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Abstract

Let (Yt : t > 0) be the STIT tessellation process. We show that for all
polytopes W with nonempty interior and all a > 1, the renormalized
random sequence (anYan : n ∈ Z) induced inW , is a finitary factor of a
Bernoulli shift. As a corollary we get that the renormalized continuous
time process (atYat : t ∈ R) induced in W is a Bernoulli flow.

1 Introduction and main results

1.1 Introduction

Let Y = (Yt : t > 0) be the STIT tessellation process, which is a Markov pro-
cess taking values in the space of tessellations of the ℓ-dimensional Euclidean
space R

ℓ. The process Y is spatially stationary (that is its law is invariant
under translations of the space) and on every polytope with nonempty inte-
rior W (called a window) the induced tessellation process, which is denoted
Y ∧ W = (Yt ∧ W : t > 0), is a pure jump process. The process Y was
firstly constructed in [8] and in Subsection 1.4 we give a brief construction
and recall some of its main properties.

Our results are stated in Subsection 1.6. In Theorems 1.1 and 1.2 we show
that if a > 1 then the renormalized process Z = (Zt := atYat : t ∈ R)
is a stationary (in time) Markov process and its restriction to a window
Z ∧W = (Zt ∧W : t ∈ R) is mixing. In Theorem 1.3 we give an ergodic
description of the discrete process Zd ∧W = (Zn ∧W = anYan ∧W : n ∈ Z)
on a window W , where Z is the set of integers. There we show that Zd ∧W
it is a finitary factor of a (generalized) Bernoulli shift with null anticipating
length. We conclude in Corollaries 1.4 and 1.5 that Zd ∧W is isomorphic

1

http://arxiv.org/abs/1011.1989v1


to a Bernoulli shift of infinite entropy and that Z ∧ W is isomorphic to a
Bernoulli flow of infinite entropy defined on a Lebesgue probability space.

The proofs of these results are done in Section 2. We use strongly the fact
that we are restricting the renormalized process to a window, indeed our main
technical result, Lemma 2.1, gives the probability that in a nested sequence
of decreasing windows the tessellation is reduced to the boundaries of the
windows.

We need some background on Lebesgue probability spaces and on some ele-
ments on ergodic theory which are respectively given in Subsection 1.2.1 and
Section 1.5.

1.2 Notation and some measurability facts

1.2.1 Notation and product spaces

For a set X we denote by B(X ) a σ−field on X and the couple (X ,B(X ))
is called a measurable space. If X ′ ∈ B(X ) then we will always endow X ′

with the trace (or induced) σ−field B(X ′) = {B ∩ X ′ : B ∈ B(X )}. When
ν is a probability measure on (X ,B(X )), we will denote by (X ,B(X ), ν) the
completed probability space, where completed means that we have added
to B(X ) all the negligible sets with respect to ν. We will always consider
completed probability spaces, even if we do not explicit it. Sometimes the
completed σ−field with respect to ν is denoted by B(X )ν but often (as we
do here) it is not written to avoid overburden notation.

Let (Xi,B(Xi)), i ∈ L, be a collection of measurable spaces. The (Cartesian)
product space

∏
i∈L Xi will be endowed with the product σ-field ⊗i∈LB(Xi),

which is the smallest σ−field containing the family of cylinders. We recall
that a cylinder is a set of the form C =

∏
i∈J Ai with Ai ∈ B(Xi) and J

a finite subset of L. We call (
∏

i∈L Xi,⊗i∈LB(Xi)) the product measurable
space.

Let (Xi,B(Xi), νi), i ∈ L, be a family of probability spaces. The product
measure ⊗i∈Lνi is such that on each cylinder C =

∏
i∈J Ai it takes the value

(⊗i∈Lνi)(C) =
∏

i∈J νi(Ai). We call (
∏

i∈L Xi,⊗i∈LB(Xi),⊗i∈Lνi) the prod-
uct probability space.

When (Xi,B(Xi)) = (X ,B(X )) for all i ∈ L, instead of
∏

i∈L Xi and⊗i∈LB(Xi)
we simply put X L and B(X )⊗L. And if νi = ν for all i ∈ L, the product
probability measure ⊗i∈Lνi is simply written as ν⊗L.

Let (X , d) be a metric space. It is called a Polish space if it is a complete
separable metric space. For instance if (X , d) is a compact metric space then
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it is a Polish space. Let (Xi, di), i ∈ L, be a family of Polish spaces. When L
is countable, the product space X =

∏
i∈L Xi can be endowed with a metric

dX such that it is a Polish space and the topology generated by dX is the
product topology. It suffices to give dX when L = N, being N = {1, 2, ..}
the set of positive integers. It is easily checked that the metric dX (x, y) =∑

i∈N 2
−i min(di(xi, yi), 1) for x = (xi : i ∈ N), y = (yi : i ∈ N) ∈ X does the

job.

When X is a topological space we will reserve the notation B(X) to the Borel
σ−field unless the contrary is explicitly specified. Let (Xi,B(Xi)), i ∈ L, be
a family of Polish spaces endowed with their Borel σ−fields. Consider the
product space X =

∏
i∈L Xi. Then, on the space X we can consider both the

Borel σ−field and the product σ−field. When L is countable both σ−fields
coincide, that is ⊗i∈LB(Xi) = B(X ). This is not the case when L is non-
countable, in this case the σ−fields are different. In fact the singletons belong
to the Borel σ−field but not to the product σ−field. In the case L is non-
countable, we will denote by B̂(X ) the product σ−field to distinguish it from
the Borel σ−field.

Let X be a topological space. For a set B ⊆ X we denote by int(B) its
interior, by B its closure and by ∂B = B \ int(B) its boundary.

1.2.2 Measurability facts

We recall that a Lebesgue probability space (or a standard probability space)
is a probability space isomorphic to the unit interval endowed with a prob-
ability measure which is a convex combination of the Lebesgue measure and
a pure atomic measure (’pure atomic’ means that the measure is concen-
trated on points). Equivalent definitions and properties on these spaces can
be found in Appendix 1 in [1], Appendix A in [13], Chapter 3 in [3] and
[2]. In particular in Theorem 2 − 3 in [2] it is shown that if (X ,B(X )) is
a Polish space endowed with its Borel σ−field and ν is a probability mea-
sure on it, then the completed probability space (X ,B(X ), ν) is Lebesgue.
Hence, if X ′ ∈ B(X ) is a Borel set of a Polish space and ν ′ is a proba-
bility measure on (X ′,B(X ′)) the complete probability space (X ′,B(X ′), ν ′)
is Lebesgue. Let L be a countable set and let (Xi,B(Xi), νi), i ∈ L, be a
countable family of Lebesgue probability spaces, then the product probabil-
ity space (

∏
i∈L Xi,⊗i∈LB(Xi),⊗i∈Lνi) is also Lebesgue.

Let us introduce the Skorohod topology. Let R+ = [0,∞). Let (X , d) be a
metric space. We denote by DX (R+) the space of càdlag trajectories taking
values in X with time in R+. We recall that càdlag means that the trajecto-
ries are right continuous and have left limits. The space DX (R+) is endowed
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with the Skorohod topology (see [4] chapter 3), which is metrizable (see
Corollary 5.5 in Chapter 3 in [4]). Let dXSk be a metric generating the Skoro-
hod topology. When (X , d) is a separable space we get that (DX (R+), d

X
Sk)

is also a separable space (see Theorem 5.6 in Chapter 3 in [4]). We denote
by B(DX ) the Borel σ−field associated to (DX (R+), d

X
Sk). From Proposition

7.1 in [4] we get that the class of cylinders in DX (R+) is a semi-algebra gen-
erating B(DX ). We will also need the following straightforward extension to
processes with time in R. Let DX (R) be the space of càdlag trajectories with
time in R taking values in X . The Skorohod topology, the metric, the as-
sociated Borel σ−field and all the previous notions are analogously defined.
We point out that the results previously formulated also hold, in particular
the family of cylinders is a generating semi-algebra. We continue to denote
the metric and the associated Borel σ−field by dXSk and B(DX ) respectively,
because we want to avoid overburden notation and because there will be no
confusion from the context.

1.3 The space of tessellations

We will consider tessellations on R
ℓ, with ℓ ≥ 1.

A polytope is the compact convex hull of a finite point set, and we will always
assume that it has nonempty interior. A locally finite covering of polytopes
is a countable family of polytopes whose union is R

ℓ and all bounded sets
can only intersect a finite number of them. These polytopes will be called
cells.

A tessellation T is a locally finite covering of polytopes with disjoint interiors.
We denote by T the space of tessellations of Rℓ. We define the boundary of
a tessellation as the union of the boundaries of its cells. That is, for T ∈ T

we define ∂T :=
⋃

C∈T ∂C

Let F be the family of closed sets of Rℓ endowed with the Fell topology T ,
for definition and properties see [15], Subsections 12.2 and 12.3. We denote
by F

′ = F \ {∅} the class of nonempty closed sets. We have that (F, T ) is
a compact Hausdorff space with a countable base, so it is metrizable and d
denotes a metric on F whose topology is T . Since (F, dF) is a compact metric
space, it is a Polish space (see Subsection 1.2.1). The set F

′ is an open set
in T . Let T ′ be the restriction of T to F

′, then (F′, T ′) is a locally compact
Hausdorff space with a countable base.

Let us denote by F(F′) the family of closed sets of F′. We endow it with
the Fell topology and denote by B(F(F′)) the associated Borel σ−field. Each
tessellation T ∈ T, as a countable collection of polytopes is an element of
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F(F′), so T ⊂ F(F′). Furthermore in Lemma 10.1.2. in [15] it was shown that
T ∈ B(F(F′)).

We will often enumerate the family of countable cells of a tessellation T ∈ T

in a prescribed and measurable form as T = {C(T )l : l = 1, . . .}. For a
tessellation T such that the origin 0 is in the interior of its cell, the first cell
C(T )1 in the enumeration will be the one containing 0.

Let W ⊂ R
ℓ be a fixed polytope with nonempty interior, we call it a window.

As before, FW denotes the set of closed subsets of W and we endow it with
the Fell topology, and we put F

′
W = FW \ {∅}. A tessellation R in W is

the collection of all the cells of a locally finite countable covering of W by
polytopes with disjoint interiors. We denote by TW the space of tessellations
of W . Since W is compact the locally finiteness property implies that every
R ∈ TW is constituted by a finite set of cells, and we will denote by |R|
the number of the cells. Each R ∈ TW is an element of F(F′

W ). As before
we can endow F(F′

W ) with the Fell topology which is metrizable and we
denote by dFW

a metric generating this topology. The space (F(F′
W ), dFW

) is
a compact metric space, we denote by B(F(F′

W )) its Borel σ−field. We have
TW ∈ B(F(F′

W )), in fact the proof of Lemma 10.1.2. in [15] also works in this
case. As before we also define the boundary of a tessellation R ∈ TW by the
union of the boundaries of its cells, ∂R :=

⋃
C∈R ∂C. The trivial tessellation

R in TW has a unique cell which is R = {W}, and so its boundary coincides
with the boundary of the window ∂R = ∂W .

The tessellations in TW can be also seen as induced from a tessellation in T.
In fact each T ∈ T induces a tessellation T ∧W in TW given by the family of
cells T ∧W = {C ∩W : C ∈ T, int(C ∩W ) 6= ∅} (note that this set is finite
by the locally finiteness property). Observe that T ∧W = {W} is the trivial
tessellation when W ⊆ C for some cell C ∈ T . When the windows W,W ′

are such that W ⊆W ′, every Q ∈ TW ′ defines in the same way as before the
tessellation Q∧W ∈ TW . In this case Q∧W = {W} if W ⊆ C for some cell
C ∈ Q.

For a ∈ R and B ⊆ R
ℓ, we put aB = {ax : x ∈ B}. Observe that if W is a

window and a 6= 0 then aW is also a window. For T ∈ T and a ∈ R \ {0} the
tessellation aT is given by the set of cells aT = {aC : C ∈ T}. Analogously
for a window W and a tessellation Q ∈ TW , the tessellation aQ ∈ T ∧ aW
is given by aQ = (aC : C ∈ Q). If W is a window containing 0, a > 1, and
Q ∈ TW , the tessellation aQ belongs to TaW and W ⊂ aW , so we can take
the restriction aQ ∧W ∈ TW .

Since F(F′) is a compact metric space, for a probability measure ν defined
on (F(F′),B(F (F′))), the completed probability space ((F(F′),B(F (F′)), ν)
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is Lebesgue, see Subsection 1.2.2. Analogously, for any probability mea-
sure νW defined on (F(F′

W ),B(F (F′
W ))), the completed probability space

((F(F′
W ),B(F (F′

W )), νW ) is Lebesgue. Since T ∈ B(F(F′)) its associated Borel
σ-field is B(T) = {B ∩ T : B ∈ B(F(F′))} and for any probability mea-
sure ν defined on (T,B(T)) the completed probability space (T,B(T), ν) is
Lebesgue. Analogously for TW . We have B(TW ) = {B ∩T : B ∈ B(F(F′

W ))}
and for any probability measure νW defined on (TW ,B(TW )) the completed
probability space (TW ,B(FW ), νW ) is Lebesgue. Also for any countable set L
the product probability spaces (TL,B(T))⊗L, ν⊗L) and (TL

W , (B(TW ))⊗L, ν⊗L
W )

are Lebesgue.

1.4 The STIT tessellation process

Let us construct Y = (Yt : t > 0) a STIT tessellation process (see [8], [7]),
which is a Markov processes where each marginal Yt takes values in T. The
law of Y only depends on a (non-zero) σ-finite and translation invariant
measure Λ on the space of hyperplanes H in R

ℓ. It is assumed that the
support set of Λ satisfies that there is no line in R

ℓ such that all hyperplanes
of the support are parallel to it (in order to obtain a.s. bounded cells in the
constructed tessellation). For all sets W ⊆ R

ℓ put

[W ] = {H ∈ H : H ∩W 6= ∅} .

The assumptions imply 0 < Λ([W ]) <∞ for every window W . The transla-
tion invariance of Λ yields (see e.g. [15], Theorem 4.4.1.)

Λ([cW ]) = cΛ([W ]) for all c > 0. (1)

Denote by Λ[W ] the restriction of Λ to [W ] and by ΛW = Λ([W ])−1Λ[W ] the
normalized probability measure.

Let us first construct Y ∧W = (Yt ∧W : t ≥ 0) for a window W . We note
that even if for t = 0 the object Y0 does not exist as a tessellation of the
whole R

ℓ we define Y0 ∧ W = {W} the trivial tessellation for the window
W . Let us take two independent families of independent random variables
D = (dn,m : n,m ∈ N) and τ = (τn,m : n,m ∈ N), where each dn,m has
distribution ΛW and each τn,m is exponentially distributed with parameter 1.
We define a sequence of increasing random times (Sn : n ≥ 0) and a sequence
of random tessellations (YSn

∧W : n ≥ 0) with, S0 = 0 and Y0 ∧W = {W}.
The process Y ∧W will satisfy

Yt ∧W = YSn
∧W, t ∈ [Sn, Sn+1). (2)
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The definition of (Sn : n ≥ 0) and (YSn
∧W : n ≥ 0) is done by an inductive

procedure. Let {C1
t , ..., C

lt
t } be the cells of YSn

∧W , we put

Sn+1 = Sn+ τ(YSn
∧W ) where τ(YSn

∧W ) = min{τn,l/Λ([C
l
t]) : l = 1, ..., lt}.

Let l0 be such that τn,l0/Λ([C
l0
t ]) = τ(YSn

∧W ) (it is a.s. uniquely defined).
We denote by m the first index such that dn+1,m ∈ [C l0

t ]. The variable dn+1,m

is distributed as Λ
C

l0
t

. The tessellation YSn+1
∧W is defined as the one whose

cells are {C l
t : l 6= l0} ∪ {C ′

1, C
′
2} where C ′

1, C
′
2 is the partition of C l0

t by the
hyperplane dn+1,m.

In particular, since S1 is exponentially distributed with parameter Λ([W ]),

P(∂(Yt ∧W )∩ intW =∅)=P(Yt∧W ={W})=P(Yt∧W =Y0∧W )=e−Λ([W ]) .
(3)

The process Y ∧W is a Markov process. Also, this construction yields a law
that is consistent with respect to W , that is if W and W ′ are windows and
W ⊆ W ′, then (Y ∧W ′) ∧W ∼ Y ∧W , where ∼ denotes the identity of
distributions. A proof of consistency showing the existence of the law of the
process Y was given in [8].

Since Λ is translation invariant, without loss of generality we can always use
a window W with the origin 0 in its interior and we can also assume that
P−a.e. at all times the origin belongs to the interior of the its cell. This cell
is called the 0−cell.

From (2) it follows that for every window W the process Y ∧W is a pure
jump Markov process with càdlag trajectories, so its trajectories take values
in the space DTW

(R+). Recall that DTW
(R+) is endowed with the Skorohod

topology generated by the metric dTW

Sk (see Subsection 1.2.2). Since (TW , dFW
)

is a separable space, (DTW
(R+), d

TW

Sk ) is also separable. B(DTW
) denotes the

Borel σ−field associated to (DTW
(R+), d

TW

Sk ). As before DTW
(R) is the space

of càdlag trajectories taking values in TW with time in R. The respective
metric and Borel σ−field continue to be written by dTW

Sk and B(DTW
).

By technical reasons it is useful to consider the closure TW of TW in F(F′
W ).

The space D
TW

(R+) can be also endowed with the Skorohod topology which

is generated by a metric dTW

Sk . Since (TW , d
TW

Sk ) is a Polish space, from The-

orem 5.6 in Chapter 3 in [4] we get that (D
TW

(R+), d
TW

Sk ) is also a Polish
space. B(D

TW
) denotes its Borel σ−field. Hence, for a window W we can

also consider that the trajectories of the Markov process Y ∧W take values in

the Polish space (D
TW

(R+), d
TW

Sk ). Also the extension D
TW

(R) to processes
with times in R is needed, all the previous definitions and results hold and
we also denote by B(D

TW
) the associated Borel σ−field.
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1.4.1 Independent increments relation

It is useful to supply an independence relation on the increments of the
Markov process Y which is written in terms of the following operation. For
T ∈ T and ~R = (Rm : m ∈ N) ∈ T

N, we define the tessellation T⊞ ~R, referred

to as the iteration of T and ~R, by its set of cells

T ⊞ ~R=(C(T )k∩C(Rk)l : k=1, ...; l=1, ...; int(C(T )k∩C(Rk)l) 6=∅).

So, we restrict Rk to the cell C(T )k and this is done for all k = 1, . . .. The
same definition holds when the tessellation and the sequence of tessellations
are restricted to some window.

To state the independence relation of the increments of Y , we fix a copy of the
random process Y and let ~Y ′ = (Y ′m : m ∈ N) be a sequence of independent
copies of Y , all of them being also independent of Y . In particular Y ′m ∼ Y .
For a fixed time s > 0, we set ~Y ′

s = (Y ′
s
m : m ∈ N). Then, from the

construction of Y it is straightforward to see that the following property
holds

Yt+s ∼ Yt ⊞ ~Y ′
s for all t, s > 0 . (4)

This relation was first stated in Lemma 2 in [8]. Moreover the construction
done in the proof of this Lemma 2 also shows the following relation. Let
~Y

′(i), i = 1, . . . , j, be a sequence of j independent copies of ~Y ′, which are
also independent of Y . Then, for all 0 < s1 < ... < sj and all t > 0 we have

(Yt+s1, ..., Yt+sj) ∼ (Yt ⊞ ~Y
′(1)
s1

, ..., (((Yt ⊞ ~Y
′(1)
s1

)⊞ ....)⊞ ~Y
′(j)
sj−sj−1

)). (5)

1.5 Elements of ergodic theory

A dynamical system (Ω,B(Ω), µ, ψ) is such that (Ω,B(Ω), µ) is a probabil-
ity space and ψ : Ω → Ω is a measure-preserving measurable transforma-
tion, that is µ(ψ−1(B)) = µ(B) ∀B ∈ B(Ω). When (Ω,B(Ω), µ, ψ) and
(Ω′,B(Ω′), µ′, ψ′) are two dynamical systems, the measurable map ϕ : Ω → Ω′

is called a factor map if it satisfies ϕ ◦ ψ = ψ′ ◦ ϕ µ−a.e. and µ(ϕ−1(B′)) =
µ′(B′) ∀B′ ∈ B(Ω′). If a factor map ϕ is one-to-one µ−a.e., onto µ′−a.e.
and ϕ−1 is also measurable, then it is called an isomorphism and the dy-
namical systems (Ω,B(Ω), µ, ψ) and (Ω′,B(Ω′), µ′, ψ′) are called isomorphic.
When (Ω,B(Ω), µ) and (Ω′,B(Ω′), µ′) are Lebesgue probability spaces, the
measurability condition on ϕ−1 is not explicitly needed in the isomorphism
requirements because it is implied by the other ones.

The dynamical system (Ω,B(Ω), µ, ψ) is ergodic if µ(ψ−1B∆B) = 0 implies
µ(B)µ(Bc) = 0 (where as usual we set A∆B = (A\B)∪(B\A)). It is mixing
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if lim
n→∞

µ(ψ−nA∩B) = µ(A)µ(B) for all A, B ∈ B(Ω). Mixing implies ergod-

icity. To avoid overburden notation the dynamical system (Ω,B(Ω), µ, ψ) is
usually denoted by (Ω, µ, ψ).

Let (S,B(S)) be a measurable space (i.e. S is endowed with a σ−field
B(S)). Let L = N or L = Z. The shift transformation σS : SL → SL

defined by σS(xn : n ∈ L) = (xn+1 : n ∈ L) is a measurable transformation.
If the probability measure µ defined on (SL,B(SL)) is preserved by σS then
(SL,B(SL), µ, σS) (or simply (SL, µ, σS)) is a dynamical system called a shift
system (or simply a shift). When L = N it is called a one-sided shift, and if
L = Z then it is called a two-sided shift. An example of a two-sided shift is
given by a stationary random sequence Yd = (Yn : n ∈ Z) with state space
S. Indeed, if µYd

is the distribution of Yd on SZ, the stationary property of
Yd means that µYd

is σS−invariant and so (SL, µYd

, σS) is a shift system.

Let us recall the Bernoulli property. Let (S,B(S), νS) be a probability space
and L = N or L = Z. Let (SL,B(SL), ν⊗L

S ) be the product probability
space. The shift action σS preserves the product probability measure ν⊗L

S

and (SL, ν⊗L
S , σS) is called a Bernoulli shift, it is two-sided when L = Z and

one- sided when L = N. In notation of [13] Part I, Section 9, (SZ, ν⊗Z

S , σS) is
called a generalized two-sided Bernoulli shift (the name generalized is because
S is not necessarily a countable set). A Bernoulli shift is mixing (so ergodic).
Let us assume that (S,B(S), νS) is a Lebesgue probability space. Then the
entropy h(σS , ν

⊗L
S ) of the Bernoulli shift satisfies h(σS , ν

⊗L
S ) = H(νS), where

H(νS) = ∞ if νS has a non-atomic part and

H(νS) = −
∑

A∈A(νS)

νS(A) log(νS(A))

when νS is purely atomic and where A(νS) denotes the set of its atoms
(singletons of positive νS−measure). The Ornstein isomorphism theorem
(see [10] and [11]) states that two-sided Bernoulli shifts (defined on Lebesgue
probability spaces) having the same entropy are isomorphic.

Let us introduce what a finitary factor is. If (SZ, ν⊗Z

S , σS) and (S ′Z, ν⊗Z

S′ , σS′)

are two two-sided Bernoulli shifts, the measurable map ϕ : SZ → S ′Z is a
finitary factor map if it is a factor map and ν⊗Z

S −a.e. in x = (xn : n ∈
Z) ∈ SZ the coordinate (ϕ(x))n only depends on a finite sequence of values
(xm : m ∈ [n−M(x), n+M ′(x)]). From (ϕ(x))n = (σn

S′◦ϕ(x))0 = (ϕ◦σn
S(x))0

we get that the finitary property can be stated as: ν⊗Z

S −a.e. in x = (xn :
n ∈ Z) ∈ SZ the 0−th coordinate (ϕ(x))0 only depends on a finite sequence
(xm : m ∈ [−M(x),M ′(x)]). We call M(x) and M ′(x) the memory length
and the anticipation length (for x) respectively. A finitary isomorphism can
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be defined in an analogous way. We note that when the state spaces S
and S ′ are finite, a finitary factor is a.e. continuous (that is in a set of full
measure the factor map is continuous when the product spaces are endowed
with the product topologies). In [5] and [6] there was introduced a method
to construct a finitary isomorphism between two Bernoulli shifts of the same
entropy with finite state spaces S and S ′. In [14] the finitary relation is
studied for topological Markov chains with finite state spaces.

A flow (or continuous time dynamical system) (Ω,B(Ω), µ, (ψt : t ∈ R)) is
such that (Ω,B(Ω), µ) is a probability space and ψt : Ω → Ω is a measure-
preserving measurable transformation for all t ∈ R. All the previous notions
can be extended from dynamical systems to flows, in particular ergodicity,
mixing and isomorphism of flows. The shift flows are defined with respect
to the shift transformations σt(xs : s ∈ R) = (xs+t : s ∈ R) for t ∈ R. An
example of a shift flow is given by a stationary random process Y = (Yt :
t ∈ R) with state space S. If µY is the distribution of Y on the product

measurable space (SR, B̂(SR)) then the stationary property of Y means that

µY is σt
S−invariant for all t ∈ R and so (SR, B̂(SR), µY , (σt

S : t∈R)) is a shift
flow. In the case (S, dS) is a metric space and the stationary random process
Y has càdlag trajectories, let µY be the distribution of Y on DS(R). The
stationary property of Y means that µY is σt

S−invariant for t ∈ R and so
(DS(R),B(DS), µ

Y , (σt
S : t∈R)) is a shift flow.

A Bernoulli flow is defined in Section 12, part 2 in [13] as a flow (Ω,B(Ω), µ, (ψt :
t ∈ R)) such that (Ω,B(Ω), µ, ψ1) is isomorphic to a Bernoulli shift. The
entropy of the flow is defined to be the entropy of (Ω, µ, ψ1). The isomor-
phism theorem for Bernoulli flows, Theorem 4 in Section 12, part 2 in [13],
states that if (Ω,B(Ω), µ, (ψt : t∈R)) and (Ω′,B(Ω′), µ′, (ψ′t : t∈R)) are two
Bernoulli flows with the same entropy and such that its completed probabil-
ity spaces (Ω,B(Ω), µ) and (Ω′,B(Ω′), µ′) are Lebesgue, then the two flows
isomorphic.

1.6 Renormalized stationary tessellation process and

main results

Fix a > 1 and define the process Z = (Zs : s ∈ R) by

Zs = asYas , s ∈ R .

Note that Z0 = Y1. In this context the t−shift transformation σt
T
can be

expressed as

σt
T
◦ Z = ((σt ◦ Z)s : s ∈ R) with (σt

T
◦ Z)s = Zs+t.

10



For any window W we set Z ∧W = (Zs ∧W : s ∈ R), and the shift σt
T
has

an analogous expression as above.

We now state our main results whose proofs will be given in the next Section
2.

In the following result, the trajectories of the process Z take values in the
product space T

R, which is endowed with the product σ−field B̂(TR). We

denote by µZ the law induced by Z on (TR, B̂(TR)).

Theorem 1.1. Z is a stationary Markov process, this means that for all
t ∈ R the equality in distribution Z ∼ σt

T
◦ Z is verified.

Hence (TR, B̂(TR), µZ , (σt : t∈R)) is a shift flow.

When W is a window the process Z ∧W = (Zs ∧W : s ∈ R) inherits from
Y ∧W the property of having càdlag trajectories. Since the trajectories of
Y ∧W take values in DTW

(R+) then the trajectories Z ∧W take values in
DTW

(R). We recall that (DTW
(R), dTW

Sk ) is a separable space. By B(DTW
)

we denoted the Borel σ−field associated to (DTW
(R), dTW

Sk ) and by µZ
W we

denote the law induced by Z ∧W on (DTW
(R),B(DTW

)).

Theorem 1.2. For any windowW , the process Z∧W is a stationary Markov
process that is mixing in time:

lim
t→∞

P(Z ∧W ∈ Â, σt
T
◦ Z ∧W ∈ B̂) = P(Z ∧W ∈ Â)P(Z ∧W ∈ B̂) (6)

for all events Â, B̂ in the Borel σ−field B(DTW
).

Hence, (DTW
(R),B(DTW

), µZ
W , (σ

t
T
: t∈R)) is a mixing shift flow.

Let Zd = (Zn : n ∈ Z) be the restriction of Z to integer times and let µZd

be the law of Zd on T
Z. Theorem 1.1 implies that Zd is stationary in time.

As we pointed out in Section 1.5, the stationary property can be stated by
saying that µZd

is preserved by the shift transformation σT.

Let W be a window. The random sequence Zd ∧W = (Zn ∧W : n ∈ Z)
is also stationary, so the law of Zd ∧ W on T

Z

W , which is denoted by µZd

W ,
is σTW

−invariant. We will give an ergodic description of the two-sided shift
(TZ

W , µ
Zd

W , σTW
). We recall that Theorem 1.2 states that this shift is mixing,

so it is ergodic.

Let ξ be the law of Y1 = Z0, so ξ(B) = P(Y1 ∈ B) = P(Z0 ∈ B) for B ∈ B(T).
Let us denote by ξW the law of Y1 ∧W = Z0 ∧W , so

∀B ∈ B(TW ) : ξW (B) = P(Y1 ∧W ∈ B) = P(Z0 ∧W ∈ B). (7)

11



In the sequel we fix
̺ = ξ⊗N

W . (8)

The following ergodic property is verified.

Theorem 1.3. Let W be a window. Then the shift system (TZ

W , µ
Zd

W , σTW
) is

a factor of the Bernoulli shift ((TN

W )Z, ̺⊗Z, σTN

W
), that is ∃ϕ : (TN

W )Z → T
Z

W

(a factor map) measurable and defined ̺⊗Z−a.e., which satisfies,

σTW
◦ ϕ = ϕ ◦ σTN

W
̺⊗Z − a.e., (9)

and
̺⊗Z ◦ ϕ−1 = µZd

W . (10)

Moreover, the factor map is finitary with null anticipation, that is for all
m ∈ Z, ̺⊗Z−a.e. in R = (~Rn : n ∈ Z) ∈ (TN

W )Z, the coordinate ϕ(R)m of the

image point depends only on the finite set of coordinates (~Rn : n ∈ [−N,m])
of the point R. (The memory length N depends on R).

A consequence is the following result.

Corollary 1.4. Let W be a window. Then (TZ

W , µ
Zd

W , σTW
) is isomorphic to

a Bernoulli shift of infinite entropy.

Let us give the steps for its proof. In Subsection 2.4 we will show that the shift
(TZ

W , µ
Zd

W , σTW
) has infinite entropy. On the other hand ((TN

W )Z,B((TN

W )Z), ̺⊗Z)
is a Lebesgue probability space. Then the proof that (TZ

W , µ
Zd

W , σTW
) is iso-

morphic to a Bernoulli shift follows from Theorem 6, page 54 in [13] (see also
[12]) because there it was shown that a factor of a Bernoulli shift defined on
a Lebesgue probability space is isomorphic to a Bernoulli shift.

Corollary 1.5. Let W be a window. Then Z ∧ W is a Bernoulli flow of
infinite entropy that is isomorphic to any other Bernoulli flow of infinite
entropy defined on a Lebesgue probability space.

The proof is as follows. We have that (D
TW

(R),B(D
TW

), µZ , (σt
T
: t∈R)) is

a flow and from Corollary 1.4 it follows that (D
TW

(R),B(D
TW

), µZ , σ1
T
) is a

Bernoulli shift of infinite entropy. Since (D
TW

(R),B(D
TW

), µZ) is a Lebesgue
probability space, Theorem 4 in Section 12, part 2 in [13] gives the result.

Observe that all the results in relation with Zd are also true when instead of
the discrete time process (Zn ∧W : n ∈ Z) we consider (Zhn ∧W : n ∈ Z)
for a fixed positive real h. In fact this last process corresponds to the former
one when ah is used instead of a.

12



2 Proof of the Main Results

We recall that without loss of generality we can assume that window W
contains the origin in its interior, 0 ∈ int(W ). Also we can assume that 0
belongs to the interior of 0−cell during all the tessellation process Y .

2.1 Proof of Theorem 1.1

Let us first note that since the space (F, dF) is a Polish space and T is a

Borel subset of F, a probability measure on the product space (TR, B̂(T)⊗R)
is defined by the finite dimensional distributions verifying the consistency
property (see [9], Corollary Section III.3).

Hence, to show that Z = (Zs : s ∈ R) is stationary it suffices to prove that
the finite dimensional distributions are stationary. So, we must show that

∀t > 0 , ∀s1 < ... < sn ∀B1, ..., Bn ∈ B(T) :

P(Zsi+t ∈ Bi : i = 1, ..., n) = P(Zsi ∈ Bi : i = 1, ..., n) . (11)

Let us do it. Since (Yt : t > 0) is a Markov process, so is (Zs : s ∈ R). On
the other hand it was shown in Lemma 5 in [8] that

tYt ∼ Y1 for all t > 0 , (12)

and hence all 1-dimensional distributions of (Zs : s ∈ R) are identical. There-
fore the proof of (11) will be finished once we show that the transition prob-
abilities from Zs to Zs+t depend only on the time difference t > 0. Now,
from (12) and (4) we get that for all z ∈ T and all measurable B ∈ B(T) it
is satisfied,

P (Zs+t ∈ B | Zs=z) = P
(
as+tYas+t ∈ B | Yas =a

−sz
)

= P

(
z ⊞ as~Y ′

as+t−as ∈ a−tB
)
=P

(
z ⊞ ~Y ′

at−1 ∈ a−tB
)
.

So the stationary property holds.

2.2 Proof of Theorem 1.2

The process Z ∧W takes values in the separable metric space DTW
(R) which

is endowed with its Borel σ−field B(DTW
). As we pointed out in Section 1.4,

since TW is separable then the class of cylinders in DTW
(R) is a semi-algebra

generating B(DTW
). From the Carathéodory theorem on exterior measures

we get that for all sets E ∈ B(DTW
) and all ǫ > 0 exists E ′ ∈ B(DTW

) which

13



is a disjoint union of a finite number of cylinders such that P(E∆E ′) < ǫ.
Therefore it suffices to show the stationary and the mixing property for the
cylinders in DTW

(R). Hence, the above proof of Theorem 1.1 also shows that
Z ∧W is a stationary Markov process when considered in DTW

(R).

Let us prove (6). From the above discussion it suffices to prove it for cylinders

all Â and B̂ such that P(Z ∧W ∈ Â) > 0 and P(Z ∧W ∈ B̂) > 0. So let

Â = {Zs1 ∈ A1, . . . ,Zsj ∈ Aj} and B̂ = {Zu1
∈ B1, . . . ,Zul

∈ Bl}

be such that s1 < ... < sj , u1 < ... < ul in R, A1, ..., Aj , B1, ..., Bl ∈ B(T∧W )
and P(Z0 ∧W ∈ Ap) > 0, P(Z0 ∧W ∈ Bq) > 0 for p = 1, ..., j, q = 1, ..., l.
Note that by time invariance property shown in Theorem 1.1 and since in
(6) time t→ ∞, we can assume sj = u1 = 0.

First, let us show (6) in the case j = l = 1. It suffices to show that for all
A ,B ∈ B(T ∧W ) which satisfy P(Z0 ∧W ∈ A) > 0, P(Z0 ∧W ∈ B) > 0, it
is fulfilled

lim
t→∞

P(Z0 ∧W ∈ A,Zt ∧W ∈ B) = P(Z0 ∧W ∈ A)P(Z0 ∧W ∈ B) . (13)

Let us consider the events {∂Y1 ∩ int(a−tW ) = ∅} with t ∈ R. This family
of sets increases with t and when t → ∞ it converges to the set

⋃
m∈N

{∂Y1 ∩

int(a−mW ) = ∅} = {∂Y1 ∩ {0} = ∅}. So

lim
t→∞

P(∂Y1 ∩ int(a−tW ) = ∅) = P(∂Y1 ∩ {0} = ∅) = 1. (14)

For t > 0

P(Z0 ∧W ∈ A,Zt ∧W ∈ B) = P(Y1 ∧W ∈ A, atYat ∧W ∈ B)

= P(Y1 ∧W ∈ A, ∂Y1 ∩ int(a−tW ) 6=∅, atYat ∧W ∈ B)

+P(Y1 ∧W ∈ A, ∂Y1 ∩ int(a−tW )=∅, atYat ∧W ∈ B). (15)

From (14) the first item converges to 0 for t→ ∞, in fact

lim
t→∞

P(Y1 ∧W ∈ A, ∂Y1 ∩ int(a−tW ) 6= ∅, atYat ∧W ∈ B)

≤ lim
t→∞

P(∂Y1 ∩ int(a−tW ) 6= ∅) = 0. (16)

Let us now turn to the analysis of the second item. The assumption P(Z0 ∧
W ∈ A) > 0 and (14) imply for sufficiently large t > 0 that P(Y1 ∧ W ∈
A, ∂Y1 ∩ int(a−tW )=∅) > 0. Thus

P(Y1 ∧W ∈ A, ∂Y1 ∩ int(a−tW )=∅, atYat ∧W ∈ B)

= P(atY1+(at−1) ∧W ∈ B | Y1 ∧W ∈ A, ∂(atY1) ∩ int(W )=∅)×

×P(Y1 ∧W ∈ A, ∂Y1 ∩ int(a−tW )=∅).
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Conditioned on ∂(atY1) ∩ int(W ) = ∅, the Markov property and the consis-
tency of the construction (described in Subsection 1.4) yield that atY1+(at−1)∧
W is distributed as atYat−1 ∧W , that is

P(atY1+(at−1)∧W ∈B | Y1∧W ∈A, ∂(atY1)∩int(W )=∅)=P(atYat−1∧W ∈ B).

Hence

P(Y1 ∧W ∈ A, ∂Y1 ∩ int(a−tW )=∅, atYat ∧W ∈ B)

= P(Y1 ∧W ∈ A, ∂Y1 ∩ int(a−tW )=∅) P(atYat−1 ∧W ∈ B). (17)

Note that (14) also yields

lim
t→∞

P(Y1∧W ∈A, ∂Y1∩int(a
−tW )=∅)=P(Y1∧W ∈ A)=P(Z0∧W ∈A). (18)

Therefore, from the relations (15),(16), (17) and (18), we get that the result
will be proven once we show

lim
t→∞

P(atYat−1 ∧W ∈ B) = P(Y1 ∧W ∈ B). (19)

From (12) we have P(atYat−1 ∧ W ∈ B) = P(Y1−a−t ∧ W ∈ B) and so it
suffices to show,

lim
t→∞

P(Y1−a−t ∧W ∈ B) = P(Y1 ∧W ∈ B). (20)

For k ∈ N and t > 0 define the events

Dk,t = {∂Y
′m
a−t ∩ int(W ) = ∅ ∀m ∈ {1, ..., k}} (21)

with ~Y ′ as introduced in Subsection 1.4.1. Notice that for any fixed k the
events are monotonically increasing in t because due to the construction of
the process the sets Y

′m
a−t are decreasing in t. Moreover, from (14) we get

lim
t→∞

P(Dk,t) = lim
t→∞

P(∂Y1 ∩ int(a−tW ) = ∅)k = 1. (22)

Further, recall that |Y ∩W | denotes the number of cells of Y ∩W . We have
the following decomposition,

P(Y1−a−t ∧W ∈B) =
∑
k∈N

P(Y1−a−t∧W ∈B, |Y1−a−t∩W |=k,Dc
k,t)

+
∑
k∈N

P(Y1−a−t∧W ∈B, |Y1−a−t∩W |=k,Dk,t). (23)
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Let us analyze the first sum in (23). From (1) we get

P(Dk,t) = e−a−tΛ([W ])k.

Then, by independence between Y and {Dk,t : k ∈ N} and by using that
|Ys ∩W | increases with s we obtain,

∑

k∈N

P(|Y1−a−t ∩W | = k,Dc
k,t) =

∑

k∈N

P(|Y1−a−t ∩W | = k)P(Dc
k,t)

≤
∑

k∈N

P(|Y1−a−t ∩W | = k)
(
1− e−a−tΛ([W ])k

)

= E

(
1− e−a−tΛ([W ])|Y

1−a−t∩W |
)
≤ E

(
1− e−a−tΛ([W ])|Y1∩W |

)
.

Since the term
(
1− e−a−tΛ([W ]) |Y1∩W |

)
is dominated by 1 and it decreases

with t, the Monotone Convergence Theorem gives

lim
t→∞

E

(
1− e−a−tΛ([W ]) |Y1∩W |

)
= E

(
lim
t→∞

(
1− e−a−tΛ([W ]) |Y1∩W |

))
=0.

We have shown that

lim
t→∞

∑

k∈N

P(|Y1−a−t ∩W | = k, Dc
k,t) = 0 . (24)

Then,

lim
t→∞

∑

k∈N

P(Y1−a−t ∧W ∈ B, |Y1−a−t ∩W | = k, Dc
k,t) = 0 .

Let us turn to the second term in (23). With an appropriate measurable
numbering of the cells of Y1−a−t , we get the inclusion of events

{|Y1−a−t ∩W | = k} ∩Dk,t ⊆ {Y1−a−t ⊞ ~Y ′
a−t = Y1−a−t},

and so,

{|Y1−a−t ∩W | = k} ∩Dk,t

= {Y1−a−t ⊞ ~Y ′
a−t = Y1−a−t} ∩ {|Y1−a−t ∩W | = k} ∩Dk,t.

This yields

P(Y1−a−t ∧W ∈ B, |Y1−a−t ∩W | = k, Dk,t)

= P((Y1−a−t ⊞ ~Y ′
a−t) ∧W ∈ B, |Y1−a−t ∩W | = k, Dk,t).
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We have

P((Y1−a−t ⊞ ~Y ′
a−t) ∧W ∈ B, |Y1−a−t ∩W | = k, Dk,t)

= P((Y1−a−t ⊞ ~Y ′
a−t) ∧W ∈ B, |Y1−a−t ∩W | = k)

−P((Y1−a−t ⊞ ~Y ′
a−t) ∧W ∈ B, |Y1−a−t ∩W | = k,Dc

k,t).

By summing this equality over k ∈ N and by using that the family of events
(|Y1−a−t ∩W | = k : k ∈ N) is disjoint and covers the whole space we obtain,

∑

k∈N

P((Y1−a−t ⊞ ~Y ′
a−t) ∧W ∈ B, |Y1−a−t ∩W | = k, Dk,t)

= P((Y1−a−t ⊞ ~Y ′
a−t) ∧W ∈ B)

−
∑

k∈N

P((Y1−a−t ⊞ ~Y ′
a−t) ∧W ∈ B, |Y1−a−t ∩W | = k, Dc

k,t).

Since Y1 ∼ (Y1−a−t ⊞ ~Y ′
a−t), also

∑

k∈N

P((Y1−a−t ⊞ ~Y ′
a−t) ∧W ∈B, |Y1−a−t ∩W |=k,Dk,t)

= P(Y1 ∧W ∈ B)

−
∑

k∈N

P((Y1−a−t ⊞ ~Y ′
a−t) ∧W ∈B, |Y1−a−t ∩W |=k,Dc

k,t).

From (24) we get,

lim
t→∞

∑

k∈N

P((Y1−a−t ⊞ ~Y ′
a−t) ∧W ∈ B, |Y1−a−t ∩W | = k, Dc

k,t) = 0 .

Hence

lim
t→∞

∑

k∈N

P((Y1−a−t ⊞ ~Y ′
a−t) ∧W ∈ B, |Y1−a−t ∩W |=k,Dk,t)=P(Y1 ∧W ∈B).

Thus we have shown lim
t→∞

P(Y1−a−t ∧W ∈B) = P(Y1 ∧W ∈ B) and (19) is

verified. The proof of Theorem 1.1 in the case j = l = 1 is complete.

Let us now show the general case j > 0, l > 0, s1 < ... < sj = 0 and
u1 = 0 < ... < ul in R, and A1, . . . , Aj , B1, . . . , Bl ∈ B(TW ). Since the proof
is entirely similar to the case j = l = 1 we will only give the main steps. We
put

Z[s1, . . . , 0] ∧W ∈ [A1, . . . , Aj ] := {Zs1 ∧W ∈ A1, . . . ,Z0 ∧W ∈ Aj}.
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The same notation is used for Y . We must prove

lim
t→∞

P(Z[s1, . . . , 0] ∧W ∈ [A1, . . . , Aj ],Z[t, . . . , t+ ul] ∧W ∈ [B1, . . . , Bl])

= P(Z[s1, . . . , 0] ∧W ∈ [A1, . . . , Aj ])P(Z[0, . . . , ul] ∧W ∈ [B1, . . . , Bl]) .

Let t > 0. We have

{Z[s1, .., 0] ∧W ∈ [A1, .., Aj],Z[t, .., t + ul] ∧W ∈ [B1, .., Bl]}

= {Y [as1 , .., 1] ∧W ∈ [a−s1A1, .., Aj], a
tY [at, .., at+ul ] ∧W ∈ [B1, .., a

−ulBl]}.

By using (14) and the same arguments as those we used from (15) to (17)
we get,

lim
t→∞

P(Z[s1, .., 0] ∧W ∈ [A1, .., Aj],Z[t, .., t + ul] ∧W ∈ [B1, .., Bl])

= lim
t→∞

P(Y [as1 , . . . , 1] ∧W ∈ [a−s1A1, . . . , Aj], ∂Y1 ∩ int(a−tW ) = ∅,

atY [at, . . . , at+ul] ∧W ∈ [B1, . . . , a
−ulBl])

= P(Y [as1, . . . , 1] ∧W ∈ [a−s1A1, . . . , Aj])×

× lim
t→∞

P(atY [at − 1, . . . , at+ul − 1] ∧W ∈ [B1, . . . , a
−ulBl]).

Since (12) implies

P(atY [at − 1, . . . , at+ul − 1] ∧W ∈ [B1, . . . , a
−ulBl])

= P(Y [1− a−t, . . . , aul − a−t] ∧W ∈ [B1, . . . , a
−ulBl]),

the result will be proven once we show

lim
t→∞

P(Y [1− a−t, . . . , aul − a−t] ∧W ∈ [B1, . . . , a
−ulBl])

= P(Y [1, . . . , aul] ∧W ∈ [B1, . . . , a
−ulBl]). (25)

Now, let ~Y
′(i), i = 1, ..., l be l independent copies of ~Y ′, which are also inde-

pendent of Y . Even if⊞ is not associative for sequences of tessellations we use

Yv0 ⊞
l
i=2

~Y
′(i)
vi to mean

(
..(Yv0 ⊞ ~Y

′(2)
v2 )⊞ ..)⊞ ~Y

′(l)
vl

)
. From the construction

in Lemma 2 in [8], see (5), we have,

P(Y [1−a−t, au2−a−t, . . . , aul−a−t] ∧W ∈ [B1, a
−u2B2, . . . , a

−ulBl],

|Y1−a−t ∩W | = k)

=P(Y1−a−t ∧W ∈B1, Y1−a−t ⊞ ~Y
′(2)
au2−1 ∧W ∈a−u2B2, . . . ,

Y1−a−t ⊞
l
i=2

~Y
′(i)

aui−aui−1 ∧W ∈a−ulBl, |Y1−a−t ∩W |=k) .
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This yields

P(Y [1−a−t, au2−a−t, . . . , aul−a−t] ∧W ∈ [B1, a
−u2B2, . . . , a

−ulBl])

=
∑

k∈N

P(Y1−a−t ∧W ∈B1, Y1−a−t ⊞ ~Y
′(2)
au2−1 ∧W ∈a−u2B2, . . . ,

Y1−a−t ⊞
l
i=2

~Y
′(i)

aui−aui−1 ∧W ∈a−ulBl, |Y1−a−t ∩W |=k) .

Now we use the definition of Dk,t done in (21) with ~Y ′ = ~Y
′(1). From the

equality of events

(Y1−a−t ∧W ∈B1, Y1−a−t ⊞ ~Y
′(2)
au2−1 ∧W ∈a−u2B2, . . . ,

Y1−a−t ⊞
l
i=2

~Y
′(i)

aui−aui−1 ∧W ∈a−ulBl, |Y1−a−t ∩W |=k,Dk,t)

=(Y1−a−t ⊞ ~Y
′(1)
a−t ∧W ∈B1, (Y1−a−t ⊞ ~Y

′(1)
a−t )⊞ ~Y

′(2)
au2−1 ∧W ∈a−ulB2, . . . ,

(Y1−a−t ⊞ ~Y
′(1)
a−t )⊞

l
i=2

~Y
′(i)

aui−aui−1 ∧W ∈a−ulBl, |Y1−a−t ∩W |=k,Dk,t)

and by using twice (24) we get

lim
t→∞

P(Y [1−a−t, au2−a−t, . . . , aul−a−t] ∧W ∈ [B1, a
−u2B2, .., a

−ulBl])

= lim
t→∞

∑

k∈N

P(Y1−a−t ∧W ∈B1, Y1−a−t ⊞ ~Y
′(2)
au2−1 ∧W ∈a−u2B2, ..,

Y1−a−t ⊞
l
i=2

~Y
′(i)

aui−aui−1 ∧W ∈a−ulBl, |Y1−a−t ∩W |=k)

= lim
t→∞

∑

k∈N

P(Y1−a−t ⊞ ~Y
′(1)

a−t ∧W ∈B1, (Y1−a−t ⊞ ~Y
′(1)

a−t )⊞ ~Y
′(2)
au2−1 ∧W ∈a−u2B2,

.., (Y1−a−t ⊞ ~Y
′(1)

a−t )⊞
l
i=2

~Y
′(i)

aui−aui−1 ∧W ∈a−ulBl, |Y1−a−t ∩W |=k)

= lim
t→∞

P(Y1−a−t ⊞ ~Y
′(1)

a−t ∧W ∈B1, (Y1−a−t ⊞ ~Y
′(1)

a−t )⊞ ~Y
′(2)
au2−1 ∧W ∈a−u2B2,

.., (Y1−a−t ⊞ ~Y
′(1)

a−t )⊞
l
i=2

~Y
′(i)

aui−aui−1 ∧W ∈a−ulBl).

Finally from

P(Y1−a−t ⊞ ~Y
′(1)

a−t ∧W ∈B1, (Y1−a−t ⊞ ~Y
′(1)

a−t )⊞ ~Y
′(2)
au2−1 ∧W ∈a−u2B2,

. . . , (Y1−a−t ⊞ ~Y
′(1)
a−t )⊞

l
i=2

~Y
′(i)

aui−aui−1 ∧W ∈a−ulBl)

= P(Y1 ∧W ∈B1, Yau2 ∧W ∈a−u2B2, Yaul ∧W ∈a−ulBl),

the relation (25) follows. The proof of Theorem 1.2 is complete. �

2.3 Proof of Theorem 1.3

We will show some intermediate results -some of them having their own
interest-, that will be needed in the proof of the Theorem.
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As announced we assume that the interior of the window W contains the
origin 0.

Let Z− = {n ∈ Z : n ≤ 0}. For a measurable space (S,B(S)) we shall use
the one sided Bernoulli shift σS : SN → SN, (σS(x))n = xn+1 ∀n ∈ N, and
the inverse shift

σ−
S : SZ− → SZ− , (σ−

S (x))n = xn−1 ∀ n ∈ Z− .

We will set σ−n
S := (σ−

S )
n for n ∈ N. For a probability measure ν on (S,B(S)),

both one-sided Bernoulli shifts (SN, ν⊗N, σS) and (SZ− , ν⊗
Z−

, σ−
S ) are canon-

ically isomorphic. We recall that the Bernoulli shifts are mixing, so ergodic.

In the sequel we use the notion of a boundary ∂T of a tessellation T which
was defined in Section 1.3 as the union of the boundaries of its cells.

Observe that from property (4) and definition of Z it follows that

Zn+1 ∼ aZn ⊞ an+1~Y ′
an+1−an .

Since an+1~Y ′
an+1−an

= a
a−1

(an(a− 1)~Y ′
an(a−1)) we get from (12),

Zn+1 ∼ aZn ⊞
a

a− 1
~Y ′
1 . (26)

Let (~Y
′(i)
1 : i ≥ 0) be independent copies of ~Y

′

1 . A simple recurrence on (26)
and (5) give the formula

(Zn+k : k ∈ N) ∼

(
akZn ⊞

k
i=1

ak+1−i

a− 1
~Y

′(i)
1 : k ∈ N

)
. (27)

We recallM⊞
k
i=1

~M
′(i) is an abbreviation for

(
. . .
(
M ⊞ ~M

′(1)
)
⊞ . . .

)
⊞ ~M

′(k),

where M is a tessellation and ~M
′(i) a sequence of tessellations.

The following fact will be useful. We recall that ξW is the distribution of
Y1 ∧W , see (7).

Lemma 2.1. Let W be a window containing the origin 0 in its interior.

Let ~R− = (Rk : k ∈ Z−) be a random sequence of independent copies of

Y1 ∧W , that is ~R− ∼ ξ
⊗Z−

W . Then, for a > 1 we have

∀ k ∈ Z− : P(∂Rk ∩ int(akW ) = ∅) = P(∂R0 ∩ int(W ) = ∅)a
k

, (28)

and

P(∀ k ∈ Z− : ∂Rk ∩ int(akW ) = ∅) = P(∂R0 ∩ int(W ) = ∅)
a

a−1 > 0 . (29)

20



Moreover

P(~R− : ∃(ni≥1 : i∈N) ր, ∀i∈N ∀k∈Z− : ∂R−ni+k ∩ int(akW )=∅) = 1.
(30)

(ր means strictly increasing; so the sequence (ni) satisfies lim
i→∞

ni = ∞).

Proof. The consistency of the STIT tessellations and (3) yield for all windows
W ′ ⊆W

P(∂Y1 ∩ int(W ′) = ∅) = e−Λ([W ′]) > 0.

Hence for all k ∈ Z− we use (1) to get,

P(∂Rk ∩ int(akW ) = ∅) = e−Λ([akW ]) = e−akΛ([W ]) = P(∂R0 ∩ int(W ) = ∅)a
k

which shows (28).

Further, by monotonicity

P
(
∀k ∈ Z− : ∂Rk ∩ int(akW ) = ∅

)

= lim
m→−∞

P
(
∀k ∈ {m, ..., 0} : ∂Rk ∩ int(akW ) = ∅

)

= lim
m→−∞

0∏

k=m

exp(−akΛ([W ]))= lim
m→−∞

exp

(
−Λ([W ])

0∑

k=m

ak

)

= exp

(
−Λ([W ])

a

a− 1

)
=P(∂R0 ∩ int(W ) = ∅)

a
a−1 > 0.

This proves (29).

Let us show (30). Consider the inverse Bernoulli shift
(
T
Z−

W , ξ
⊗Z−

W , σ−
TW

)
with

(σ−(R′))k = R′k−1 ∀ k ∈ Z−. Define

A∗ = {~R′ ∈ T
Z−

W : ∂R′k ∩ int(akW ) = ∅ ∀k ∈ Z−} .

By (29) we have ξ
⊗Z−

W (A∗) > 0. Since Bernoulli shifts are ergodic the Birkhoff
Ergodic Theorem gives

lim
N→∞

1

N

(
N−1∑

k=0

1A∗(σ−k
TW

(~R′))

)
= ξ

⊗Z−

W (A∗)>0 ξ
⊗Z−

W − a.e. .

Therefore ξ
⊗Z−

W −a.e. in ~R′ ∈ T
Z−

W there exists a strictly increasing sequence

(ni ≥ 1 : i ∈ N) such that {σ−ni

TW
(~R′) ∈ A} for all i ∈ N. This is exactly (30)

because the distribution of ~R− = (Rk : k ∈ Z−) is ξ
⊗Z−

W .
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We will also use the following elementary result.

Lemma 2.2. Let W be a window containing the origin 0 in its interior. Let
T 0 and R0 be two tessellations, ( ~Qn : n ∈ N) be a family of sequences of

tessellations (so for each n ∈ N, ~Qn = (Qm
n : m ∈ N) ∈ T

N is a sequence of
tessellations). Define the following sequences of tessellations in TW :

∀n∈N : T n+1=(aT n
⊞

a

a−1
~Qn+1)∧W, R

n+1=(aRn
⊞

a

a−1
~Qn+1)∧W. (31)

Then
T 0 ∧ a−nW = R0 ∧ a−nW ⇒ T n ∧W = Rn ∧W . (32)

Proof. By iterating (31) we find

T n ∧W = an(T 0 ∧ a−nW )⊞

(
⊞

n
i=1

an+1−i

a− 1
~Qi

)
∧W .

and the result follows straightforward.

Proof of Theorem 1.3. The last part of the Theorem (the fact that the factor
map satisfies the finitary property) will be part of the construction of the
factor map.

We recall the notation in (8), ̺ = ξ⊗N

W . For the tessellation T = {C(T )l : l =
1, ...} ∈ TW (the number of cells is finite) we prescribe C(T )1 to be the cell

containing the origin 0. For ~R = (Rm : m ∈ N) ∈ T
N

W , the set of cells of the

tessellation T ⊞ ~R ∈ TW is

{C(T )i ∩ C(Ri)
j : j = 1, ...; i = 1, ...; with int(C(T )i ∩ C(Ri)

j) 6= ∅}.

As noted in Subsection 1.3 for b > 1 and T ∈ TW , b T ∧W is also in TW .
When ~R = (Rm : m ∈ N) ∈ T

N

W we put b ~R ∧W = (bRm ∧W : m ∈ N).

The factor map ϕ : (TN

W )Z → T
Z

W which must satisfy (9) and (10) is con-
structed in an iterative way: we will define a sequence of functions (ϕN :
N ≥ 0) and will show that the function ϕ = lim

N→∞
ϕN is pointwise ̺⊗Z−a.e.

defined and fulfills the property of being a factor. Then, we start by defining
ϕN .

Let R = (~Rn : n ∈ Z) ∈ (TN

W )Z, so each ~Rn = (Rm
n : m ∈ N) is a sequence

of tessellations in the window W . We must define the image point ϕN(R) =
(ϕN

n (R) : n ∈ Z) in T
Z

W . We fix (recall N ≥ 0),

∀n ≤ −N : ϕN
n (R) = {W} ,
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and we define by recurrence,

∀n ≥ −N : ϕN
n+1(R) =

(
aϕN

n (R)⊞
a

a− 1
~Rn

)
∧W . (33)

We claim that ϕ = lim
N→∞

ϕN is defined ̺⊗Z−a.e. In fact, from property

(30) in Lemma 2.1, applied to the sequences (R1
n : n ∈ Z−), we get that

̺⊗Z−a.e. there exists a sequence Ni ≥ 1, Ni → ∞ (depending on R) such
that ∂R1

k−Ni
∩ int(akW ) = ∅ for all k ∈ Z−. Hence, from Lemma 2.2 we

deduce that for all Ni

∀N ≥ Ni ∀n ≥ −Ni : ϕN
n (R) = ϕNi

n (R).

Therefore

∀N ≥ Ni ∀n ≥ −Ni : ϕn(R) = ϕN
n (R) = ϕNi

n (R), (34)

that is all the components ϕn(R) for n ≥ −Ni are well-defined as ϕNi
n (R).

Since the sequence Ni ≥ 1 exists ̺⊗Z−a.e. the claim is verified, so ϕ is
defined ̺⊗Z−a.e.

From the definition of ϕN we have

σTW
(ϕN+1(R)) = (ϕN (σTN

W
(R)).

Then ϕ satisfies the commuting property (9). The equality (34) also shows
that the factor map ϕ satisfies the finitary property stated in the Theorem.

Let us now turn to the proof of relation (10). We first note that since
lim

N→∞
P(Ni ≤ N) = 1 for all Ni, from the above construction we obtain

∀ǫ > 0 ∀k ∈ Z ∃N(ǫ, k) : P(∀N ≥ N(ǫ, k) ∀n ≥ k : ϕN
n = ϕn)>1−ǫ. (35)

We proved in Theorem 1.2 that Z ∧W is mixing, then it is ergodic. Since
P(∂Zn ∩ int(W ) = ∅) > 0, the ergodic theorem applied to the ergodic sta-
tionary sequence Z ∧W gives

lim
N→∞

1

N

(
N−1∑

i=0

1{∂Zi∩int(W )=∅}

)
= P(∂Zn ∩ int(W ) = ∅) > 0 P− a.e. .

Then,

P

(
∃nk ≥ 0 : lim

k→∞
nk = ∞, ∂Znk

∩ int(W ) = ∅
)
= 1 .
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Hence for all ǫ > 0 there exists K(ǫ) > 0 such that

P (∃n ∈ {0, ..., K(ǫ)} : ∂Zn ∩ int(W ) = ∅) > 1− ǫ . (36)

Consider Zd
− = (Zn : n ≤ 0). For eachM ≥ 0 we define the random sequence

V M = (V M
n : n ∈ Z) taking values in T

Z

W by:

∀n ≤ −M : V M
n = Zn+M ∧W ,

and by recurrence

∀n ≥ −M : V M
n+1 =

(
a V M

n ⊞
a

a− 1
~Rn

)
∧W . (37)

The sequence V M depends on Zd
− ∧ W and R, if we need to explicit its

dependence on R we put V M
n (R). We claim that V M ∼ Z ∧W . To show

it first note that from the definition of V M and by the time-stationarity of
Z ∧W we have

(V M
n : n ≤ −M) = (Zn ∧W : n ≤ 0) ∼ (Zn ∧W : n ≤ −M). (38)

Let us now define the shifted sequence UM (R) = σ−M
TW

V M(R) that satisfies

∀n ∈ Z : UM
n (R) = V M

n−M(R) .

We have (UM
n : n ∈ Z−) = Zd

− ∧W and by stationarity UM (R) ∼ Z ∧W .
From (36) we obtain

∀M > 0 : P
(
∃n ∈ {0, ..., K(ǫ)} : UM

n (R) = {W}
)
> 1− ǫ .

This is equivalent to

P
(
∃n ∈ {−M, ..., K(ǫ)−M} : V M

n (R) = {W}
)
> 1− ǫ . (39)

In analogy to (27) we obtain for all M ≥ 0 and l ≥ 0

V M
−M+l(R) =

(
(alZ0 ∧W )⊞l

i=1

al+1−i

a− 1
~R−M+i−1

)
∧W,

ϕM
−M+l(R) =

(
(alW ∧W )⊞l

i=1

al+1−i

a− 1
~R−M+i−1

)
∧W.

Thus, if V M
−M+l(R) = {W} for some M, l ≥ 0 then necessarily alZ0 ∧W =

{W} and hence also ϕM
−M+l(R) = {W}. So, if V M

n (R) = {W} for some
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n ∈ {−M, ..., K(ǫ)−M} the iteration relations (33) and (37) allow to deduce
ϕM
n (R) = V M

n (R) for all n ≥ K(ǫ)−M . Therefore we find

∀N ≥ K(ǫ) : P
(
∀n ≥ K(ǫ)−N : V N

n (R) = ϕN
n (R)

)
> 1− ǫ . (40)

We can now state the proof of (10). Let us fix k ∈ Z and l ≥ 0, it is sufficient
to show that

∀Bj∈B(TW ) : P(ϕk+j(R)∈Bj : j=0, ..., l)=P(Zk+j ∧W ∈Bj : j=0, ..., l).

Fix M ≥ 0. Since V M ∼ Z ∧W it suffices to prove that for all δ > 0,

|P(ϕk+j(R) ∈ Bj : j = 0, ..., l)− P(V M
k+j(R) ∈ Bj : j = 0, ..., l)| ≤ δ.

Therefore, it suffices to show that for any δ > 0 we have,

P
(
∃j ∈ {0, . . . , l} : {ϕk+j(R) ∈ Bj}∆{V M

k+j(R) ∈ Bj}
)
≤ δ.

Hence it suffices to prove that for any δ > 0 it is satisfied,

P(∃j ∈ {0, ..., l} : ϕk+j(R) 6= Vk+j(R)) ≤ δ. (41)

To this purpose let us take N(δ/2, k) in (35) and K(δ/2) in (40), to obtain

P(∀N≥max(N(δ/2, k), K(δ/2),−k+K(δ/2)) ∀n≥k : V N
n =ϕN

n =ϕn)>1−δ.

Then, (41) is verified and the proof of Theorem 1.3 is complete. �

2.4 Proof of Corollary 1.4

The only relation left to prove is that h(σTW
, µZd

W ) = ∞, where h(σTW
, µZd

W )
denotes the entropy of (TZ

W , µ
Zd

W , σTW
). Recall that ξW is the law of Y1∧W =

Z0 ∧W . From the Markov property we have

h(σTW
, µZd

W ) =

∫

TW

H(κT ) dξW (T ) ,

where κT is the law of Z1∧W conditioned to Z0∧W = T . We have H(κT ) =
∞ when κT is not purely atomic and H(κT ) = −

∑
a∈A(κT ) κT (A) log(κT (A))

if κT is purely atomic and A(κT ) is the set of its atoms. So, it suffices to
show that

ξW (T ∈ TW : κT has a non-atomic part ) > 0 .

We will show the stronger property: κT has a non-atomic part ξW−a.e..
First note that κT has an atom at {aT ∧W}: κT ({aT ∧W}) > 0. This is
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a consequence of the following facts: if Ya ∧W = Y1 ∧W then Z1 ∧W =
aYa ∧W = aY1 ∧W = aZ0 ∧W ; and the construction of the process yields
that P(Ya ∧W = Y1 ∧W ) > 0. Also from the construction of the process Y
it follows that κT ({aT ∧W}) < 1.

Assume that κT has an atom T 0 ∈ TW different from the atom {aT ∧W}.
From the construction there is an hyperface r such that aT ∪ r ⊆ T 0 and
r ⊂ H ∈ H, that is r is a part of an hyperplane H . The translation invariance
and σ−finiteness of the hyperplane measure Λ implies that ΛW ({H}) = 0 for
all H ∈ H. Consequently, the hyperface r in T 0 appears in the construction
with probability 0. We conclude that {aT ∧W} is the unique atom of κT .
Since κT ({aT ∧W}) < 1, κT has a non-atomic part and so H(κT ) = ∞ for
all T ∈ TW . We conclude h(σTW

, µZd

W ) = ∞. �
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