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Abstract-We consider a quadratic eigenvalue problem such that the second order term is a Her- 
mitian matrix of rank r, the linear term is the identity matrix, and the constant term is an arbitrary 
Hermitian matrix A E cnn. Of the n + T solutions that this problem admits, we show at least n - r 
to be real and located in specific intervals defined by the eigenvalues of A, whence at most 2r are 
nonreal occuring in possibly repeated conjugate pairs. 

1. INTRODUCTION 

Consider the following quadratic eigenvalue problem: 
with (B) = r < n, find X E C,u E Cni such that 

(A - XI + X2B)u = 0, 

for A E Cnn, B E Cnn Hermitian matrices 

21 # 0. (1.1) 

It should be remarked that even if A and B are Hermitian, the solutions of (1.1) may not be 
real. Our study of this problem is directed towards finding accurate estimates for the maximum 
number of nonreal solutions that (1 .l) can possess and comparing the real eigenvalues of (1.1) 
with the solutions oi,. . . , an of the corresponding linear problem. 

Equation (1.1) admits n + rank(B) = n + T solutions X E C. Let the eigenvalues of A be 
(Yi < *** 5 on. Theorem 2.5 and its Corollary 2.6 show that at least n - T of the solutions 
of (1.1) are real and located in each of the intervals 

while at most 2r of these solutions are nonreal and occur in (possibly repeated) conjugate pairs. 
By means of an example, we show that the above results can fail for a non-Hermitian second 

order term: not only may the number of solutions be less than n + T, but it is also possible that 
all of them might be nonreal. 

Quadratic eigenvalue problems frequently arise in nonlinear vibration theory. For example, it 
can be seen in J. Planchard [l] that the study of the vibratory eigenmodes of fluid-solid structures 
leads naturally to the spectral analysis of some differential problems which involve linear operators 
in infinite-dimensional Hilbert spaces. These problems are usually quadratic eigenvalue problems, 
as can be seen in the above reference, or in the papers [2,3]. The second order terms in these 
eigenvalue problems are positive semidefinite Hermitian operators of finite rank, while the zero 
order terms are coercitive operators of dense image. For other eigenvalue problems of higher 
degree the reader is referred to [4, pp. 149-150, 51. 
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In practice, eigenvalues X E C such that Jm(x) # 0 play a very important role in this kind of 
problem, since they imply the existence of unstable vibratory eigenmodes. Their corresponding 
eigenfunctions can be written in the form 

$(z, t) = exp(Wcp(~), (1.3) 

where (P(Z) depends only on the space variables. Thus, for 3m(X) # 0 either the eigenmotion 
$J(z, t) or its conjugate will diverge as the time t tends to infinity. This situation cannot arise 
if X E W, since in that case 1 exp(iXt)I = 1 and therefore the amplitude of the corresponding 
eigemnotion remains bounded (actually constant) as t goes to infinity. This is the main reason 
that it is so important to have sharp a priori bounds for the number of nonreal eigenvalues. 

Frequently, the discretization of a quadratic differential spectral problem leads to (l.l), which 
is one of the simplest quadratic eigenvalue problems one can imagine. Though it does not have 
the degree of complexity of nonlinear vibration theory, its study is a convenient step towards 
tackling more complex models. 

2. THE NATURE OF HERMITIAN QUADRATIC EIGENVALUES 

We shall designate the set of nonnegative integers by Ze and the set of nonnegative real 
numbers by W,. We also define dim({O}) = 0 for any zero-subspace (0) c cC,l. We designate by 
A* E U&., the conjugate transpose of A E Cnn. 

For any finite matrix sequence AC,, . . . , At, Ai E Cc,, such that det(CiZo XiAi) is a nonvs 
nishing polynomial in the indeterminate X, we define the geometric multiplicity of an (Y E Cc 

geo(rr 1 A,-,, . . . ,At)dsfdim u E Cc { nl 1 (&a%)~=+ (2.1) 

and the polynomial multiplicity of an (I! E C by 

pol(cr 1 Ao, . . . , At) dsf max m E Z@ 1 (A - CI)~ divides det . (2.2) 

We refrained from calling pol(crl Ao, . . . , A,)) the algebmic multiplicity of (Y only because of 
alternative ways to generalize this concept [6, pp. 34-431 to a problem of higher degree. 

The following results 2.1 through 2.3 can easily be proven by means of the classical theory of 
linear algebra and of matrix polynomials; for instance, see [4, pp. 149-159, Theorem 1; 5,7-91 
Detailed proofs can be found in [lo]. 

THEOREM 2.1. Let 4,. . . , At, Ai E Cc,,, be such that det(CiZo XiAg) f 0 is a nonvanishing 
polynomial in the indeterminate X. Then the following inequality holds: 

VCY E @ g-(a I Ao, . . . , At) 6 pol(a I Ao, . . . ,A,). (2.3) 

PROPOSITON 2.2. Let A E a&, B E Cnn, B* = B. Then the characteristic polynomial of the 
qudatic eigenvalue problem (l.l), 

(A - XI + X2B)u = 0, u#O 

is of degree exactly n + rank(B), whence 

c gm(r I A, -1, B) I c pol(r I A, -I, B) = n + rank(B). 
-/EC -rEC 

(2.4) 



Hermitian quadratic eigenvalue problems 11 

PROPOSITION 2.3. Let A E C,,, A* = A, B E C,,, B’ = B. For any 7 E C and its complex 
conjugate 7 we have 

geo(? I A, -1, B) = tw(r I A, -1, B), (2.5) 

pol(~ 1 A, -I, B) = pol(r 1 A, -I, B). (2.6) 

Statements 2.1 and 2.2 establish the existence of n + rank(B) eigenvalues for problem (1.1); we 
now proceed td localize some of them on the real axis. Let us first recall the following classical 
result: 

PROPOSITION 2.4. 

Pl+k, . . . , pn_l that satisfy 

Vi=l+k,...,n-I, ai-k < pi 5 %+l. (2.8) 

Repeated solutions correspond to eigenspaces of higher dimension, whence 

c pol(p I A, -1, B) L c geo(p I A, -1, B) 2 n - ra4B). (2.9) 
PER PER 

PROOF. Since (A + EB) E Cn,, is Hermitian for all E E W and its coefficients depend analytically 
on E, there are real-valued analytical functions 

such that id(O) = cr, and each X,(e) is an eigenvalue of (A + EB) (see [6, pp. 62-731 

or [ll, pp. 368-3731, for instance). Overlapping function values X,(E) = it(e), s # t, corn+ 
spond to multiple eigenvalues of (A + EB). 

For each E > 0, we may now order the indexed set { 1, (E), . . . - , A,(e)} according to its function 
values, thereby defining a new indexed set {Xl (E) I - - . 6 X,(E)). As functions of E 1 0, these 

xi : IFee - w, x1 2 * * * 5 A, (2.10) 

are real-valued continuous (though not necessarily differentiable) functions, such that Xi(O) = ai 
and Xi(E) is the ith eigenvalue of (A + eB). Because of Proposition 2.4, the indexed set of ordered 
eigenvalues (xl(e) 5 . . * 5 A,(e)} satisfies 

vi = l,...,n, ai-k 5 Xi(E) 5 &+l, 

where,ssusual,wedefineVi<lai=-co,Vi>ncri=co. 
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For any of the n - rank(B) indices i = 1 + k, . . . ,n - 1 together with X E W, the following 
function 

Ai : IR - It, hi(X) ef X - &(X2) (2.11) 

is a real-valued continuous function that satisfies 

X - ai+1 5 Ai < X - C&-k, ,trn &(x) = -00, 
-00 

!immAi(X) = 00. 
_) 

Thus there is always some p E W such that Ai = 0; choose pi to be the largest of all such p. 
Now 

Ai = 0 ti pi = Xi(p:) ti (Yi-k 2 pi 5 (Y~+I 

and 
pi = Xi(p:) -Z det(A - pi1 + p:B) = det ((A + pfB) - Xi(pf)l) = 0 

according to the claim of the theorem. 
If pi = pj, i # j, then the functions Xi(p:) = pi = pj = Xj(pj) = Xj(pf) overlap at pf. NOW 

overlapping function values xi(e) = Am, i # j of these bounded eigenvalue functions correspond 
to multiple eigenvalues of (A + EB), whence Xi(/$) = pi is a geometrically multiple eigenvalue of 
the Hermitian matrix A + p:B. But then 

gm(pi 14 -1, B) = gm(Pi I A + PfB, -1) > 1, 

so pi has an eigenspace of higher dimension. I 

COROLLARY 2.6. Let A E C,,, A* = A, B E C,,, B* = B. Then the quadratic eigenvalue 
problem (1. l), 

(A - XI + X2B)u = 0, 2120 

has at most 2 rank(B) nonreal solutions X, occurring in (possibly repeated) conjugate pairs. 

3. COMMENTS 

For arbitrary matrices A E W,, and B E Et,,, the polynomial det(A - XI + X2B) may well 
vanish, ss shown in 

det([y E] -U+A2[i h]) r0. (3.1) 

Thus there is a need for some additional condition, such as A invertible, B invertible, A = A*, 
or B = B*, in order to rule out this possibility. With any of the above conditions, the number 
of solutions will be less than or equal to n + rank(B). In [lo] we provide an example (with a 
nonvanishing characteristic polynomial) showing that a non-Hermitian quadratic term B of only 
rank 1 may cause the number of solutions to be strictly less than n + rank(B) and prevent any 
real solutions of det(A - XI + X2B) = 0. 

Theorem 2.5 remains true if we impose the additional condition pl+k 5 . . . 5 pn-l. However, 
we must by no means assume that the eigenvalues pl+k, . . . , pn_l are consecutive real eigenvalues. 
For a counterexample, choose 

Since 

(3.2) 

det(A - XI) = (1 - X) I(101 - X)2 - (99)2] (201- X) 

= (1 - X) [(2 - X)(200 - X)] (201- X), 
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the eigenvalues of A are a1 = 1, (~2 = 2, cys = 200, (~4 = 201. Adding the extra term correspond- 
ing to the quadratic problem, we get 

p(A) efdet(A - XI + X2B) = (1 - X) [(2 - X)(200 - X) + bX2(101 - x)] (201 - X), 

whence for b = 0.1 we obtain p(2) > 0, ~(10) < 0, ~(60) > 0, ~(200) < 0. This implies that 
equation det(A - AI + X2B) = 0 has 5 solutions, all of them real, satisfying 

1 = Pl < 2 < p4 < ps < p2 < 200 < pa = 201. 

In the case of this example, it is interesting to observe the development of all real solutions to 
det(A - XI + X2B) = 0 in terms of b 2 0. Since 

p(X) = 0 * X=1 v.b= (A - 2)(X - 200) 
X2(X - 101) 

” A = $201 

> 
, (3.3) 

this can easily be accomplished by drawing the graph of b in terms of X E W. We may then 
observe that there is no way of defining real-valued continuous functions pi(b) that yield solutions 
to det(A - XI + X2B) = 0 for all b 2 0. 
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