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Abstract—We consider a quadratic eigenvalue problem such that the second order term is a Her-
mitian matrix of rank r, the linear term is the identity matrix, and the constant term is an arbitrary
Hermitian matrix A € Cpy.. Of the n + r solutions that this problem admits, we show at least n — r
to be real and located in specific intervals defined by the eigenvalues of A, whence at most 2r are
nonreal occuring in possibly repeated conjugate pairs.

1. INTRODUCTION

Consider the following quadratic eigenvalue problem: for A € C,,,,, B € C,,,, Hermitian matrices
with (B) =r <n, find A € C,u € C,; such that

(A=XM+XByu=0, u#0. (1.1)

It should be remarked that even if A and B are Hermitian, the solutions of (1.1) may not be

da fndi + 43 + far +h <
real. Cur study of this problem is directed towards finding accurate estimates for the maximum

number of nonreal solutions that (1.1) can possess and comparing the real eigenvalues of (1.1)
with the solutions o, ..., ay, of the corresponding linear problem.

Equation (1.1) admits n 4+ rank(B) = n + r solutions A € C. Let the eigenvalues of A be
a; < -+ < ap. Theorem 2.5 and its Corollary 2.6 show that at least n — r of the solutions

of ( ) are real and located in each of the intervals
(1.2)
\1.2)

while at most 2r of these solutions are nonreal and occur in (possibly repeated) conjugate pairs.

By means of an example, we show that the above results can fail for a non-Hermitian second
order term: not only may the number of solutions be less than n + r, but it is also possible that
all of them might be nonreal.

Quadratic eigenvalue problems frequently arise in nonlinear vibration theory. For example, it
can be seen in J. Planchard [1] that the study of the vibratory eigenmodes of fluid-solid structures
leads naturally to the spectral analysis of some differential problems which involve linear operators
in infinite-dimensional Hilbert spaces. These problems are usually quadratic eigenvalue problems,
as can be seen in the above reference, or in the papers [2,3]. The second order terms in these

eigenvalue problems are positive semidefinite Hermitian operators of finite rank, while the zero
aorder terms are coercitive operators of dense image. For other eigenvalue nroblems of hicher
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degree the reader is referred to [4, pp. 149-150, 5.
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In practice, eigenvalues A € C such that Jm(A) # 0 play a very important role in this kind of
problem, since they imply the existence of unstable vibratory eigenmodes. Their corresponding
eigenfunctions can be written in the form

P(z,t) = exp(iXt)p(z), (1.3)

where ¢(z) depends only on the space variables. Thus, for Jm(\) # 0 either the eigenmotion
¥(z,t) or its conjugate will diverge as the time ¢ tends to infinity. This situation cannot arise
if A € R, since in that case |exp(iAt)] = 1 and therefore the amplitude of the corresponding
eigenmotion remains bounded (actually constant) as ¢ goes to infinity. This is the main reason
that it is so important to have sharp a priori bounds for the number of nonreal eigenvalues.

Frequently, the discretization of a quadratic differential spectral problem leads to (1.1), which
is one of the simplest quadratic eigenvalue problems one can imagine. Though it does not have
the degree of complexity of nonlinear vibration theory, its study is a convenient step towards
tackling more complex models.

2. THE NATURE OF HERMITIAN QUADRATIC EIGENVALUES

We shall designate the set of nonnegative integers by Zg and the set of nonnegative real
numbers by Rg. We also define dim({0}) = 0 for any zero-subspace {0} C C,,;. We designate by
A* € C,,, the conjugate transpose of A € Cp,.

For any finite matrix sequence Ay,...,A4;, A; € Cy,, such that det(ZLO X*4;) is a nonva-
nishing polynomial in the indeterminate A, we define the geometric multiplicity of an o € C
by

t
geo(a | Ao, ..., As) 4¢f dim {u €Cnr b (Z aiA,-> u= 0} (2.1)
i=0

and the polynomial multiplicity of an a € C by

t
pol(a | Ao, ..., As) & max {m €Zgt (A—a)™ divides det (Z ,\*‘A,.) } . (22)

=0

We refrained from calling pol{c| Ao,...,As)) the algebraic multiplicity of a only because of
alternative ways to generalize this concept [6, pp. 34-43] to a problem of higher degree.

The following results 2.1 through 2.3 can easily be proven by means of the classical theory of
linear algebra and of matrix polynomials; for instance, see [4, pp. 149159, Theorem 1; 5,7-9]
Detailed proofs can be found in [10].

THEOREM 2.1. Let Ay,...,A;, A; € Cpnp, be such that det(3";_o NA;) # 0 is a nonvanishing
polynomial in the indeterminate A. Then the following inequality holds:

VaeC geo(a | Ao, ..., Ar) < pol(a | Ag,...,Ar). (2.3)

PROPOSITON 2.2. Let A € C,.,, B € Cpn, B* = B. Then the characteristic polynomial of the
quadratic eigenvalue problem (1.1),

(A= M+ XB)u=0, u#0
is of degree exactly n + rank(B), whence

> geo(y| A,—1,B) < > pol(v| A,~1I,B) = n+rank(B). (2.4)
v€C y€eC
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ProprosiTION 2.3. Let A € C,n, A* = A, B € C,,, B* = B. For any v € C and its complex
conjugate 5 we have

geo(7 | A,~1, B) = geo(7 | A, -1, B), (2.5)

pOI(‘_y I A1 _I7 B) = pol('y l A’ —Ia B) (26)

Statements 2.1 and 2.2 establish the .

now proceed to loca.hze some of them on the real axis. Let us first recall the following classical
result:

PROPOSITION 2.4. Let A € Cyp,, A* = A, B € Cun, B* = B. Let the eigenvalues of A be
a1 <--- < an, and defineVi <1a; = —o0, Vi>n a; = 0. Let B have k (possibly repeated)
negative eigenvalues and | (possibly repeated) positive eigenvalues, whence k + | = rank(B).
Then the eigenvalues of (A + B) € Cy,,, designated by Ay < --- < Ay, satisfy

Vi= 1,... N Qi S /\i S Q1. (27)

This result is due to Weyl and Courant and well-documented in the literature; for instance,
see Riesz and Nagy [11, pp. 236237, Section 95]. A possible proof goes by

{a) diagonalizing A instead of B,

(b) proving the proposition in the case of rank(B) = 1, and

(c) applying mathematical induction on the rank of the perturbation matrix B. |

In the proof of the following main theorem of our note we use rather familiar tools found
in [5,6, pp. 62-73; 11, pp. 368-373].

THEOREM 2.5. Let A € C,,,, A* = A, B € Cy,, B* = B, and let the eigenvalues of A be
oy € -+ < an. Let B have k (possibly repeated) negative eigenvalues and ! (possibly repeated)
positive eigenvalues, whence k + | = rank(B). Then the quadratic eigenvalue problem (1.1),

(A= M +XBu=0, u#0

has at least n — rank(B) (possibly repeated) real solutions p) 4, ..., pn—i that satisfy

Vi=1l+k,...,n-1, ik < pi S QG4 (2.8)
Repeated solutions correspond to eigenspaces of higher dimension, whence
¢ ol ¢y =1 ! o e (= aad 3
> pol(p| A,—1,B) > > geo(p| A,—I,B) > n—rank(B). (2.9)
pER PER

PROOF. Since (A +¢eB) € C,,, is Hermitian for all £ € R and its coefficients depend analytically
on &, there are real-valued analytical functions

Bt
@

s R— R

such that X\,(0) = o, and each X,(¢) is an eigenvalue of (A + eB) (see [6, pp. 62-73]
or [11, pp. 368-373], for instance). Overlapping function values A;{e}) = A;(g), s # t, corre-
spond to multiple eigenvalues of (A + &B).

)wl
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values, thereby defining a new indexed set {A1(e) <--- < )\n(e)} As functions of £ > 0, these

~
BEar carh ¢ > N wea may naow ardor the indavad cat f).
L0T €al4l € 2 v, W IIay DOW OIGET vl NGEXEG 5S 1A

Ai:Rg — R, Ar <

< A (2.10)

are real-valued continuous (though not necessarily differentiable) functions, such that A;(0) = a;
and A;(e) is the i*® eigenvalue of (A +¢B). Because of Proposition 2.4, the indexed set of ordered
eigenvalues {A;1(g) < -+ < A, (€)} satisfies

Vi= 1,...,n, Qi < Ai(s) < @iy

where, as usual, we define Vi < 1 a; = —o00, Vi > n a; = 00.
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For any of the n — rank(B) indices ¢ = 1 + k,...,n — | together with A € R, the following

.
metinn
fkiCuin

Ai:R—R,  AN)EN- 202 (2.11)

is a real-valued continuous function that satisfies

A—ou <A <A -0y lim A;(A) = —00, lim A;()) =oco.
T — : ] ] - taad 3] T\ b ¥\
A—r~00 A—oo
Thne there ig alwave enme n € R ench tha A nY = 0 chanee n: tn he the larcect af all enich »,
L hus there 1g always some p € X such that A;(2) U; choose p; to be the largest of all such p
Now
2
Ai(pi) = 0= p; = Ai(p}) = g < pi S @i
and

p; = Mi(p?) = det(A — piI + p2B) = det ((A + p?B) — )\.(oz\I\ =0

R s N ~i 7 NCR

according to the claim of the theorem.

Tf 4 than tha functiane n2) — averlan af ,.2 Naowr
4L ’I; = PJ’ b 7‘- J, VAT LMC LUV VIO I\'\’l } = ’l; = "’] = ,‘J\PJI = /\J\,.I , \JVUIIGIJ av ’.I ANUW

overlapping function values A;(€) = A;(€), © # j of these bounded eigenvalue functions correspond
to multiple eigenvalues of (A +¢B), whence Xi(p?) = p; is a geometrically multiple eigenvalue of
the Hermitian matrix A + p?B. But then

geo(p; | A,—I,B) =geo(p; | A+ p?B,-I) > 1,

s0 0: has an eigen: ]
S0 p; has an eig 2

9]

COROLLA Y 2.6. Let A €

nrahlam 1

proos€ini \1. 1.),

an, A* = A, B € C,,, B* = B. Then the quadratic eigenvalue

(A=A +XBu=0, u#0

has at most 2rank(B) nonreal solutions A, occurring in (possibly repeated) conjugate pairs.

For a.rbitra.ry matrices A € Ry, and B € Ry, the polynomial det(4 — AI + A\2B) may well

00 2[0 17\ _
det([l 0]—,\u,\ [0 0D=o. (3.1)

Vu.!llbll’ as bllUwu. l.ll
Thus there is a need for some additional condition, such as A invertible, B invertible, 4 = A*,
or B = R*, in order to rule out this possibility. With any of the above conditions, the number

of solutions will be less than or equal to n + ra.nk(B) In [10] we provide an example (with a
nonvanishing characteristic polynomial) showing that a non-Hermitian quadratic term B of only
rank 1 may cause the number of solutions to be strictly less than n + rank(B) and prevent any
real solutions of det(A — AI + A2B) = 0.

Thecrem 2 5 remu|ns true if wa imnnee the additional eondition 9, < ... < pn ;. Hawaover
LUT i WU LULPUST wiiT aQqalivicna: vvn\.u.u on Fid+k = = Fn-=i+ *iUvVWTVYUL,
we must by no means assume that the eigenvalues py 4, ..., pn—i are consecutive real eigenvalues.
For a counterexample, choose
[ ] [° |
A 101 99 B b 3.9
- l 99 101 ! - l 0 J ’ 32
201 0
Since

det(A — AI) = (1 - ) [(101 — X)2 — (99)?] (201 — X)
= (1 =) [(2 — A)(200 — X)] (201 — X),
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the eigenvalues of A are oy =1, a2 = 2, ag = 200, a4 = 201. Adding the extra term correspond-
ing to the quadratic problem, we get

p()) & det(A — AT+ A2B) = (1 = A) [(2 — A)(200 — A) + bAZ(101 — )] (201 — ),

whence for b = 0.1 we obtain p(2) > 0, p(10) < 0, p(60) > 0, p(200) < 0. This implies that
equation det(A — AI + A2B) = 0 has 5 solutions, all of them real, satisfying

1l =p1< 2 <pg<ps<pa< 200 <pz3= 201

In the case of this example, it is interesting to observe the development of all real solutions to
dotl A _ \r_L \2R\ =0 in fnrman}:Sﬂ S‘ ce

U v\ <42 L = VU i voliiao Ui v 21U

~ (A=2)(A —200)
XA -101)

201) ,
Ph FUGE PRI ) M Y S 1 P e
dlawllilyg ulic Eiapil UL v 111 LCLLILD Ul. /\ C J.l\ VVU 1lay l:l.lUll
observe that there is no way of defining real-valued continuous functions p;(b) that yield solutions
to det(A — AI + A%2B) =0 for all b >

n ya——
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