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Nonrelativistic full-folding optical model potentials for nucleon elastic scattering have been cal-
culated and applied to proton scattering on '*O and “°Ca at energies between 135 and 500 MeV.
The optical potentials were calculated in momentum space by folding the mixed target density with
the off-energy-shell free ¢ matrix derived from the Paris nucleon-nucleon potential. The energy
dependence and knockon exchange terms of the ¢ matrix were included explicitly. Significant
differences were observed between observables calculated from the full-folding model and conven-
tional ¢p approximations to it. At proton energies near and below ~400 MeV, the full-folding mod-
el provides a substantial improvement in the description of the data compared to tp approxima-
tions. These results demonstrate the importance of accurate treatments of the off-energy-shell prop-
erties of effective interactions as well as the mixed density in calculating nonrelativistic optical po-
tentials for intermediate energy nucleon scattering. Exploratory calculations at 500 MeV together
with those at lower energies suggest the need for an improved description of the nucleon-nucleon in-
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teraction at higher energies.

I. INTRODUCTION

Since its introduction, the nuclear optical model has
been recognized as one of the simplest and yet most
powerful theoretical approaches to the complex problem
of describing and understanding the physics involved in
nucleon-nucleus scattering. If this approach is to be suc-
cessful at a microscopic level, the calculation of optical
potentials must adequately represent the interplay be-
tween target ground-state properties, the effective
nucleon-nucleon (NN) interaction, and medium correla-
tions. The complicated structure of microscopic optical
potentials has led to the development of several well-
established, though limited, approximations for studying
nucleon-nucleus scattering. Most of these approxima-
tions result in an optical potential which is calculated by
folding the target density with a local NN effective in-
teraction; we shall refer to this scheme as the standard
folding model. At low and intermediate energies, the
most successful' 3 variation of the standard folding mod-
el uses a complex, energy- and density-dependent
effective interaction calculated from a realistic NN poten-
tial. At higher energies, where further approximations
are better justified, the NN effective interaction is taken
to be the free NN 7 matrix evaluated on the energy shell.
This leads to a factorized ¢p structure* for the optical po-
tential in momentum space.

An element common to all variants of the standard
folding model is that of somehow averaging the energy
and momentum dependence of the effective interaction in
order to obtain a simplified force which facilitates its use
in subsequent calculations. In the nuclear medium, these
averaging procedures introduce a medium dependence
into the effective force beyond that present in the true
off-shell interaction. As a result, the separation and
identification of the dominant effects at different energies
such as medium corrections and off-shell contributions
cannot be carried out unambiguously within the standard
folding model.

Extensive applications of the standard folding model of
the nucleon-nucleus optical potential to nucleon elastic
scattering have met with varying degrees of success. In
the energy region below ~100 MeV, where medium
corrections are treated within the framework of a local
density approximation, the calculated potentials provide
a reasonable qualitative description of cross section and
analyzing power data. At these energies, the agreement
between measured and calculated results can be improved
notably if a renormalization is allowed for each com-
ponent of the optical potential.® There is, however, no
physical basis for such a procedure other than to improve
the fit to the data. Even at higher energies the 1p model
has difficulties describing satisfactorily some features of
the data. Although the introduction of relativistic de-
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grees of freedom through the relativistic fp approxima-
tion*¢~% often improves the agreement with the data
significantly, an alternative mechanism may be found in a
correct treatment of the off-shell degrees of freedom of
the force within a nonrelativistic framework.® The
present study addresses the latter approach.

One of the primary purposes of developing a micro-
scopic theory of elastic scattering is that of learning
about the target ground-state properties, nuclear correla-
tions, and the characteristics of the basic internucleon
force in the medium. This requires that the theory con-
sider explicitly each effect without unnecessary ab initio
simplification. Only then can we have a reliable account
of each of the effects contributing to the optical potential
and a base line from which further corrections may be in-
troduced.

In this paper we review some aspects of the formalism
of the nonrelativistic full-folding model of the optical po-
tential and present results from applications of the model
to elastic nucleon scattering. Emphasis is on an explicit
treatment of the off-shell behavior of the NN t matrix, its
energy dependence, and the associated knockon exchange
terms as well as on an explicit treatment of the mixed
density of the target ground state. A brief account of a
few results has been reported previously.” We shall limit
the present applications to energies between 135 and 500
MeV, although the approach we present can be applied
over a wider range of energies. This restriction is based
on two main considerations. First, the NN potentials
which provide the best descriptions of NN scattering data
have been developed over a limited range of energies,
thus setting a limit for the region of applicability of the
full-folding model. Second, we have assumed that intrin-
sic medium corrections, such as those arising from Pauli
blocking, are small enough so that the free off-shell NN ¢
matrix represents a good first approximation to the
effective NN interaction. Actually, medium corrections,
usually associated with Fermi averaging within the local-
density approximation, are naturally accounted for in the
full-folding framework by treating explicitly the energy
and momentum dependence of the NN t matrix for each
NN collision. Recent calculations’ of the nucleon-
nucleus optical potential in the 200-300 MeV region sug-
gest that most of the measured observables can be reason-
ably well reproduced by treating the full off-shell charac-
teristics of the effective force explicitly, and that in a
full-folding framework, medium corrections may be less
important at intermediate energies than found previously
using local ¢p models.! ™3

The outline of this paper is as follows. In Sec. II we
present the assumptions leading to the full-folding model
and derive an explicit expression for it in a momentum
representation. In Sec. III we provide some details of the
calculations of the full-folding potential, discuss the treat-
ment of the Coulomb potential when calculating observ-
ables for proton elastic scattering, and briefly examine
the sensitivity of the scattering observables to the single-
particle model used for calculating the optical potential.
In Sec. IV we compare results from the full-folding model
with measured observables for proton scattering on 60
and “Ca, as well as with results from alternative tp ap-
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proximations to the optical potential. In Sec. V we
present a summary and draw the main conclusions of the
present work.

II. THE FULL-FOLDING MODEL

One of the underlying assumptions in the formulation
of the nonrelativistic full-folding optical potential is the
existence of a bare NN potential which gives a reasonable
description of the existing data for the two-nucleon sys-
tem. In practice, well established NN potential models
have been developed for energies up to around 400 MeV;
work on extending the models to higher energies'® is an
active area of research. In light of this, we focus primari-
ly on incident nucleon energies near and below 400 MeV,
where the most definitive conclusions may be drawn.
Calculations at 500 MeV were made to explore
differences between the full-folding approach and alterna-
tive approximations to it.

Given an (A4 +1) particle Hamiltonian H ,,, the
description of the elastic scattering of a nucleon from an
A-particle target relies on the reduction of the many-
body Hamiltonian to an effective one-body Hamiltonian
h(E) which correctly describes the elastic scattering
channel

h(E)=K,+U(E), (2.1

where K, is the projectile kinetic energy and U(E) is the
optical potential. There are essentially two alternative
approaches to construct U(E). One of them is based on
the very transparent theories of Kerman, McManus, and
Thaler!! (KMT) and Watson, >~ !4 where the emphasis is
on the global properties of the target nucleus, its excita-
tion spectrum, and its coupling to the projectile. This
scheme is most directly applicable when the incident pro-
jectile is distinguishable from the target nucleons, al-
though the fully antisymmetrized theory for nucleon
scattering is available,'* 716 at least formally. One
shortcoming of the KMT and Watson approaches is their
inadequacy for describing low-energy nuclear scattering
due to the slow rate of convergence of the resulting
multiple-scattering series.!” Moreover, the asymmetric
treatment of the scattered and struck nucleons precludes
a systematic reduction of the many-body propagators to
two-body propagators of interacting pairs in the nuclear
field consistent with the Pauli principle. The alternative
approach is based on a many-body description of nuclear
reactions, where the theory is formulated explicitly in
terms of single-particle degrees of freedom and accounts
naturally for the indistinguishability of all participating
nucleons.'® This latter scheme has been successful in
describing nucleon elastic scattering in the region below
200 MeV. In order to understand and interpret explicit
off-shell effects in the optical U (E), we review briefly the
derivation of the full-folding model at intermediate ener-
gies. At these energies we shall see how the alternative
approaches lead to the same result for the optical poten-
tial.
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A. Theoretical framework

In the KMT and Watson theories, the H ,,; Hamil-
tonian is written as

H o =H,+K,+V, 2.2)

where H, is the target Hamiltonian and V is the
nucleon-nucleus coupling, namely
4
V=3 vy, (2.3)
i=1
with v,; the bare internucleon potential between the in-
cident proton and the ith nucleon in the target. Three-
body and higher-order forces are not considered here.
The optical potential for a particle of incident kinetic
energy E [Eq. (2.1)] can be written, in a momentum rep-
resentation, as

UK, k;E)=(K;Do|T(E +Eo)|k; Do) 4 » (2.4)

that is, the antisymmetrized (A ) matrix elements of an
(A +1)-body transition matrix evaluated at the total en-
ergy E +E, in the initial state. The ®, are eigenstates of
the A-particle target Hamiltonian H ,,

H,|®,)=E,|®,), (2.5)

and E, is the ground-state energy. The nucleon-nucleus
T matrix satisfies

T(E+E,)=V+VAE+E,)T(E +E,) , (2.6)

where A((2) is the ( 4 +1)-particle propagator defined by

AQ)= 0

—_— . )

Here Q represents the ( 4 + 1)-particle projection opera-
tor off the target ground state

0=73 [dklk®,)k,|,

n#0

(2.8)

and £y, represents the asymptotic Hamiltonian project-

ed off the ground state
Hoo=Q(Ky+H,)Q . (2.9

Considering that the projectile-target potential ¥ can be
expressed as in Eq. (2.3), a formal solution to Eq. (2.6) for
T can be written as

A
TQ)= 3 1),

(2.10)
i=1
with TV satisfying

TOQ)=7,(0)+ 3 7(QAQ) T (Q) 2.11)

j=i

and 7; being a solution of
T (Q)=vg +vo; AQ)T, (D) . (2.12)
Note that 7, is an (A4 +1)-body operator. Equation

(2.11) for T'? generates the multiple-scattering series for
the optical potential. The leading term of this series
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defines the full-folding model,

A
UK, kE)= 3 (K;®|r,(E +Eo)k;Py) 4 -

i=1

(2.13)

The problem of calculating the 7; operator is still
prohibitive due to the presence of the many-body propa-
gator A in Eq. (2.12). Indeed, this propagator can be ex-
pressed as

;@ 2 (p; P,
A@=3 [dp ;@ (p; P, |

: — . @14
n#0 Q_(p /2m +En)+l’r]

To simplify A we neglect recoil effects and assume a
single-particle description of the target states with the
projectile interacting with only one target nucleon at a
time while the remaining nucleons act as spectators.
Therefore, in the denominator we set

Q=E+E,, E,—E,~€,—€5 €,<€p,€g>€p, (2.15)

with €, and € representing single-particle energies below
and above the Fermi energy of the target €;. Conse-
quently, the many-body propagator can be related to a
propagator effective in the two-particle space,

(kk), ..., KA|A(E +Eg)lkoky, . .., k)
~8(ky—k,) - - 8(k'y —k 4, ){kik||G(E +¢€,)|kok,) ,
(2.16)
where
G(E +e€,)
Ip; @) {p; gl
= d O(ez—€g) ,
% f pE +e,—p*/2m —€gtin £oF
2.17)

In the above equation @y represents the target single-
particle state corresponding to the single-particle energy
€g- It is worth noting the asymmetry between the in-
cident and bound target propagation; while the target nu-
cleon propagates in the nuclear field, the incoming parti-
cle propagates freely in intermediate states. This is
characteristic of the KMT approach. The symmetry can
be restored if one includes the self-energy of the incident
particle as suggested by the many-body approach. In this
work we neglect those medium effects associated with
self-energy corrections and Pauli blocking by setting the
single-particle energy equal to its free value and the ©
function to unity. Therefore,

G(E +€,)=Gy(E +¢,)
Ip;kg) {p; Kyl
=J ks [dp ey
E+e,—p°/2m—kp/2m +in
(2.18)

which corresponds to a free two-body propagator for the
pair. At intermediate energies we expect this approxima-
tion to be reasonable; in any case, it provides a frame-
work within which explicit medium corrections and other
effects may be introduced in a relatively transparent way.
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In the approximation given by Eq. (2.18) for G, the ma-
trix elements of 7, say, can be expressed as

(K, ..., K |7 (E+Eglkeky, ... k)4

~8(ky—k,) - 8k, —k ) kok}|F,(E +e,)|kok; ) 4 »
(2.19)

with 7; the free two-nucleon ¢ matrix given by

?,'(CO):UOI'"'UOI*G()(CO)?[(G)) . (2.20)
Therefore, the leading term for the optical potential can
be expressed as

J

(k'p'|T(E +ea)lkp))q=8(k'+p’—k—p)<%(k'—p')|’t\

where M is the total mass of the pair and 7 satisfies

1. ~

T(z)=p +tv———71
(z)=v vz—K-Hn

(z) .

UK, GE)= 3 [dp [dpelp)

6a<eF
X (K'p'|T(E +€,)|kp) 4@u(P) »

where 7 corresponds to any of the ¢ matrices 7; defined in
Eq. (2.20). Eq. (2.21) defines the full-folding optical po-
tential. This result is consistent with that obtained in the
many-body approach, where, in the absence of medium
corrections, the many-body medium-corrected reaction
matrix (or g matrix) reduces to the free ¢ matrix for the
interacting pair.

Taking into account total momentum conservation for
the interacting nucleon pair, the two-body ¢ matrix 7 can
be expressed in terms of a reduced one-body ¢ matrix 7
acting between states of relative momenta:

(2.21)

2
E+ea—‘lz%’— } %(k—p)> , (2.22)
A
(2.23)

Here K represents the relative kinetic energy operator and v any v,;. The assumption of momentum conservation in the
two-body subsystem expressed by Eq. (2.22) for 7 allows us to simplify Eq. (2.21) for the full-folding potential and obtain

Uk, GE)= 3 [dQplQ—k)(k'—1Qf?

Ea<£F

where the integration is now over the NN center-of-mass
momentum Q. The major difficulty with calculating
U(k',k;E) as given by Eq. (2.24) is that of evaluating the
three-dimensional integral while retaining the complicat-
ed energy and momentum dependence of the ¢ matrix.
The method used to evaluate U (k’,k;E) is described in
the following sections.

B. Explicit expressions

When evaluating the full-folding integral occurring in
Eq. (2.24) it is convenient to use an alternative set of vec-
tors to (k',k,Q) defined by

q=k—k', K=1l(k+k'), P=Q—K (2.25)
and to let P be the new variable of integration. Figure 1
shows the geometrical relationship between the different
vectors. In addition to the defining equations for q, K,
and Q, it is useful to note that

pP'=P+iq p=P—3q, P=i(ptp), (2.26)

and that the initial («) and final (k') relative momenta are

k=4K—P+q), x¥'=HK—P—q). 2.27)

With the above relationships the optical potential may be
rewritten compactly as

E +e,—

QZ
By k—1Q) 49,(Q—k), (2.24)
[
UK, GE)= [dP 3 ol(p'(K,K52,)p4(p),  (2.28)
Ea<EF
where
T ic;2) ="t (2)|k) , (2.29)

- -,
P > P
P
~q/2 a/2
4
K

=i
{

FIG. 1. Relationship between the relevant momenta in the
NN collision as used in Eq. (2.28).
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and the energy available in the NN system is given by

+ 2
romEte,— PIKE. 230
By using P as the integration variable we are able to ex-
ploit more directly the confined Fourier components of
the target bound-state wave functions.

The optical potential U (k',k;E) in Eq. (2.28) is actual-
ly an operator in the spin and isospin spaces of the pro-
jectile. For proton elastic scattering we allow for
differences between proton and neutron wave functions
and find

UK, GE)=[dP 3 3o (P K2, ), (P),
N=pnay

(2.31)

where the summation over ay is restricted to occupied
single-particle states of nucleon N, and 7,, and 7,
represent proton-proton and proton-neutron ¢ matrices,
respectively. To obtain a more explicit expression for the
optical potential, we describe the target ground state us-
ing a shell model which allows for spin-orbit coupling. In

|

U(kl’k’E)zfdP 2 2ﬁnU;N(p’)<?PN(K”K;znlj:N)>}'1ﬁn1j;N(p) ’

N=p,n nlj

where the summation on nlj runs over occupied orbitals
of the target ground state, and we have defined
2 Y (2.36)

(Tn(K',K;2)) = (PN (K K;2)Y (P .

One of the difficulties in evaluating the full-folding po-
tential as given by Eq. (2.35) is that of summing over the
single-particle states while folding the effective interac-
tion with the struck nucleon wave function. As noted
from Eq. (2.35), this requires evaluating the effective in-
teraction at each NN energy z,;.y, one for each distinct
€y, 5 occurring in the shell-model description of the tar-
get ground state. However, at energies above 100 MeV,
it is reasonable to ignore this effect by considering aver-
age energies { ey ) characteristic of protons and neutrons.
This approximation simplifies significantly the coupling
between the projectile and the target.

The remaining aspect to address at this point is the
role of the spin-isospin degrees of freedom of the NN
effective interaction in the context of the full-folding
model. In spin space, the NN ¢ matrix is an operator
which may be expanded in terms of its tensorial ranks
K =0, 1, and 2, corresponding to the central, spin-orbit
and tensor components respectively. However, in the
present study we consider only spin-saturated closed-shell
nuclei, and in these cases contributions to the optical po-
tential coming from the tensor component (K =2) of the
force are expected to be neglegible.'® Consequently, we
shall omit the tensor component in the expansion of the ¢
matrix and write
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coordinate space, the corresponding single-particle wave
functions are denoted by R, y(r), with the quantum
numbers nlj the principal, orbital, and total angular mo-
menta for the bound nucleon (N) state. Consequently,
the momentum representation of the single-particle states
can be expressed as

Putim 8PV ==Y R s (P)Y () (2.32)
where ;. y represents the Fourier transform of the ra-
dial part of the single-particle wave function

ﬁnlj;N(P)z

172
2 © 4,
;] fo rédrj(pr)R,;.n(r) ,  (2.33)

and ‘.V;‘f represents the coupled orbital-spin state for
spin-1 particles defined by
(2.34)

Y ()= 3 ¥y, (P ip) Imypljm;)

mu

Using Eq. (2.32) for the single-particle wave functions in
Eq. (2.31) for the optical potential, one obtains

(2.35)

f

(k'z)=3, {570 x' ,i;2)+iS- 25T (', x;2)} Ps Py
5T

(2.37)

where Pg and P correspond to projection operators onto
NN states of total spin S and isospin T, respectively. The
vectors S and 1 are defined by
kXK'

=loyto)), Z=—"—+ (2.38)

RO x|
with 1o, and o, the spin operators for the projectile
and the struck nucleon, respectively. The components
t57:% and 573! are of ranks 0 and 1 in spin space, respec-
tively, and are obtained! from the partial-wave t-matrix
elements 5, via

t5T0(x' ks 2)
__1_ S
= L (k-k")
(2.39a)
. 2J +1
ST (' K;2) 8s12m[L‘S]JL
JLL(K KZ)PL( ),
(2.39b)
with the definition
[L-S]JLZ%[J(J-FI)-L(L +1)—-S(S+1)} . (2.40)
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The pp and pn components of the force required in Eq.
(2.35) are simply related to states of total isospin T =0
and 1. If we define

t=31"pPr, (2.41)
T
then
1,=tT7", (2.42a)
1, =1@T70+77T7) . (2.42b)

Furthermore, in the spin space of the struck nucleon,
each of the pN components can be reduced to a sum of
scalar and vector terms. Therefore, for calculating (t)
one needs to evaluate the elements (I,); and (01) il
with I| and 1o, the identity and spin, respectlvely The
use of definition (2.36) for ( ) j and standard angular-
momentum identities yield

(1);=3-(2 + VP (B (2.43)
1 a 2j+1 ~
<Ul)jl A 21(]l+1 [I'Ul]jlpll(p'P ), (2.44)
where
_

v, kE)=[dp s 3 EHI g o 61)R, .

N=p,n nlj 4ar

with t§ v and tpN specified in Appendix A.

Calculatlons of the full-folding optical potential as
given by Eq. (2.46) were performed for proton elastic
scattering on '%0 and “°Ca at energies between 135 and
500 MeV. No approximations were made to treat either
the off-shell # matrix or the single-particle wave functions.
Some of the aspects of calculating the optical potential
and applying it to proton elastic scattering which require
special consideration are outlined in Sec. III.

III. CALCULATIONS

A. The full-folding integral

The calculation of each matrix element of the full-
folding optical potential expressed by Eq. (2.46) requires
an explicit integration over the momentum P
[P=4(p+p’)]. In principle, the variation of P is unre-
stricted. However, the localized momentum distribution
of the bound target nucleons justifies limiting the integra-
tion over P to a relatively small volume. This was imple-
mented by cutting off the high Fourier components of the
ground-state wave functions at some momentum P,, typi-
cally of the order of ~3 fm™!. The cutoff momentum
defines an overlapping volume formed by the wave func-
tions of the struck nucleon before and after the collision.
The situation is illustrated in Fig. 2, where the origins of
the wave functions are placed at k and k', respectively.
The separation between these two origins is given by q,
the momentum transferred to the struck nucleon. The

PP (PP t;SV(K,’K;ZN )+tiloyd
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(o ],=jG+D—1U+1D)—2, (2.452)

a=-RXP_ (2.45b)
lp"Xpll

The role of the ) ; matrix elements is analyzed in the
context of Eq. (2.35) for the full-folding optical potential.
For example, when those terms of (t) proportional to
(a,) j are multiplied by the wave functlons and j is
summed over for a fixed / (/50), the integrand in Eq.
(2.35) becomes proportional to

200+ D{R L (p"R (p)—R_(pR_(p)},

where %2, is a shorthand for #2,,.,,,. Contributions of
this type have been neglected in the present calculations.
The implicit assumption is that of a small difference be-
tween the wave functions & in the region where the
dominant contributions to the full-folding integral occur.
This approximation is expected to be quite reasonable at
intermediate energy for the nuclei considered here.

With the above consideration, the optical potential is
determined by those components of the ¢ matrix propor-
tional to I, and is given by

t;‘,\‘?( K',Kzy)} (2.46)

[

overlapping volume is defined by the conditions p <P,
and p’ < P, and represents the region responsible for the
non-negligible contributions to the optical potential. As
observed from Fig. 2, the overlap diminishes as the
momentum transfer increases. The use of the above re-
strictions dramatically reduces the time required for cal-
culating the optical-potential matrix elements. Our cri-
teria for determining an appropriate value for P. for the

FIG. 2. Diagram of the overlap between the struck nucleon
wave functions before and after the collision. P, represents the
cutoff momentum.
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calculation of the optical potential was based on studies
of convergence of the calculated scattering observables
for 0<¢<3.5fm™.

One of the distinctive features of the full-folding opti-
cal potential is that it probes the effective interaction off
the energy shell over a wide range of energy and relative
momenta. To implement this feature we have evaluated
the ¢ matrix over a broad region in momentum space as
well as over a wide range of energies in the NN center-of-
mass (c.m.) system. The effective interaction used
throughout was the free ¢ matrix from the Paris poten-
tial,?® calculated fully off shell up to energies of 500 MeV
in the NN c.m. system, and out to relative momenta of
the order of ~10 fm~!. To verify convergence of the cal-
culated potentials, different sets of ¢ matrices were used at
alternative mesh points in the relative momenta and NN
c.m. energies. The ¢ matrices were generated for all al-
lowed NN states through J =8. The required antisym-
metric structure was maintained by restricting the ¢t ma-
trix to those NN states allowed by the Pauli principle. In
this way the knockon exchange term in the NN scattering
was accounted for naturally without having to separate
the interaction into direct and exchange components.

The off-shell ¢ matrix for the Paris potential was calcu-
lated using two distinct methods to rule out the possibili-
ty of introducing spurious off-shell matrix elements in the
calculations. One of the methods consists of solving a
non-homogeneous Schrodinger equation with a source
term to allow for off-shell NN scattered waves, as pro-
posed by Van Leewen and Reiner,?' implemented to in-
clude momentum-dependent potentials such as the Paris
potential.?> The other method is a continued-fraction
scheme?® implemented for solving integral equations of
the Lippmann- Schwinger form. The two calculated sets
of t matrices were then used to calculate the full-folding
optical potential. When applications to proton elastic
scattering were made, agreement within 3% was ob-
served for the calculated scattering observables for
g<3.5fm™,

B. Treatment of the Coulomb potential

The calculation of the optical potential was performed
in momentum space. This makes it appealing, therefore,
to calculate the scattering observables in the same repre-
sentation. However, when studying proton scattering,
the long range of the Coulomb potential leads to a
~1/¢* singularity in momentum space which is very
difficult to handle accurately. Although approximations
have been suggested for treating this problem,?*?° we
have found that the scattering observables, especially the
spin observables, are very sensitive to the degree of accu-
racy of the method. Since the objective of this work is to
study the optical model in a scheme sufficiently accurate
for comparing measured and calculated observables, it
was essential to establish the reliability of the calculated
scattering observables in the presence of Coulomb poten-
tials.® This was done by performing the scattering calcu-
lations in momentum and coordinate representations, us-
ing different approaches to solve the scattering problem.
Results reported in this work for the calculated scattering
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observables are shown in those ranges of momentum
transfer where we found systematic agreement between
results obtained from the two approaches.

The momentum-space calculations were performed us-
ing the Lippmann-Schwinger integral equation for proton
elastic scattering. In this case we applied the method
proposed by Vincent and Phatak?* (VP) for treating the
nuclear coupling in the presence of a Coulomb potential.
The method consists of calculating the phase shifts corre-
sponding to an alternative short-range problem, where
the asymptotic ~Ze?/r Coulomb potential is cut off at
some radius R,. The resulting phase shifts are then used
in the VP transformation, which relates the phase shifts
associated with the actual scattering problem to those ob-
tained by setting the Coulomb potential to zero for
r>R.. In the momentum-space calculations, the inner
part of the Coulomb potential is given by

2
Ze [Pcn(g)—cos(gR )], (3.1

VCoul(q)ZTZqz

where g;,(q) is the Fourier transform of the charge densi-
ty.

One of the important requirements for a consistent im-
plementation of the VP method is that of choosing R,
the cutoff radius, large enough to ensure convergence of
the calculated phase shifts for the actual problem. In
practice, this condition is met at distances of the order of
10 to 15 fm, the usual matching radii for scattering calcu-
lations of nucleons in the presence of local nuclear poten-
tials. Consequently, one has to proceed carefully in ex-
tracting the multipoles of ¥V, in (3.1) due to the rapidly
oscillating term cos(gR,). In this respect, we have imple-
mented very accurate multipole expansions for the
modified Coulomb potential, 26 which in the case of sim-
ple charge distributions result in analytic expressions.

Recent reports?® have noted the difficulties of imple-
menting the VP method accurately for proton scattering
at intermediate energies. In light of this, independent
calculations of the scattering observables were performed
in coordinate space, where reliable methods for treating
the Coulomb potential are well established. In this case
we solved the Schrodinger equation in the form of an
integrodifferential equation, as required when explicit
nonlocal potentials are treated. One of the advantages of
this approach is its simplicity; another is that of obtain-
ing the scattering wave functions which can be useful for
other applications. However, this approach is computa-
tionally more intense since it requires calculating and
storing Bessel functions for many arguments and partial
waves as well as transforming the momentum-space po-
tential to a coordinate representation.

In order to illustrate the level of agreement between
the momentum and coordinate representation calcula-
tions, we show in Fig. 3 the calculated differential cross
section (do/d(), analyzing power (A4,), and spin-
rotation parameter (Q) obtained from each approach for
elastic scattering of protons on “°Ca at 400 MeV as func-
tions of g, the momentum transfer. Calculations at other
energies and for other targets show similar agreement.
We find very close agreement for each observable up to
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FIG. 3. Calculated scattering observables for p +%Ca at 400
MeV using momentum-space (solid curve) and coordinate-space
(dashed-dotted curve) procedures.

momentum transfers of ~2.5 fm~!, beyond which a
slight deviation between the two calculations is noticed.
Between 2.5 and 3.5 fm ™! the agreement is still reason-
able, but beyond 3.5 fm ! differences are acute. Since the
differences up to g ~3.5 fm ™! are still acceptable and the
dominant qualitative features of the scattering observ-
ables consistently reproduced, we set 3.5 fm~! as the
upper limit in g for which the calculated scattering ob-
servables are reliable. The extension of this range to
larger g would require further refinements.

C. Sensitivity to the mixed density

For the calculation of the optical potential it is desir-
able to have a realistic set of bound-state wave functions
in the sense they give an optimum account of the physical
properties of the target ground state. Although electron
scattering provides extremely important constraints on
the ground-state charge density, it does not determine the
mixed density required by the full-folding model. In light
of this and other uncertainties in the description of the
ground state, it is useful to have an estimate of the degree
of sensitivity of the calculated scattering observables to
the single-particle model used in the calculation of the
optical potential. In order to illustrate this sensitivity, we
have calculated the optical potential for p +*’Ca scatter-
ing at 200 MeV using two different shell models for the
target ground state. One of these models was the
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Woods-Saxon (WS) model with parameters adjusted to
reproduce the root-mean-square (rms) charge radius; the
other was a standard harmonic oscillator (HO) model
with a single oscillator parameter (2@ =0.5136 fm~!) con-
sistent with the rms radius of the WS wave functions. To
allow a more transparent interpretation of the results we
have taken, for this comparison, the neutron wave func-
tions to be the same as those for the protons. The calcu-
lated cross sections, analyzing powers, and spin-rotation
parameters are shown in Fig. 4 as functions of the
momentum transfer. Figure 4 also shows the squared
Fourier transforms of the nuclear densities. The solid
and dotted lines in Fig. 4 represent the WS and HO mod-
els, respectively. From Fig. 4 it is noted that at ¢ 1
fm ™! both models yield very similar p(q)®. Differences
begin to appear for ¢ 21 fm™!, where an indication of
Pro being less negative than pyy is observed. This trend
is maintained up to g~2 fm~!, above which the
differences are noticeable even qualitatively. When com-

107!
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107”7
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FIG. 4. Squared Fourier transform of nuclear densities and
corresponding scattering observables for p +%Ca at 200 MeV
calculated in the full-folding model. Solid and dotted curves are
used to represent the WS and HO results, respectively.
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paring the calculated scattering observables we see that
both models yield very similar results up to g~1.5 fm ..
Beyond this momentum the differences are characterized
by a slight shift forward of each observable calculated
from the HO model with respect to the WS model, a
feature also present in the p? plot.

IV. RESULTS AND ANALYSIS

Calculations of the full-folding optical potential were
made for proton scattering on %0 and *°Ca at energies
between 135 and 500 MeV. The calculated scattering ob-
servables are compared with those obtained using the
standard on-shell ¢tp model of the optical potential and
with the data. When comparing the two types of calcula-
tions we should keep in mind that the on-shell tp model
constitutes an approximation to the full-folding model.
The major differences between calculated results obtained
using the two approaches are an indication of the impor-
tance of off-shell effects in the theory. As mentioned ear-
lier, explicit medium corrections have been neglected.

The on-shell tp potential was calculated by multiplying
the Fourier transform of the nuclear densities by the free
¢t matrix evaluated on shell at a NN energy z; given by
the Breit invariant mass Sp.* Allowing for differences
between the proton and neutron densities, the optical po-
tential takes the form

U(q;E)=pp(q)iy[q;25(@)]+P,(q),[q525(9)] , 4.1
where
zp(q)=1'Sp(q¢)—2m , (4.2a)

Sp(@)=[(m>+k§)' 2+ (m?+4g")' 2P —(k§— 4¢P,
(4.2b)

with k, the projectile incident momentum in the
nucleon-nucleus center of mass. At a given incident ener-
gy, the resulting potential is a function of only the
momentum transfer, and therefore has an explicit local
structure in coordinate space.

The full-folding potentials were calculated using the
procedures outlined in Sec. III. The single-particle model
used in this analysis was a WS model fit to the rms radius
of the point-proton density determined from electron
scattering and to experimental single-particle energies.
In the case of %0, the resulting set of wave functions
gave a point rms radius of 2.62 fm for protons and 2.58
fm for neutrons, with average binding energies of —23.8
and —27.3 MeV, respectively. In the case of Ca, the
WS model gave a point rms radius of 3.37 fm for protons
and 3.30 fm for neutrons; the corresponding average
binding energies were —24.0 and —31.4 MeV, respec-
tively. The same wave functions were used for the full-
folding and tp calculations. For each nucleus the calcu-
lated and measured charge form factors are in reasonable
agreement out to ¢ ~2.5-3.0 fm !,

Although the use of the Mdller factor!! for transform-
ing the ¢ matrix from the NN c.m. to the nucleon-nucleus
c.m. frame is not consistent within a purely nonrelativis-
tic formulation of the full-folding model, we have includ-
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ed this term in the present calculations in order to ac-
count for relativistic effects of a kinematical origin.
However, we have found that the importance of correc-
tions of this type within the full-folding model are rela-
tively small, leading to only slight changes in the cross
section and much smaller changes in the spin observ-
ables.

In light of the limitations of the NN potential model
above ~400 MeV noted earlier, comparisons between
measured and calculated results at S00 MeV presented
below cannot be regarded as tests of the full-folding mod-
el or of any approximation to it. Nevertheless, at this
higher energy the Paris potential should be sufficiently
realistic for obtaining meaningful comparisons between
different theoretical approaches.

A. Results for p + %0 elastic scattering

In Fig. 5 we present measured and calculated observ-
ables for p + %0 elastic scattering at 135, 200, and 500
MeV as a function of the momentum transfer. The data
were taken from Refs. 27, 28, and 29, respectively. Re-
sults obtained from the full-folding and on-shell zp calcu-
lations are represented with solid and dotted curves re-
spectively. The most striking features we observe from
Fig. 5 are the significant differences between the two
theoretical approaches, with the full-folding model pro-
viding a clearly superior description of the data at 135
and 200 MeV. The largest differences between the two
models occur in the cross sections and analyzing powers
at 135 and 200 MeV and at momentum transfers below
~2.2 fm~ 1. At these energies, for example, the zp model
overestimates the cross section significantly at forward
scattering angles, whereas the full-folding model follows
the data more closely. In addition, at each energy the tp
model predicts a diffractive minimum in the cross section
near ¢ ~1 fm ! which the data do not exhibit. Another
feature of the full-folding model is its ability to give a
reasonable account of the measured A, at 135 MeV, and
A, and Q at 200 MeV. The locations of the maxima and
minima, as well as their corresponding values, are de-
scribed reasonably well by the full-folding model. In con-
trast, the on-shell tp model fails to reproduce, even quali-
tatively, the general features of the measured analyzing
power. These differences illustrate the importance of off-
shell effects in the scattering at forward angles. This is
consistent with the fact that for small momentum
transfer, the overlap between the wave functions of the
struck nucleon before and after the collision is maxim-
ized. As a result, a maximum variation of P is allowed
(see Fig. 2) leading to a broad off-shell sampling of the ¢
matrix [see Egs. (2.27) and (2.30)].

At 500 MeV proton energy, calculated results from the
full-folding and tp models are in comparable agreement
with the data, although the full-folding model still pro-
vides a superior description of the cross section and the
analyzing power data at small momentum transfer.
However, at this energy the spin-rotation parameter pre-
dicted by the full-folding model possesses too little struc-
ture, whereas the ¢p model follows the general pattern of
maxima-minima given by the data. This deterioration of
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the agreement between the calculated observables and the
data will be addressed later.

B. Results for p +*°Ca elastic scattering

In Fig. 6 the measured and calculated observables for
p+%Ca scattering are shown as a function of the
momentum transfer q. Results obtained from the full-
folding calculations and the on-shell tp approximation
are represented by the solid and dotted curves, respec-
tively. The sequence of energies considered in Fig. 6 are
200, 300, 400, and 500 MeV. The data at 200 MeV were
taken from Ref. 28. The cross section and analyzing
power data at 300, 400, and 500 MeV were taken from
Ref. 30. In the case of the spin-rotation parameter data
shown at 300 MeV, we used data taken at 320 MeV from
Ref. 29 and plotted them as function of g. The Q data at
500 MeV were taken from Ref. 31.

As in the case of p + 'O elastic scattering, the full-
folding model provides a reasonable description of the
measured elastic scattering observables, being superior to
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the on-shell tp approximation results at energies near and
below ~400 MeV. At 200 MeV, for example, the agree-
ment between the full-folding model results with the data
is quite reasonable up to g ~2.5 fm ™. At this energy the
on-shell ¢p model overestimates the cross section at for-
ward angles and yields a diffractive minimum near g =1
fm ™! which is much more pronounced than is observed.
Moreover, the full-folding model provides a very good ac-
count of the maxima-minima pattern of the measured
analyzing power, whereas the on-shell tp model predicts
minima which are much too shallow with maxima being
slightly shifted with respect to the data. At 300 and 400
MeV proton scattering, the description of the data by the
full-folding model is very reasonable in the range of g be-
tween 1 and 2.5 fm. ~! At these energies, both the cross
section and the analyzing power are very well described
by the full-folding model, following closely the maxima-
minima pattern of the data. For ¢ 1 fm~!, however,
both models overestimate the first maximum in A4 ys al-
though the 7p model does so more strongly. It is interest-
ing to notice that at energies above 200 MeV, the tp mod-

q (fm™)

FIG. 5. Calculated and measured elastic scattering observables for p + 180 at 135, 200, and 300 MeV. The data are from Refs. 26,
27, and 28, respectively. Solid curves represent full-folding results; dotted curves represent on-shell zp results.
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FIG. 6. Calculated and measured elastic scattering observables for p +’Ca at 200, 300, 400, and 500 MeV. The data are from
Refs. 27-30 (see text). Solid curves represent full-folding results; dotted curves represent on-shell ¢p results. The Q data shown at 300

MeV correspond to measurements made at 320 MeV.

el results for the cross section are systematically shifted
forward relative to the data, a deficiency which is not
present in the full-folding model results.

As noted for p +'°0 scattering at 500 MeV, the 500
MeV results presented in Fig. 6 show a considerable
deterioration of the agreement between the measured and
calculated observables. These differences are more pro-
nounced than those observed at lower energies and are
more noticeable in the case of the spin observables. Re-
sults at 400 MeV for p +*Ca scattering show that the
deterioration in 4, beyond 1 fm ™! is confined primarily
to ¢R2.5 fm ™!, whereas at 500 MeV the lack of struc-
ture in the calculated A4,(Q) occurs for essentially all g
greater than 1 (0) fm~!. Apart from the deterioration be-
tween full-folding results and the data, we also note
significant differences between the on-shell tp and the
full-folding calculations. This result demonstrates the
important role of off-shell degrees of freedom in nucleon-
nucleus scattering for projectile energies as high as 500
MeV.

C. The off-shell tp approximation

To illustrate the role of off-energy-shell effects within
the full-folding model, we have performed calculations
using an off-shell tp approximation and have compared
the results with those obtained from the full-folding mod-

el. Results from the on-shell tp approximation were also
included for comparison.

The off-shell tp approximation at intermediate energies
was obtained by neglecting the variation of the ¢ matrix
with respect to P in Eq. (2.28) in the region where the
product of the wave functions peaks (P=0). Therefore,
to lowest order in a series expansion about P=0, we can
approximate the ¢ matrix by its value at P=0 and then
integrate the remaining terms involving only the wave
functions. This leads to a factorized tp structure for the
optical potential which reads

UK, kE)=Up(K,KGE)= 3 py(gt (K, k2y) |,
N P=0

(4.3)

where the variables k' k, and z, have been defined in Egs.
(2.27) and (2.30). The off-shell tp approximation given by
Eq. (4.3) is similar to those recently applied®> 3 for the
purpose of studying off-shell effects using other interac-
tions. The difference is, however, the energy prescription
for the ¢ matrix. In the application of Ref. 32 the energy
zy was fixed to a value corresponding to free NN scatter-
ing at the beam energy. In the present application we fol-
low the energy prescription used for the full-folding mod-
el, that is, the one given by Eq. (2.30) evaluated at P=0
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and with €, replaced by an average value as described
previously. In this way we shall be able to more reliably
identify those unique features of the full-folding model.

In Fig. 7 we show the calculated observables for
p +'0 scattering at 135 and 200 MeV and in Fig. 8
those corresponding to p +*Ca scattering at 200 300
MeV. The solid, dashed, and dotted curves denote the
full-folding, off-shell tp, and on-shell tp results, respec-
tively. The most pronounced differences between the off-
shell ¢p and the full-folding results occur at the lower en-
ergies. As the energy increases, the full-folding and off-
shell zp results are in closer agreement. Although this
feature suggests that the off-shell ¢p approach could be a
suitable approximation to the full-folding model at high
energies, its validity needs to be assessed in the context of
a broader class of NN effective interactions. Very recent
calculations*® using the Bonn potential, in which further
simplifying assumptions are made to treat the z-matrix off
shell within the full-folding framework, yield scattering
observables which are very similar to those obtained in
the off-shell tp approximation for p +'%0 scattering at
200 and 500 MeV.

[ E,,=200 MeV

0.5

y

< 0.0

-0.5

0.5

< 0.0

-0.5
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FIG. 7. Calculated elastic scattering observables for p +'°0
at 135 and 200 MeV. Solid, dashed, and dotted curves represent
full-folding, off-shell, and on-shell resuits, respectively.
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FIG. 8. Calculated elastic scattering observables for p +Ca
at 200 and 300 MeV. Solid, dashed, and dotted curves represent
full-folding, off-shell, and on-shell results, respectively.

Another feature we observe from Figs. 7 and 8 is that
at the lower energies the description of the scattering ob-
servables obtained from the two ?p approximations are
very similar, but differ substantially from those obtained
in the full-folding approach. These results demonstrate
that neither factorized zp approximation considered here
accounts properly for all off-shell effects included in the
full-folding model.

V. SUMMARY AND CONCLUSIONS

We have calculated nonrelativistic full-folding optical
model potentials and applications have been made to pro-
ton elastic scattering from '°0O and “°Ca at energies be-
tween 135 and 500 MeV. The full-folding calculations
were performed using the free NN ¢ matrix based on the
Paris potential. The target mixed density was construct-
ed using wave functions from a Woods-Saxon single-
particle model fit to electron-scattering data and to
single-particle energies. Off-shell effects, energy depen-
dence, and knockon exchange terms of the ¢ matrix as
well as the ground-state mixed density were treated ex-
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plicitly. No explicit medium corrections were included.
Scattering observables obtained using the full-folding
model were compared with those measured as well as
those calculated from on- and off-shell tp approximations
to it. Striking differences between the full-folding and the
on-shell tp results for the scattering observables were
found. With the exception of the 500 MeV results, the
full-folding model provides a description of the scattering
data which is superior to that obtained using either the
on-shell tp or off-shell tp approximation. This result
demonstrates the importance of treating off-shell effects
of the NN effective interaction explicitly as prescribed by
the full-folding model.

The difficulties in satisfactorily describing the 500 MeV
data, especially spin observables for p +%Ca elastic
scattering, are common to all three theoretical ap-
proaches considered in the present analysis. However, a
conclusive evaluation of the nonrelativistic full-folding
model at energies above ~400 MeV requires a more reli-
able description of the NN force at shorter distances and
at higher energies, provided an NN potential model is
theoretically justifiable under these conditions. In the
case of the Paris potential, which was constructed to de-
scribe NN scattering at nucleon energies up to 330 MeV,
the description of the NN force at internucleon distances
smaller than 0.8 fm is purely phenomenological®® and this
parametrization of the force may not account adequately
for the subnucleonic degrees of freedom. The short-range
parts of the NN interaction are critical for determining
the off-shell behavior of the effective interaction at large
relative momenta. Therefore, our present limited
knowledge of the NN force at short distances and over a
limited range of energies, combined with the sensitivity of
the full-folding model to the off-shell behavior of the
effective interaction, precludes an absolute evaluation of
the nonrelativistic full-folding model. In a broader per-
spective, given the sensitivity of nucleon-nucleus scatter-
ing to the off-shell behavior of the NN effective force,
nucleon-nucleus scattering, interpreted within the full-
folding model framework could provide constraints addi-
tional to those imposed by NN phenomenology for
discriminating between alternative models of the NN in-
teraction.

Although relativistic effects other than those of purely
kinematical origin are expected to be present in the NN
interaction and have not been treated explicitly, they are
of course included implicitly, to some extent, in the pa-
rametrization of the NN potential which is used in the
Schrodinger equation to describe NN scattering. This is
the case of the Paris potential, where we have emphasized
a consistent connection between the framework for
describing the NN interaction and the formulation of the
nonrelativistic full-folding model for the optical potential.

Beyond the existing limitations for describing the NN
interaction at small distances, significant differences were
noted between the calculated nucleon-nucleus scattering
observables at 500 MeV using the full-folding model and
the on-shell tp approximation, with no indication of con-
vergence between the two approaches with increasing en-
ergy. This demonstrates that, for the Paris potential, the
on-shell tp approach is an inadequate approximation to

H. F. ARELLANO, F. A. BRIEVA, AND W. G. LOVE 41

the full-folding model. Furthermore, this is an indication
of the importance of off-shell effects in the theory and
shows that NN phenomenology alone is insufficient for
describing correctly more complex processes such as
nucleon-nucleus scattering.

From the present study we conclude that off-shell
effects of the NN effective interaction are important in
the theory of nucleon-nucleus scattering. Moreover, the
level of agreement between measured and calculated
nucleon-nucleus scattering observables is improved sub-
stantially when these off-shell effects are treated accurate-
ly in the full-folding model of the optical potential.
Features which have traditionally been difficult to explain
using standard nonrelativistic approaches to nucleon-
nucleus scattering at intermediate energies, such as spin
observable data, are largely accounted for by the full-
folding model when off-shell degrees of freedom are treat-
ed accurately. These results indicate that the first-order
nonrelativistic theory describes the essential physics of
this many-body problem. Furthermore, the full-folding
model provides a much better first-order approximation
to the nucleon-nucleus optical potential down to much
lower incident energies than do its fp variants. On the
other hand, medium effects, in general, and Pauli block-
ing corrections, in particular, have been found to be im-
portant in earlier calculations using averaged density-
dependent local forces. The role of such effects needs to
be reexamined within the full-folding framework. Work
in this direction is in progress.
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APPENDIX A

To obtain expressions for #5 and ¢ in Eq. (2.46) we
use the following representation for the spin projection
operator,

+(1—0y0o,) for $=0

Ps= +(3+040,) for S=1" (AD)
which satisfies the property
PSS'E :SSIS';; . (AZ)

Combining Egs. (2.37), (2.41), (A1), and (A2) one obtains
FT=1((0T04 3¢1Ti0) _ 1((OT0_41T0)5 o7

+il(oyto,) Rt T (A3)
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Finally, retaining only those terms of 7 7 independent of

the spin of the struck nucleon (o) and using (2.42a) and
(2.42b) for Lo and tpyy WE obtain

1o =1(t050+3¢110) (A4)

1 = (10004371004 (0104 34 110) (A5)
tLS=¢1h1, (A6)
tES=1(101 44100 (A7)
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