical implementation of rank
and select queries. In Proc. Posters 4th Workshop on Efficient and Experimental Algorithms (WEA).
27–38.

González, R. and Navarro, G. 2007. A compressed text index on secondary memory. In Proc. 18th
International Workshop on Combinatorial Algorithms (IWOCA). College Publications, UK, 80–91.

González, R. and Navarro, G. 2008. Improved dynamic rank-select entropy-bound structures. In Proc.
8th Latin American Symposium on Theoretical Informatics (LATIN). LNCS 4957. 374–386.

Grossi, R., Gupta, A., and Vitter, J. 2003. High-order entropy-compressed text indexes. In Proc. 14th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 841–850.

Grossi, R. and Vitter, J. 2000. Compressed suffix arrays and suffix trees with applications to text indexing
and string matching. In Proc. 32nd ACM Symposium on Theory of Computing (STOC). 397–406.

Heaps, H. 1978. Information Retrieval - Computational and Theoretical Aspects. Academic Press, NY.

Hon, W. K., Sadakane, K., and Sung, W. K. 2009. Breaking a Time-and-Space Barrier in Constructing
Full-Text Indices. SIAM Journal on Computing 38, 6, 2162–2178.

Hon, W.-K., Shah, R., and Vitter, J. S. 2009. Space-efficient framework for top-k string retrieval problems.
In Proc. 50th IEEE Symposium on Foundations of Computer Science (FOCS). 713–722.

Huffman, D. 1952. A method for the construction of minimum-redundancy codes. Proc. of the I.R.E. 40, 9,
1090–1101.

Jacobson, G. 1989. Space-efficient static trees and graphs. In Proc. 30th IEEE Symposium on Foundations
of Computer Science (FOCS). 549–554.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Word-based Self-Indexes for Natural Language Text A:33

Larsson, N. J. and Sadakane, K. 2007. Faster suffix sorting. Theoretical Computer Science 387, 3, 258–
272.

Mäkinen, V. and Navarro, G. 2005. Succinct suffix arrays based on run-length encoding. Nordic Journal
of Computing 12, 1, 40–66.

Mäkinen, V. and Navarro, G. 2008. Dynamic entropy-compressed sequences and full-text indexes. ACM
Transactions on Algorithms (TALG) 4, 3, article 32.

Manber, U. and Myers, G. 1993. Suffix arrays: a new method for on-line string searches. SIAM Journal
on Computing 22, 5, 935–948.

Manzini, G. 2001. An analysis of the Burrows-Wheeler transform. Journal of the ACM 48, 3, 407–430.

Moffat, A. 1989. Word-based text compression. Software Practice and Experience 19, 2, 185–198.

Moffat, A. and Culppeper, S. 2007. Hybrid bitvector index compression. In Proc. 12th Australasian
Document Computing Symposium (ADCS). 25–31.

Moffat, A. and Turpin, A. 1997. On the implementation of minimum-redundancy prefix codes. IEEE
Transactions on Communications (TCOM) 45, 10, 1200–1207.

Moura, E., Navarro, G., Ziviani, N., and Baeza-Yates, R. 2000. Fast and flexible word searching on
compressed text. ACM Transactions on Information Systems (TOIS) 18, 2, 113–139.

Munro, I. 1996. Tables. In Proc. 16th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS). LNCS 1180. 37–42.

Navarro, G. and Mäkinen, V. 2007. Compressed full-text indexes. ACM Computing Surveys 39, 1, article
2.

Navarro, G., Moura, E., Neubert, M., Ziviani, N., and Baeza-Yates, R. 2000. Adding compression to
block addressing inverted indexes. Information Retrieval 3, 1, 49–77.

Okanohara, D. and Sadakane, K. 2009. A linear-time burrows-wheeler transform using induced sorting. In
Proc. 16th International Symposium on String Processing and Information Retrieval (SPIRE). LNCS
5721. 90–101.

Porter, M. F. 1980. An algorithm for suffix stripping. Program 14, 3, 130–137.

Puglisi, S. J., Smith, W. F., and Turpin, A. 2006. Inverted files versus suffix arrays for locating patterns
in primary memory. In Proc. 13th International Symposium on String Processing and Information
Retrieval (SPIRE). LNCS 4209. 122–133.

Raman, R., Raman, V., and Rao, S. S. 2002. Succinct indexable dictionaries with applications to encod-
ing k-ary trees and multisets. In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). 233–242.

Sadakane, K. 2003. New text indexing functionalities of the compressed suffix arrays. Journal of Algo-
rithms 48, 2, 294–313.

Sadakane, K. 2007. Succinct data structures for flexible text retrieval systems. Journal of Discrete Algo-
rithms (JDA) 5, 1, 12–22.

Sanders, P. and Transier, F. 2007. Intersection in integer inverted indices. In Proc. 9th Workshop on
Algorithm Engineering and Experiments (ALENEX).

Sinha, R., Puglisi, S., Moffat, A., and Turpin, A. 2008. Improving suffix array locality for fast pattern
matching on disk. In Proc. ACM SIGMOD Conference. 661–672.

Strohman, T. and Croft, B. 2007. Efficient document retrieval in main memory. In Proc. 30th Annual In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR).
ACM Press, 175–182.

Transier, F. and Sanders, P. 2010. Engineering basic algorithms of an in-memory text search engine.
ACM Transactions on Information Systems (TOIS) 29, article 2.

Weiner, P. 1973. Linear pattern matching algorithm. In Proc. 14th Annual IEEE Symposium on Switching
and Automata Theory. 1–11.

Williams, H. E. and Zobel, J. 1999. Compressing integers for fast file access. The Computer Journal 42, 3,
193–201.

Witten, I.,Moffat, A., and Bell, T. 1999. Managing Gigabytes second Ed. Morgan Kaufmann Publishers.

Zobel, J. and Moffat, A. 2006. Inverted files for text search engines. ACM Computing Surveys 38, 2.

ACM Transactions on Information Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

