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Abstract. We prove that the class of generalized ultrametric matrices (GUM) is the largest
class of bipotential matrices stable under Hadamard increasing functions. We also show that any
power α ≥ 1, in the sense of Hadamard functions, of an inverse M -matrix is also inverse M -matrix.
This was conjectured for α = 2 by Neumann in [Linear Algebra Appl., 285 (1998), pp. 277–290],
and solved for integer α ≥ 1 by Chen in [Linear Algebra Appl., 381 (2004), pp. 53–60]. We study
the class of filtered matrices, which include naturally the GUM matrices, and present some sufficient
conditions for a filtered matrix to be a bipotential.
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1. Introduction and basic notations. In this article we study stability prop-
erties under Hadamard functions for the class of inverse M -matrices and the class of
filtered matrices, which includes GUM (generalized ultrametric matrices).

A nonnegative matrix U is said to be a potential if it is nonsingular and its inverse
satisfies

∀i �= j, U−1
ij ≤ 0, ∀i, U−1

ii > 0,

∀i,
∑

j

U−1
ij ≥ 0,

that is, if U−1 is an M -matrix which is row diagonally dominant. We denote this class
of matrices by P . In addition we say that U is a bipotential if U−1 is also column
diagonally dominant. This class of matrices is denoted by biP . We note that P , biP
are contained in M−1, the class of inverses of M -matrices.

The class of potential matrices play an important role in probability theory. They
represent the potential (from which we have taken the name) of a transient continuous
time Markov chain (Xt)t≥0, with generator −U−1. That is,

Uij =
∫ ∞

0

(e−U−1t)ij dt =
∫ ∞

0

Pi{Xt = j}dt

is the mean expected time expended at site j when the chain starts at site i. Clearly
U is a bipotential if both U and U ′ are potentials.

To get a discrete time interpretation take K0 = maxi{U−1
ii }. For any K ≥ K0

the matrix PK = I − 1
K U−1 is nonnegative, substochastic, and verifies

U−1 = k(I − PK).
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290 C. DELLACHERIE, S. MARTINEZ, AND J. SAN MARTIN

If we can take K = 1, then U−1 = I − P (with P = P1) and U is the mean expected
number of visits of a Markov chain (Yn)n∈N whose transition probability is given by
P . Indeed,

Uij =
∑
n≥0

Pn
ij =

∑
n≥0

Pi{Yn = j}.

We notice that if U is a potential, then for all i, j we have Uii ≥ Uji. The
probabilistic proof of this fact is based on the so-called strong Markov property which
allows us to conclude

Uji = fjiUii,

where fji ≤ 1 is the probability that the Markov process (Xt), starting from j, ever
reaches the state i. If U is a bipotential, then Uii ≥ max{Uij , Uji}.

For any nonnegative matrix U we define the quantity

τ(U) = inf{t ≥ 0 : I + tU /∈ biP},

which is invariant under permutations; that is, τ(U) = τ(ΠUΠ′). We point out that if
U is a positive matrix, then τ(U) > 0. We shall study some properties of this function
τ . In particular we are interested on matrices for which τ(U) = ∞, generalizing the
class biP as the next result shows.

Proposition 1.1. Assume that U is a nonnegative matrix, which is nonsingular
and τ(U) = ∞; then U ∈ biP.

Proof. It is direct from the observation that

t(I + tU)−1 →
t→∞U−1.

Remark 1.1. Later on, we shall prove that the converse is also true: if U is in
class biP , then τ(U) = ∞.

The following notion will play an important role in this article.
Definition 1.2. Given a matrix B, a vector μ is said to be a right equilibrium

potential if

Bμ = 1,

where 1 is the constant vector of ones. Similarly it is defined the notion of a left
equilibrium potential, which is the right equilibrium potential for B′. When B is
nonsingular the unique right and left equilibrium potentials are, respectively, denoted
by μB and νB.

We denote by μ̄ = 1′μ the total mass of μ. In the nonsingular case, it is not
difficult to see that ν̄ = μ̄.

Notice that for a matrix U ∈ biP the right and left equilibrium potentials are
nonnegative. This is exactly the fact that the inverse of a bipotential matrix is row
and column diagonally dominant.

Definition 1.3. The constant block form (CBF) matrices are defined recursively
in the following way: given two CBF matrices A, B of sizes p and n− p, respectively,
and numbers α, β, we produce the new CBF matrix by

(1.1) U =
(

A α1p1′
n−p

β1n−p1′
p B

)
,
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where the vector 1p is the vector of ones, of size p. We also say that U is in increasing
CBF if min{A, B} ≥ min{α, β}.

The Definitions 1.4 and 1.6 below were introduced in [12] and [15], generalizing
Definition 1.5 of ultrametric matrices introduced in [11] (see also [14]).

Definition 1.4. A nonnegative CBF matrix U is in nested block form (NBF) if
in (1.1) A and B are NBF matrices and

• 0 ≤ α ≤ β;
• min{Aij , Aji} ≥ α and min{Bkl, Blk} ≥ α;
• max{Aij , Aji} ≥ β and max{Bkl, Blk} ≥ β.

Definition 1.5. A nonnegative symmetric matrix U is said to be an ultrametric
matrix if

(1) for all i, j, Uii ≥ Uij,
(2) for all i, j, k, the inequality Uij ≥ min{Uik, Ukj} is satisfied.

The matrix U is strictly ultrametric if in (1) the inequality is strict.
Remark 1.2. The name ultrametric comes from ultrametric distances. One may

think as Uij = 1
δij

(for i �= j), where δ is an ultrametric distance.
A possible generalization of this concept to the nonsymmetric case is the following.
Definition 1.6. A nonnegative matrix U of size n is said to be a GUM if, for

all i, j, Uii ≥ max{Uij , Uji} and, when n > 2, every three distinct elements i, j, k have
a preferred element. Assume that this element is i which means

• Uij = Uik;
• Uji = Uki;
• min{Ujk, Ukj} ≥ min{Uji, Uij};
• max{Ujk, Ukj} ≥ max{Uji, Uij}.

By definition the transpose of a GUM is also a GUM. We note that an ultrametric
matrix is a symmetric GUM. The study of the incidence graph for the inverse of an
ultrametric matrix was done in [6] and for a GUM in [7] (this is the one step graph
induced by a Markov chain associated with the matrix).

In the next result we summarize the main results obtained in [12] and [15] con-
cerning GUM.

Theorem 1.7. Let U be a nonnegative matrix.
• U is a GUM if and only if it is a permutation similar to a NBF.
• If U is a GUM, then it is nonsingular if and only if it does not contain a row

of zeros and no two rows are the same.
• If U is a nonsingular GUM, then U ∈ biP.

It is clear that if U is a GUM, then I + tU is a nonsingular GUM. In particular,
τ(U) = ∞.

We introduce a main object of this article.
Definition 1.8. Given a function f and a matrix U , the matrix f(U) is defined

as f(U)ij = f(Uij). We shall say that f(U) is a Hadamard function of U .
Given two matrices A, B of the same size, we denote by A 	 B the Hadamard

product of them, where (A 	 B)ij = AijBij.
Given a vector a, we denote by Da the diagonal matrix whose diagonal is a. We

have DaDb = Da 	 Db = Da	b.
The class of CBF matrices (and its permutations) is closed under Hadamard

functions. Similarly, the class of increasing CBF (and its permutations) is closed
under increasing Hadamard functions.

On the other hand, the class of NBF, and therefore also the class of GUM, is
stable under Hadamard nonnegative increasing functions. We summarize this result
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292 C. DELLACHERIE, S. MARTINEZ, AND J. SAN MARTIN

in the following proposition.
Proposition 1.9. Assume that U is a GUM and f : R+ → R+ is an increasing

function. Then f(U) is a GUM. In particular, τ(f(U)) = ∞, and if f(U) is nonsin-
gular, then f(U) ∈ biP. A sufficient condition for f(U) to be nonsingular is that U
is nonsingular and f is strictly increasing.

Proof. It is clear that f(U) is a GUM, and therefore τ(f(U)) = ∞. Then,
from Proposition 1.1 we have that f(U) ∈ biP as long as f(U) is nonsingular. If U
is nonsingular, then it does not contain a row (or column) of zeros, and there are
not two equal rows (or columns). This condition is stable under strictly increasing
nonnegative functions, so the result follows.

One of our main results is a sort of reciprocal of the previous one. We shall prove
that if τ(f(U)) = ∞ for all increasing nonnegative functions f , then U must be a
GUM (see Theorem 2.4).

Let us introduce the following index.
Definition 1.10. We say that a nonnegative matrix U is in class T if

τ(U) = inf{t > 0 : (I + tU)−11 � 0 or 1′(I + tU)−1 � 0},

and I + τ(U)U is nonsingular whenever τ(U) < ∞.
We shall prove that every nonnegative matrix U that is a permutation of an

increasing CBF is in class T .
We remark here that our purpose is to study Hadamard functions of matrices and

not spectral functions of matrices, which are quite different concepts. For spectral
functions of matrices there are deep and beautiful results for the same classes of
matrices we consider here. See, for example, the work of Bouleau [3] for filtered
operators. For M matrices, see the works of Varga [17], Micchelli and Willoughby
[13], Ando [1], Fiedler and Schneider [9], and the recent work of Bapat, Catral, and
Neummann [2] for M -matrices and inverse M -matrices.

2. Main results.
Theorem 2.1. Assume U ∈ P and that f : R+ → R+ is a nonnegative strictly

increasing convex function. Then f(U) is nonsingular and det(f(U)) > 0. Also f(U)
has a right nonnegative equilibrium potential. Moreover, if f(0) = 0, we have that
M = U−1f(U) is an M -matrix. If U ∈ biP, then f(U) also has a left nonnegative
equilibrium potential.

Note that H = f(U)−1 is not necessarily a Z-matrix; that is, for some i �= j it
can happen that Hij > 0, as the following example will show. Therefore the existence
of a nonnegative right equilibrium potential, which is

∀i, Hii +
∑
j 
=i

Hij ≥ 0,

does not necessarily imply that the inverse is row diagonally dominant, that is,

∀i, Hii ≥
∑
j 
=i

|Hij |.

Example 2.1. Consider the matrix

P =

⎛
⎝0 1

2 0
1
2 0 1

2
0 1

2 0

⎞
⎠ .
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Then U = (I − P )−1 ∈ biP . Consider the nonnegative strictly convex function
f(x) = x2 − cos(x) + 1. A numerical computation gives

(f(U))−1 ≈

⎛
⎝ 0.3590 −0.0975 0.0027
−0.0975 0.2372 −0.0975

0.0027 −0.0975 0.3590

⎞
⎠ ,

which is not a Z-matrix.
We denote by U (α) the Hadamard transformation of U under f(x) = xα. In

particular, U (2) = U 	 U . It was conjectured by Neumann in [16] that U (2) is an
inverse M -matrix if U is so. This was solved by Chen in the beautiful article [4] for
any positive integer power of U . Our next result is a generalization of Chen’s result.
His proof depends on the following interesting result: U is an inverse M -matrix if and
only if its adjoint is a Z-matrix, and each proper principal submatrix is an inverse
M -matrix. Our technique is entirely different and is based strongly on the idea of an
equilibrium potential.

This result has the following probabilistic interpretation. If U is the potential
of a transient continuous time Markov process, then U (α) is also the potential of a
transient continuous time Markov process. In Theorem 2.3 we show that the same is
true for a potential of a Markov chain. An interesting open question is what is the
relation between the Markov chain associated with U and that associated with U (α).

Theorem 2.2. Assume U ∈ M−1 and α ≥ 1. Then U (α) ∈ M−1. If U−1 ∈ P,
then (U (α))−1 ∈ P. If U ∈ biP, then U (α) ∈ biP.

Theorem 2.3. Assume that U−1 = I− P , where P is a sub-Markov kernel, that
is, P ≥ 0, P1 ≤ 1. Then for all α ≥ 1 there is a sub-Markov kernel Q(α) such that
(U (α))−1 = I − Q(α). Moreover, if P ′1 ≤ 1, then Q(α)′1 ≤ 1.

The next result establishes that the class of GUM is the largest class of potentials
stable under increasing Hadamard functions.

Theorem 2.4. Let U be a nonnegative matrix such that τ(f(U)) = ∞ for all
increasing nonnegative functions f . Then, U must be a GUM.

Example 2.2. Given a, b, c, d ∈ R+, consider the nonsingular matrix

U =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
a b 1 0
c d 0 1

⎞
⎟⎟⎠ .

For all increasing nonnegative functions f and all t > 0, (I+tf(U))−1 is an M -matrix,
while U is not a GUM. Moreover, U is not a permutation of an increasing CBF. This
shows that the last theorem does not hold if, in the definition of τ , we replace the
class biP by the class M−1.

Theorem 2.5. Let U ∈ biP and f : R+ → R+ be a strictly increasing convex
function. f(U) is in biP if and only if f(U) belongs to the class T .

Theorem 2.6. If U is a nonnegative increasing CBF matrix, then U is in the
class T .

As a corollary of the two previous theorems we obtain the following important
result.

Theorem 2.7. Assume that U ∈ biP is an increasing CBF matrix and that
f : R+ → R+ is a nonnegative strictly increasing convex function. Then f(U) ∈ biP.
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3. Proofs of Theorems 2.1, 2.2, 2.3, and 2.5. Let us start with a useful
lemma.

Lemma 3.1. Assume U ∈ M−1. Then for all t ≥ 0, (I + tU) ∈ M−1. Moreover,
if U ∈ P, then (I + tU) ∈ P and its right equilibrium potential is strictly positive.
In particular if U ∈ biP, then so is I + tU , and its equilibrium potentials are strictly
positive. Similarly, let 0 ≤ s < t and assume I + tU ∈ biP; then I + sU ∈ biP, and
its equilibrium potentials are strictly positive.

Proof. For some K > 0 large enough, U−1 = K(I − N), where N ≥ 0 (and
N1 ≤ 1 for the row diagonally dominant case). In what follows we can assume that
K = 1. (It is enough to consider the matrix KU instead of U .)

From the equality (I − N)(I + N + N2 + · · · + Np) = I − Np+1 we get that

I + N + N2 + · · · + Np = U(I − Np+1) ≤ U.

We deduce that the series
∑∞

l=1 N l is convergent and its limit is U .
Consider now the matrix

Nt = t

((
I − 1

1 + t
N

)−1

− I

)
= t

∞∑
l=1

(
1

1 + t

)l

N l.

We have Nt ≥ 0. In the case N1 ≤ 1, since N is a nonnegative matrix we deduce
that N l1 ≤ 1. This allows us to prove

Nt1 = t

∞∑
l=1

(
1

1 + t

)l

N l1 ≤ t

∞∑
l=1

(
1

1 + t

)l

1 = 1.

Therefore the matrix I − Nt is a Z-matrix (which is row diagonally dominant when
U−1 is). On the other hand, we have

I + tU = I + t(I − N)−1 = (tI + I − N)(I − N)−1 = (1 + t)
(

I − 1
1 + t

N

)
(I − N)−1,

and we deduce that I + tU is nonsingular and its inverse is

(I + tU)−1 =
1

1 + t
(I − N)

(
I − 1

1 + t
N

)−1

=
1

1 + t

((
I − 1

1 + t
N

)−1

− N

(
I − 1

1 + t
N

)−1
)

=
1

1 + t

( ∞∑
l=0

(1 + t)−lN l −
∞∑

l=0

(1 + t)−lN l+1

)

=
1

1 + t
(I − Nt).

This shows that the inverse of I − Nt is nonnegative, and therefore this matrix is an
M -matrix. We conclude I + tU ∈ M−1.

The only thing left to prove is that Nt1 < 1 in the row diagonally dominant case,
that is, when N1 ≤ 1. Notice that from the convergence of the series

∑
l≥0 N l we

deduce that N l → 0 as l → ∞. Then for large l, say l > l0, we have N l1 ≤ 1
21. Thus

Nt1 = t

∞∑
l=1

(
1

1 + t

)l

N l1 ≤ t

(
l0∑

l=1

(
1

1 + t

)l

+
1
2

∞∑
l=l0+1

(
1

1 + t

)l
)

1 < 1.
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For a general K > 0 we have the equality (I+tU)−1 = K
t+K (I− t

K

∑∞
l=1(

K
t+K )lN l),

where N = I − 1
K U−1.

Finally, assume that I + tU ∈ biP . Hence I + β(I + tU) ∈ biP for all β ≥ 0. This
implies that

I +
β

1 + β
t U ∈ biP .

Now it is enough to take β ≥ 0 such that s = β
1+β t.

This lemma has two immediate consequences.
Corollary 3.2. If U ∈ biP, then τ(U) = ∞.
Corollary 3.3. Let U be a nonnegative matrix; then

τ(U) = sup{t ≥ 0 : I + tU ∈ biP}.

Proof. It is clear that τ(U) ≤ sup{t ≥ 0 : I + tU ∈ biP}. On the other hand, if
I + tU ∈ biP , we get I + sU ∈ biP for all 0 ≤ s ≤ t. This fact and the definition of
τ(U) imply the result.

Proof of Theorem 2.1. We first assume that f(0) = 0. We have that U−1 = K(I−
P ) for some K > 0 and P a substochastic matrix. Without loss of generality we can
assume K = 1, because it is enough to consider KU instead of U and f̃(x) = f(x/K)
instead of f .

Consider M = (U−1f(U)). For i �= j let us compute

Mij = (U−1f(U))ij = (1 − pii)f(Uij) −
∑
k 
=i

pikf(Ukj).

Since 1 − pii −
∑

k 
=i pik ≥ 0 (which is equivalent to
∑

k pik ≤ 1) and f is convex, we
obtain (

1 −
∑

k

pik

)
f(0) +

∑
k

pikf(Ukj) ≥ f

(∑
k

pikUkj

)
= f(Uij).

The last equality follows from the fact that U−1 = I − P . This shows that Mij ≤ 0.
Consider now a positive vector x such that y′ = x′U−1 > 0 (for its existence, see [10,
Theorem 2.5.3]). Then

x′M = x′U−1f(U) = y′f(U) > 0,

which implies, by the same cited theorem in [10], that M is an M -matrix. In partic-
ular, M is nonsingular and det(M) > 0. So f(U) is nonsingular and det(f(U)) > 0.
Now consider ρ the right equilibrium potential of f(U). We have

Mρ = U−1f(U)ρ = U−11 = μU ≥ 0,

then ρ = M−1μU ≥ 0, because M−1 is a nonnegative matrix. This means that f(U)
possesses a nonnegative right equilibrium potential. Since f(U) is nonsingular, we
also have a left equilibrium potential, but we do not know whether it is nonnegative.
Then the first part is proven under the extra hypothesis that f(0) = 0.

Assume now a = f(0) > 0, and consider g(x) = f(x) − a, which is a strictly
increasing convex function. Obviously f(U) = g(U) + a11′, so

μf(U) =
1

1 + aμ̄g(U)
μg(U) ≥ 0, νf(U) =

1
1 + aμ̄g(U)

νg(U),
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where μ̄g(U)) = 1′μg(U)) > 0. We have used the fact that μ̄g(U)) = ν̄g(U)). Thus f(U)
has a nonnegative right equilibrium potential and a left equilibrium potential. We
need to prove that f(U) is nonsingular and det(f(U)) > 0. This follows immediately
from the equality

f(U) = g(U)(I + aμg(U)1′),

which implies

f(U)−1 = g(U)−1 − a

1 + aμ̄g(U)
μg(U)(νg(U));

det(f(U)) = det(g(U))(1 + aμ̄g(U)).

Then the first part of the result is proven.
In the bipotential case use U ′ instead of U to obtain the existence of a nonnegative

left equilibrium potential for f(U).
Proof of Theorem 2.5. Using the same ideas as above, we can assume that f(0) =

0. Also we have that U−1(I + tf(U)) = Mt is an M -matrix for all t ≥ 0. Therefore
I+tf(U) is nonsingular for all t, and we denote by μt and νt the equilibrium potentials
for I + tf(U).

Assume first that f(U) is in class T (see Definition 1.10), which means that

τ(f(U)) = min{t > 0 : μt � 0 or νt � 0}.

We prove that for all t ≥ 0, μt, νt are nonnegative. Since

Mtμt = U−11 = μU ,

we obtain that μt = M−1
t μU ≥ 0, because M−1

t is a nonnegative matrix. Thus,
τ(f(U)) = ∞, and since f(U) is nonsingular we get from Proposition 1.1 that f(U) ∈
biP . Conversely if f(U) ∈ biP , then τ(f(U)) = ∞, and the result follows.

For the rest of the section n denotes the size of U .
Lemma 3.4. Assume that U ∈ P. Then any principal square submatrix A of U

is also in class P. The same is true if we replace P by biP.
Proof. By induction and a suitable permutation the restriction of U to {1, . . . , n−

1} × {1, . . . , n − 1} is enough to prove the result for A. Assume that

U =
(

A b
c′ d

)
and U−1 =

(
Λ −ζ
−	′ θ

)
.

Since A−1 = Λ − 1
θ ζ	′ we get that the off-diagonal elements of A−1 are nonpositive.

It is quite easy to see that the result will follow as soon as A−11 ≥ 0.
Since U ∈ P we have that Λ1− ζ ≥ 0 and θ ≥ 	′1. Therefore,

A−11 = Λ1− 1
θ
ζ	′1 = Λ1− 	′1

θ
ζ ≥ Λ1− ζ ≥ 0.

Recall that for a vector a, Da is the associated diagonal matrix.
Lemma 3.5. Assume U ∈ biP and α ≥ 1. If

U =
(

A b
c′ d

)
,
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then there exists a nonnegative vector η such that

A(α)η = b(α).

Proof. We first perturb the matrix U to have a positive matrix. Consider ε > 0
and the positive matrix Uε = U + ε11′. It is direct to prove that

U−1
ε = U−1 − ε

1 + εμ̄U
μU (νU )′,

where μ̄U = 1′μU is the total mass of μU . Then Uε ∈ biP , and its equilibrium
potentials are given by

μUε =
1

1 + εμ̄U
μU , νUε =

1
1 + εν̄U

νU .

We decompose the inverse of Uε as

U−1
ε =

(
Λε ζε

	′ε θε

)
,

and we notice that Aεζε + θεbε = 0, which implies that

bε = Aελε,

with λε = − 1
θε

ζε ≥ 0. Also we mention here that λε is a subprobability vector, that
is, 1′λε ≤ 1. This follows from the fact that U−1

ε is column diagonally dominant.
Take now the matrix Vε = D−1

bε
Aε. It is direct to check that Vε ∈ M−1 and that

its equilibrium potentials are

μVε = λε, νVε = DbενAε .

Thus Vε ∈ biP , and we can apply Theorem 2.1 to get that the matrix V
(α)
ε possesses

a right equilibrium potential ηε ≥ 0; that is, for all i,∑
j

(V (α)
ε )ij(ηε)j = 1,

which is equivalent to

∑
j

(Aε)α
ij

(bε)α
i

(ηε)j = 1.

Hence

A(α)
ε ηε = b(α)

ε .

Recall that the matrix A(α) is nonsingular. Since obviously A
(α)
ε → A(α) as ε → 0,

we get

ηε → η = (A(α))−1b(α),

and the result follows.
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Proof of Theorem 2.2. Consider first the case where U ∈ biP . We already know
that U (α) is nonsingular and that it has left and right nonnegative equilibrium poten-
tials. Therefore, in order to prove U (α) ∈ biP , it is enough to prove that (U (α))−1 is
a Z-matrix; that is, we need to show ((U (α))−1)ij ≤ 0 for i �= j. An argument based
on permutations shows that it is enough to prove the claim for i = 1, j = n.

Decompose U (α) and its inverse as follows:

U (α) =
(

A(α) b(α)

(c(α))′ dα

)
and (U (α))−1 =

(
Ω −β
−α′ δ

)
.

We will show β ≥ 0. We notice that δ = det(A(α))
det(U(α))

> 0 and −A(α)β + δb(α) = 0, and
we deduce

b(α) = A(α)

(
β

δ

)
.

Therefore, β
δ = η ≥ 0, where η is the vector given in Lemma 3.5. Thus β ≥ 0, and

the result is proven for the case U ∈ biP .
Now, consider U = M−1 the inverse of the M -matrix M . Using Theorem 2.5.3

in [10], we get the existence of two positive diagonal matrices D, E such that DME
is a strictly row and column diagonally dominant M -matrix. Thus V = E−1UD−1

is in biP , from which it follows that V (α) ∈ biP . Hence, U (α) = E(α)V (α)D(α) is the
inverse of an M -matrix. The rest of the result is proven in a similar way.

Proof of Theorem 2.3. By hypothesis we have U = I − P , where P ≥ 0 and
P1 ≤ 1. We notice that U is diagonally dominant on each column, which means that
for all i, j

Uii ≥ Uji.

Also we notice that U = I + PU and therefore Uii ≥ 1.
According to Theorem 2.2 we know that H = (U (α))−1 is a row diagonally dom-

inant M -matrix. The only thing left to prove is that the diagonal elements of H are
dominated by one: Hii ≤ 1 for all i. We will prove it for i = n.

Consider the following decompositions:

U =
(

A b
c′ d

)
, U−1 =

(
Λ −ω
−η′ γ

)
, (U (α))−1 =

(
Ω −β
−α′ δ

)
,

U−1U (α) =
(

Ξ −ζ
−χ′ ρ

)
.

A direct computation gives that

γ = ρδ + χ′β ≥ ρδ.

We need to show that δ ≤ 1. By hypothesis, γ ≤ 1; then it is enough to prove that
ρ ≥ 1. On the one hand, we have

ρ = (1 − pnn)Uα
nn −

∑
j 
=n

pnjU
α
jn = Uα

nn −
∑

j

pnjU
α
jn = Uα

nn −
∑

j

pnjUjnUα−1
jn .
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On the other hand, we also have Uα−1
jn ≤ Uα−1

nn and
∑

j pnjUjn = Unn − 1. Hence we
deduce

ρ ≥ Uα−1
nn ≥ 1.

This finishes the first part of the theorem . The rest of the result is proven by using
U ′ instead of U .

4. Proof of Theorem 2.4. Notice that U is a GUM if and only if n ≤ 2 or
every principal submatrix of size 3 is a GUM.

Since by hypothesis the matrix I + tU is a bipotential, it is diagonally dominant,

1 + tUii ≥ tUij ,

and by taking t → ∞, we find Uii ≥ Uij . This proves the result when n ≤ 2. So, in
what follows we assume n ≥ 3.

Consider A any principal submatrix of U , of size 3×3. Since I+tf(A) is a principal
submatrix of I + tf(U), we deduce that I + tf(A) ∈ biP (as long as I + tf(U) ∈ biP).
If the result holds for the 3 × 3 matrices, we deduce that A is a GUM, implying that
U is also a GUM.

Thus, in the rest of the proof we can assume that U is a 3×3 matrix that verifies
the hypothesis of the theorem. After a suitable permutation we can further assume
that

U =

⎛
⎝ a b1 b2

c1 d α
c2 β e

⎞
⎠ ,

where α = min{Uij : i �= j} = min{U} and β = min{Uji : Uij = α, i �= j}.
Since U is diagonally dominant we have min{a, d, e} ≥ α. Take f increasing such

that f(α) = 0 and f(x) > 0 for x > α. Then,

I + f(U) =

⎛
⎝1 + f(a) f(b1) f(b2)

f(c1) 1 + f(d) 0
f(c2) f(β) 1 + f(e)

⎞
⎠

is a biP-matrix whose inverse we denote by⎛
⎝ δ −ρ1 −ρ2

−θ1 γ1 −γ2

−θ2 −γ3 γ4

⎞
⎠ .

In particular we obtain

(
1 + f(d) 0

f(β) 1 + f(e)

)−1

=
(

γ1 −γ2

−γ3 γ4

)
− 1

δ

(
θ1

θ2

)(
ρ1

ρ2

)′
,

and we deduce that

(4.1) 0 = γ2 = θ1ρ2.
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• Case ρ2 = 0. We get f(b2) = 0, which implies further

b2 = α and c2 ≥ β.(4.2)

The last conclusion follows from the definition of β. Therefore,

(4.3) U =

⎛
⎝ a b1 α

c1 d α
c2 β e

⎞
⎠ .

We must prove that U is GUM.
Consider another increasing function g such that g(β) = 0 and g(x) > 0 for
x > β. Then,

I + g(U) =

⎛
⎝1 + g(a) g(b1) 0

g(c1) 1 + g(d) 0
g(c2) 0 1 + g(e)

⎞
⎠ .

Its inverse is of the form ⎛
⎝ δ̃ −ρ̃1 0
−θ̃1 γ̃1 0
−θ̃2 −γ̃3 γ̃4

⎞
⎠ .

As before, we deduce that 0 = γ̃3 = θ̃2ρ̃1.
– Subcase θ̃2 = 0. We have g(c2) = 0, which implies c2 = β. In this

situation we have

U =

⎛
⎝ a b1 α

c1 d α
β β e

⎞
⎠ .

By permuting rows and columns 1, 2, if necessary, we can assume that
b1 ≤ c1. Consider the situation where c1 < β; of course, implicitly we
should have α < β. Under a suitable increasing transformation h, we
get

I + h(U) =

⎛
⎝1 + h(a) 0 0

0 1 + h(d) 0
h(β) h(β) 1 + h(e)

⎞
⎠

and its inverse⎛
⎜⎝

1
1+h(a) 0 0

0 1
1+h(d) 0

− h(β)
(1+h(a))(1+h(e)) − h(β)

(1+h(d))(1+h(e))
1

1+h(e)

⎞
⎟⎠ .

The sum of the third row is then
1

1 + h(e)

(
1 − h(β)

(
1

1 + h(a)
+

1
1 + h(d)

))
,

and this quantity can be made negative by choosing an appropriate
function h. The idea is to make h(β) → ∞ and

h(β)
max{h(a), h(d)} → 1.

Therefore, c1 ≥ β and U is a GUM.
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– Subcase ρ̃1 = 0. We have g(b1) = 0 and then b1 ≤ β. Take again an
increasing function � such that

I + �(U) =

⎛
⎝1 + �(a) 0 0

�(c1) 1 + �(d) 0
�(c2) 0 1 + �(e)

⎞
⎠

and its inverse ⎛
⎜⎝

1
1+�(a) 0 0

− �(c1)
(1+�(a))(1+�(d))

1
1+�(d) 0

− �(c2)
(1+�(a))(1+�(e)) 0 1

1+�(e)

⎞
⎟⎠ .

The sum of the first column is

1
1 + �(a)

(
1 − �(c1)

(1 + �(d))
− �(c2)

(1 + �(e))

)
,

which can be made negative by repeating a similar argument as before
if both c1 > β and c2 > β.
Therefore if we assume that c1 > β, we necessarily have c2 ≤ β. On
the other hand, from (4.2) we know c2 ≥ β, proving that c2 = β. The
conclusion is α ≤ b1 ≤ β < c1 and

U =

⎛
⎝ a b1 α

c1 d α
β β e

⎞
⎠ ,

which is a GUM.
Therefore we can continue under the hypothesis c1 ≤ β ≤ c2.
∗ Subsubcase b1 < β. Again we must have α < β. Under this condition

we have that c2 > α. Using an increasing function ω, we get

I + ω(U) =

⎛
⎝1 + ω(a) 0 0

ω(c1) 1 + ω(d) 0
ω(c2) ω(β) 1 + ω(e)

⎞
⎠ ,

and its inverse is⎛
⎜⎜⎜⎜⎜⎝

1
1+ω(a) 0 0

− ω(c1)
(1+ω(a))(1+ω(d))

1
1+ω(d) 0

− ω(c2)(1+ω(d))−ω(β)ω(c1)
(1+ω(a))(1+ω(d))(1+ω(e)) − ω(β)

(1+ω(d))(1+ω(e))
1

1+ω(e)

⎞
⎟⎟⎟⎟⎟⎠ .

The sum of the third row is
(4.4)

1
(1 + ω(e))

(
1 − ω(c2)

1 + ω(a)
+

ω(β)ω(c1)
(1 + ω(a))(1 + ω(d))

− ω(β)
1 + ω(d)

)
.

If c1 < β, we can assume ω(c1) = 0. With this choice we can make
the sum in (4.4) negative by a suitable selection of ω as we did
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before. Thus we must have c1 = β, in which case the sum under
study is proportional to

(4.5) 1 − ω(c2)
1 + ω(a)

+
ω(β)2

(1 + ω(a))(1 + ω(d))
− ω(β)

1 + ω(d)
.

If c2 = β, then

U =

⎛
⎝a b1 α

β d α
β β e

⎞
⎠

is a GUM. So, we must analyze the case where c2 > β in (4.5).
We will arrive at a contradiction by taking an asymptotic as before.
Consider a fixed number λ ∈ (0, 1). Choose a family of functions
(ωr)r∈N such that, as r → ∞,

ωr(β) → ∞,
ωr(β)
ωr(c2)

→ λ,
ωr(c2)
ωr(a)

→ 1,
ωr(d)
ωr(a)

→ φ,

where φ = 1 if d > β, and φ = λ if d = β. The asymptotic of (4.5)
is then

1 − 1 +
λ2

φ
− λ

φ
.

This quantity is strictly negative for the two possible values of φ,
which is a contradiction, and therefore c2 = β.

To finish with the Subcase ρ̃1 = 0, which will in turn finish with Case ρ2 = 0,
we consider a further subcase.

∗ Subsubcase b1 = β. We recall that we are under the restrictions
c1 ≤ β ≤ c2 and

U =

⎛
⎝ a β α

c1 d α
c2 β e

⎞
⎠ .

Notice that if c2 = β, then U is GUM. So, we may assume in this
part that c2 > β. If c1 = α, we can permute 1 and 2 to get

ΠUΠ′ =

⎛
⎝d α α

β a α
β c2 e

⎞
⎠ ,

which is also in NBF, and U is a GUM. Thus we can assume c1 > α,
and again we have α < β.
Take an increasing function m such that

I + m(U) =

⎛
⎝1 + m(a) m(β) 0

m(c1) 1 + m(d) 0
m(c2) m(β) 1 + m(e)

⎞
⎠ .

We take the asymptotic under the following restrictions:

m(β)
m(a)

→ λ ∈ (0, 1),
m(c1)
m(a)

→ λ,
m(e)
m(a)

→ 1,
m(c2)
m(a)

→ 1,
m(d)
m(a)

→ φ,
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where φ = 1 if d > β, and φ = λ if d = β. The limiting matrix for
1

m(a) (I + m(U)) is

V =

⎛
⎝1 λ 0

λ φ 0
1 λ 1

⎞
⎠ ,

whose determinant is Δ = φ − λ2 > 0. Therefore it is nonsingular,
and as the limit of matrices in biP , V itself must belong to biP . On
the other hand, the inverse of V is given by

V −1 =
1
Δ

⎛
⎝ φ −λ 0

−λ 1 0
−(φ − λ2) 0 φ − λ2

⎞
⎠ ,

and the sum of the first column is

λ2 − λ

Δ
< 0,

which is a contradiction.
This finishes with the subcase ρ2 = 0, and we return to (4.1) to consider now
the following case.

• Case θ1 = 0. Under this condition we get c1 = α and

U =

⎛
⎝ a b1 b2

α d α
c2 β e

⎞
⎠ .

Consider the transpose of U and permute on it 2 and 3, to obtain the matrix

Ũ =

⎛
⎝ a c2 α

b2 e α
b1 β d

⎞
⎠ ,

where now b1 ≥ β. Clearly the matrix Ũ verifies the hypothesis of the theorem
and has the shape of (4.3); that is, we are in the “case ρ2 = 0,” which, we
already know, implies that Ũ is a GUM. Then U itself is a GUM, and the
theorem is proven.

5. Filtered matrices and sufficient conditions for classes biP and T .
The class of filtered matrices, which turn out to be a generalization of GUM, gives
a good framework to study a potential theory of matrices. They were introduced
as operators in [8] to generalize the class of self-adjoint operators whose spectral
decomposition is written in terms of conditional expectations (see, for instance, [3],
[5], and [11]).

The basic tool to construct these matrices is partitions of Jn = {1, . . . , n}. The
components of a partition R are called atoms, and we denote by R∼ the equivalence
relation induced by R. Then i, j are in the same atom of R if and only if i

R∼ j.
A partition R is coarser than or equal to a partition Q if the atoms of Q are

contained in the atoms of R. This (partial) order relation is denoted by R � Q. It is
also said that Q is finer than R. For example, in J4 we have R = {{1, 2}, {3, 4}} �
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Q = {{1}, {2}, {3, 4}}. The coarsest partition is the trivial one N = {Jn}, and the
finest one is the discrete partition F = {{1}, {2}, . . . , {n}}.

Definition 5.1. A filtration F = {R0 ≺ R1 ≺ · · · ≺ Rk} is a strictly increasing
sequence of comparable partitions. F is said to be dyadic if each nontrivial atom of
Rs is divided into two atoms of Rs+1.

A filtration in the wide sense is an increasing sequence of comparable partitions
G = {R0 � R1 � · · · � Rk}.

The difference between a filtration and a filtration in the wide sense is that in the
latter case repetition of partitions is allowed.

Each partition R induces an incidence matrix F =: F (R) given by

Fij =

{
1 if i

R∼ j,

0 otherwise .

A vector v ∈ Rn is said to be R-measurable if v is constant on the atoms of R, that
is,

i
R∼ j ⇒ vi = vj .

This can be expressed in terms of standard matrix operations as

F (R)v = DwRv,

where wR = F (R)1 is the vector constant on each atom, and this constant is the
size of the respective atom (recall that Dz is the diagonal matrix associated with the
vector z). The set of R-measurable vectors is a linear subspace of Rn. Notice that
if the partition is F , then the associated incidence matrix is the identity and the
subspace of measurable vectors is just Rn. On the other hand, if the partition is the
trivial one N , then the incidence matrix is 11′ and the measurable vectors in this
case are the constant ones.

Definition 5.2. A matrix U is said to be filtered if there exists a filtration in
the wide sense G = {Q0 � Q1 � · · · � Ql}, vectors a0, . . . , al, b0, . . . , bl with the
restriction that as, bs are Qs+1-measurable (we take Ql+1 = F the discrete partition),
and

(5.1) U =
�∑

s=0

DasF (Qs)Dbs .

There is no loss of generality if we assume that Q0 = N and Q� = F , that is,
F (Q0) = 11′ and F (Q�) = I. Let us see that (5.1) can be simply written in terms of
a filtration. Indeed, notice that if as and bs are Qs-measurable, then

DasF (Qs)Dbs = DasDbsF (Qs) = Das	bsF (Qs),

where the vector as 	 bs is the Hadamard product of as and bs, which is also Qs-
measurable. Hence a sum of terms of the form

DasF (Qs)Dbs + Das+1F (Qs+1)Dbs+1 + · · · + Das+rF (Qs+r)Dbs+r ,

with R = Qs = · · · = Qs+r, can be reduced to the sum of two terms as

DCF (R) + Das+rF (R)Dbs+r ,
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where C =
∑r−1

h=0 as+h 	 bs+h is R-measurable. In this way the representation (5.1)
can be written as

(5.2) U =
k∑

s=0

DCsF (Rs) + DmsF (Rs)Dns ,

where F = {R0 ≺ R1 ≺ · · · ≺ Rk} is a filtration, N = R0, F = Rk, Cs is Rs-
measurable, ms, ns are Rs+1-measurable, and mk = 0 (again we assume that Rk+1 =
F). We shall always consider this reduced representation of (5.1), and we shall say
that U is filtered with respect to the filtration F.

If all ms, ns are Rs-measurable, then (5.1) reduces to the form

(5.3) U =
k∑

s=0

DCs+ms	nsF (Rs),

and U is a symmetric matrix.
We are mainly interested in a decomposition like (5.2) with the vectors ms, ns

having the following special structure:

(5.4) ms = Γs 	 ps, ns = qs,

where Γs is Rs-measurable and {ps, qs} is an Rs+1-measurable partition; that is,
{ps, qs} are Rs+1-measurable {0, 1}-valued vectors with disjoint support ps 	 qs = 0
and ps + qs = 1. If this is the case, U is said to be a special filtered matrix (SFM),

(5.5) U =
k∑

s=0

DCs F (Rs) + DΓsDps F (Rs) Dqs .

Notice that Γk = 0.
It is not difficult to see that every CBF matrix is filtered. This is done by induc-

tion. Assume that

U =
(

A α1p1′
n−p

β1n−p1′
p B

)
.

Define R0 = N and R1 = {{1, . . . , p}, {p + 1, . . . , n}}. Take

C0 = α1n, Γ0 = (β − α)1n, p0 = (0p,1n−p)′, q0 = (1p,0n−p)′;

then we obtain

DC0F (R0) + DΓ0Dp0F (R0)Dq0 =
(

α1p1′
p α1p1′

n−p

β1n−p1′
p α1n−p1′

n−p

)
.

The key step is that A − α, B − α are also in CBF. We have that C0, Γ0 are R0-
measurable and p0, q0 is an R1-measurable partition. We also notice that if 0 ≤ α ≤ β,
then C0 ≥ 0, Γ0 ≥ 0.

The induction also shows that U can be decomposed as in (5.5), where F =
{R0 ≺ · · · ≺ Rk} is a dyadic filtration; Cs, Γs are Rs-measurable; and {ps, qs} is a
Rs+1-measurable partition.

We now summarize the representation form for the class of CBF, NBF, and GUM
matrices.
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Proposition 5.3. V is a permutation of a CBF matrix if and only if there exists
a dyadic filtration F = {R0 ≺ · · · ≺ Rk}; a sequence of vectors C0, . . . , Ck, Γ0, . . . , Γk

verifying Cs, Γs are Rs-measurable, and a sequence {ps, qs} of Rs+1-measurable par-
titions such that

V =
k∑

s=0

DCsF (Rs) + DΓsDpsF (Rs)Dqs .

That is V is an SFM.
Also V is a permutation of an increasing CBF matrix if and only if there is a

decomposition where Γ0, Cs, Γs, s = 1, . . . , k, are nonnegative. Furthermore, V is a
nonnegative matrix if and only if C0 is nonnegative.

Moreover, V is a GUM if and only if Cs, Γs, s = 0, . . . , k, are nonnegative and
for s = 0, . . . , k − 1 it holds that

(5.6) Γs ≤ Cs+1 + Γs+1.

Finally, V is an ultrametric matrix if and only if there is a decomposition with Γs = 0
for all s.

Remark 5.1. We can assume without loss of generality that each ps, qs is obtained
as follows. The nontrivial atoms A1, . . . ,Ar of Rs are divided into the new atoms

A1,1,A1,2, . . . ,Ar,1,Ar,2

of Rs+1. Consider B1, . . . ,Br the set of trivial atoms in Rs (that is, the atoms which
are singletons). Let qs be the indicator of A1,1 ∪ · · · ∪ Ar,1, ps be the indicator of
A1,2∪· · ·∪Ar,2∪B1∪· · ·∪Br, and Γs = 0 on the Rs-measurable set B = B1∪· · ·∪Br.
We point out that the partition Rs+1 is obtained from Rs refined by ps. The following
consistency relation,

(5.7) DpsF (Rs)ps = DpsF (Rs+1)1,

will be used further in order to give sufficient treatable conditions for an SFM to be
a bipotential.

Example 5.1. Consider the CBF matrix

U =

⎛
⎜⎜⎝

a α2 α1 α1

β2 b α1 α1

β1 β1 c α̂2

β1 β1 β̂2 d

⎞
⎟⎟⎠ .

U is an NBF matrix if the constraints α1 ≤ β1, α1 ≤ min{α2, α̂2}, β1 ≤ min{β2, β̂2},
α2 ≤ β2, α̂2 ≤ β̂2 are verified and finally the diagonal elements dominate on each row
and column, that is, β2 ≤ min{a, b}, β̂2 ≤ min{c, d}.

U is filtered with respect to the dyadic filtration R0 = {1, 2, 3, 4} ≺ R1 =
{{1, 2}, {3, 4}} ≺ R2 = {{1}, {2}, {3}, {4}} and can be written as
(5.8)
U = DC0F (R0) + DΓ0Dp0F (R0)Dq0 + DC1F (R1) + DΓ1Dp1F (R1)Dq1 + DC2F (R2),

where

C0 =

⎛
⎜⎜⎝

α1

α1

α1

α1

⎞
⎟⎟⎠ , Γ0 =

⎛
⎜⎜⎝

β1 − α1

β1 − α1

β1 − α1

β1 − α1

⎞
⎟⎟⎠ , p0 =

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠ , q0 =

⎛
⎜⎜⎝

1
1
0
0

⎞
⎟⎟⎠ ,
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C1 =

⎛
⎜⎜⎝

α2 − α1

α2 − α1

α̂2 − α1

α̂2 − α1

⎞
⎟⎟⎠ , Γ1 =

⎛
⎜⎜⎝

β2 − α2

β2 − α2

β̂2 − α̂2

β̂2 − α̂2

⎞
⎟⎟⎠ , p1 =

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ , q1 =

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ ,

and

C2 =

⎛
⎜⎜⎝

a − α2

b − α2

c − α̂2

d − α̂2

⎞
⎟⎟⎠ .

The decomposition in (5.8) is then

U =

⎛
⎜⎜⎝

α1 α1 α1 α1

α1 α1 α1 α1

α1 α1 α1 α1

α1 α1 α1 α1

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

β1 − α1 β1 − α1 0 0
β1 − α1 β1 − α1 0 0

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

α2 − α1 α2 − α1 0 0
α2 − α1 α2 − α1 0 0

0 0 α̂2 − α1 α̂2 − α1

0 0 α̂2 − α1 α̂2 − α1

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0 0 0 0
β2 − α2 0 0 0

0 0 0 0
0 0 β̂2 − α̂2 0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

a − α2 0 0 0
0 b − α2 0 0
0 0 c − α̂2 0
0 0 d − α̂2 0

⎞
⎟⎟⎠ .

The constraints are translated into the positivity of the vectors C and Γ and the
ones induced by (5.6). We point out that we can also choose, for example, Γ1 =
(0, β2 − α2, 0, β̂2 − α̂2)′, but in this case Γ1 is not R1-measurable. As we will see in
subsection (5.1), this measurability condition will play an important role.

Example 5.2. Consider the nonnegative CBF matrix

U =

⎛
⎝2 2 2

2 2 1
2 1 2

⎞
⎠ .

This matrix is an SFM and can be decomposed as in (5.5). Nevertheless, none of these
decompositions can have all its terms nonnegative. In particular, no permutation of
U is an increasing CBF matrix.

Remark 5.2. Notice that the class of CBF matrices is stable under Hadamard
functions. Nevertheless there are examples of filtered matrices for which f(U) is not
filtered. Consider the matrix

U = DαF1 + DaF1Db + DβF2,

where F1 = F (N ) = 11′ and F2 = I. The vector α is constant, and we confound it
with the constant α ∈ R. The vectors a, b, β are all F -measurable. Then U is filtered
and, moreover,

(5.9) U = α + ab′ + Dβ .
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Take α = β = 0, a = (2, 3, 5, 7)′, and b = (11, 13, 17, 19)′. Then all the entries
of U are different. As f runs over all possible functions, f(U) runs over all 4 × 4
matrices. This implies that some of them can not be written as in (5.9), because
in this representation we have at most 13 free variables. Still is possible that each
f(U) is decomposable as in (5.1), using maybe a different filtration. A more detailed
analysis shows that this is not the case. For example, if we choose the filtration
N ≺ {{1, 2}, {3, 4}} ≺ F , then every matrix V filtered with respect to this filtration
verifies that V13 = V23 = V14 = V24.

Matrices of the type F (R) are related to conditional expectations (in probability
theory). Indeed, let R = {A1,A2, . . . ,Ar} and n� = #(A�) be the size of each atom.
It is direct that w = wR = F (R)1 is an R-measurable vector that verifies wi = n�

for i ∈ A�. Then

ER = D−1
w F (R) = F (R) D−1

w

is the matrix of conditional expectation with respect to the σ-algebra generated by
R. This matrix E = ER satisfies

EE = E, E′ = E, E1 = 1;
∀v, Ev is R-measurable;
if v is R-measurable, then Ev = v.

Therefore, E is the orthogonal projection over the subspace of all R-measurable vec-
tors. In the case of the trivial partition N , one gets EN = 1

n11′ as the mean operator.
Remark 5.3. The L2 space associated with {1, . . . , n} endowed with the counting

measure is identified with Rn with the standard Euclidean scalar product. In this way
each vector of Rn can be seen as a function in L2, and E is an orthogonal projection.
The product DvE (as matrices) is the product of the operators Dv and E, where Dv

is the multiplication by the function v. Notice that EDv and E(v) are quite different.
The former is an operator (a matrix), and the latter is a function (vector). They are
related by E(v) = EDv(1), where 1 is the constant function.

Let R, Q be two partitions; then R � Q is equivalent to EREQ = EQER = ER.
This commutation relation can be written as a commutation relation for F (R) and
F (Q). In fact,

F (R)F (Q) = ERDwREQDwQ = EREQDwRDwQ
= ERDwRDwQ = F (R)DwQ ,

F (Q)F (R) = (F (R)F (Q))′ = DwQF (R).

5.1. An algorithm for filtered matrices: Conditions to be in biP. In
this section we introduce a backward algorithm that gives a sufficient condition for a
filtered matrix to be in class biP . For that purpose assume that U has a representation
as in (5.1):

U =
�∑

s=0

DasF (Qs)Dbs ,

where we assume further that as, bs are all nonnegative. In particular, U is a nonneg-
ative matrix.
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We introduce the conditional expectations Es = EQs = D−1
F (Qs)1 F (Qs) and the

normalized factors as = as 	 F (Qs)1, bs = bs. Then U can be written as

(5.10) U =
�∑

s=0

DasEsDbs =
�∑

s=0

asEsbs,

where we have identified vectors (functions) and the operator of multiplication they
induce. We shall use this notation throughout this section. Finally, we recall that
E� = I.

We can now use the algorithm developed in [8] to study the inverse of I + U . In
what follows, we take the convention 0 · ∞ = 0/0 = 0. This algorithm is defined by
the backward recursion starting with the values λ� = μ� = κ� = 1, σ� = (1 + a�b�)−1

and for s = � − 1, . . . , 0,

λs = λs+1[1 − σs+1as+1Es+1(κs+1bs+1)],
μs = μs+1[1 − σs+1bs+1Es+1(κs+1as+1)],
κs = Es+1(λs) = Es+1(μs),
σs = (1 + Es(κsasbs))−1.(5.11)

We get the recursion

(5.12) κs−1 = Es(κs) −
Es(κsas)Es(κsbs)
1 + Es(κsasbs)

.

The algorithm continues until some λ or μ is negative; otherwise we arrive at s = 0.
If this is the case, then I+U is nonsingular and its inverse is of the form I−N , where

N =
�∑

s=0

σsλsasEsbsμs.

We also have that

λ−1 = (I − N)1 and μ−1 = (I − N)′1,

where λ−1, μ−1 are obtained from the first two formulae in (5.11) for s = −1. There-
fore, if they are also nonnegative, the matrix I + U is a biP-matrix.

In this way we have that a sufficient condition for I+U to be a biP-matrix is that
the algorithm works for s = �, . . . , 0 and that all the λ, μ are nonnegative, including
λ−1, μ−1. In this situation we have that λ (and μ) is a decreasing nonnegative sequence
of vectors. Sufficient treatable conditions on the coefficients of the expansion (5.10)
involve the recurrence (5.12). Starting from κ� = 1, we assume that this recurrence
has a solution such that κs ∈ [0, 1] for all s = �, . . . ,−1. We shall study closely this
recursion for the class of SFM, and we shall obtain sufficient conditions to have I + U
in biP .

Before studying this problem, we further discuss the algorithm. We have the
following relations:

(
I +

�∑
k=s

akEkbk

)−1

= I −
�∑

k=s

σkλkakEkbkμk = I − Ns,

λs−1 = (I − Ns)1, μs−1 = (I − Ns)′1.
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That is, our condition is to impose that all the matrices

I + a�E�b�, . . . , I +
�∑

k=s

akEkbk, . . . , I +
�∑

k=0

akEkbk = I + U

are in class biP .
We now assume that U is an SFM with a decomposition like

U =
k∑

s=0

DCs F (Rs) + DΓsDps F (Rs) Dqs ,

where F = R0 ≺ · · · ≺ Rk is a filtration; Cs, Γs are nonnegative Rs-measurable; and
{ps, qs} is a Rs+1-measurable partition. Again we set Es = D−1

F (Rs)1 F (Rs) and the
normalized Rs-measurable factors

cs = Cs 	 F (Rs)1, γs = Γs 	 F (Rs)1.

Since diagonal matrices commute, we get that U has a representation of the form

U =
k∑

s=0

csEs + γspsEsqs,

with γk = 0. In the previous algorithm we can make two steps at each time and
consider κs in place of κ2s, λs instead of λ2s+1, ls instead of λ2s. We also introduce
ds = 1/κs to simplify certain formulae (this vector can take the value ∞). We get,
starting from κk = lk = 1, σk = (1 + ck)−1, that for s = k − 1, . . . , 0

λs = σs+1ls+1,
ls = λs[1 − γspsEs(qs/(cs+1 + ds+1))],
κs = Es(ls),
σs = 1/(1 + κscs) = ds/(cs + ds).

Similar recursions hold for μ, m, which are the analogues of λ, l. Relation (5.12) takes
the form

(5.13)
1
ds

= Es

(
1

cs+1 + ds+1

)
− γs Es

(
ps

cs+1 + ds+1

)
Es

(
qs

cs+1 + ds+1

)
.

The inverse of I + U is I − N , where

(5.14) N =
k∑

s=0

csσslsEsms +
k−1∑
s=0

γsλspsEsqsμs =
k∑

s=0

csσslsEsms + γsλspsEsqsμs.

Again λ−1 = (I − N)1 = σ0l0, and similarly μ−1 = σ0m0.
Let us introduce the following function:

ρs = Es(ps)ps + Es(qs)qs.

Theorem 5.4. Assume that the backward recursion (5.13) has a nonnegative
solution starting with dk = 1. Assume, moreover, that this solution verifies for s =
k − 1, . . . , 0

(5.15) ρsγs ≤ cs+1 + ds+1.
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Then λs, ls, μs, ms, σs, for s = k, . . . , 0, as well as λ−1, μ−1 are well defined and
nonnegative. Therefore, I + U ∈ biP, and its inverse is I − N , where N is given by
(5.14).

The proof of this result is based on the following lemma.
Lemma 5.5. Let x, y be nonnegative vectors, and E be a conditional expectation.

If xE(y) ≤ 1, then E(xy) ≤ 1.
Proof. We first assume that y is strictly positive. Since x ≤ 1/E(y) and E is an

increasing operator, we have

E(xy) ≤ E
(

1
E(y)

y

)
=

E(y)
E(y)

= 1.

For the general case consider (y + ε1)/(1 + ε|x|∞) instead of y and pass to the limit
ε → 0.

Proof of Theorem 5.4. We notice that condition (5.15) implies that

qsγs

cs+1 + ds+1
Es(qs) ≤ 1.

Since γs is Es-measurable and qs = q2
s , we obtain

γsEs

(
qs

cs+1 + ds+1

)
= Es

(
γsq

2
s

cs+1 + ds+1

)
.

This last quantity is bounded by one by Lemma 5.5. Similarly we have

γsEs

(
ps

cs+1 + ds+1

)
≤ 1,

which implies that the algorithm is not stopped, and all the coefficients are nonnega-
tive including λ−1, μ−1.

Corollary 5.6. Assume that for s = k − 1, . . . , 0 we have

(5.16) ρsγs ≤ cs+1 + γs+1.

Then the recursion (5.13) has a nonnegative solution that verifies (5.15). In particular,
I + tU is in class biP for all t ≥ 0, and U is in biP if it is nonsingular.

Proof. Let us consider first the case t = 1. We prove by induction that γs ≤ ds.
For s = k we have 0 = γk ≤ dk = 1. We point out that if we multiply in (5.13) by γs,
we get

γs

ds
= Es

(
γs

cs+1 + ds+1

)
− Es

(
γsps

cs+1 + ds+1

)
Es

(
γsqs

cs+1 + ds+1

)
,

which is of the form x+ y−xy, where x = Es

(
γsps

cs+1+ds+1

)
. The inequality (5.16), the

induction hypothesis γs+1 ≤ ds+1, and Lemma 5.5 imply 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. In
particular,

0 ≤ γs

ds
≤ 1,

and the induction is completed. Theorem 5.4 shows that I + U is in class biP . We
notice that tU also verifies condition (5.16) because this condition is homogeneous,
and the result follows.
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Remark 5.4. We notice that condition (5.16) can be expressed in terms of the
original coefficients C, Γ in the dyadic case. In fact (see (5.7)),

psEs(ps) = DpsD
−1
F (Rs)1 F (Rs)ps = DpsD

−1
F (Rs)1F (Rs+1)1,

which implies that

ρs = (1/F (Rs)1) 	 (F (Rs+1)1).

Then, inequality (5.16) is

Γs ≤ Cs+1 + Γs+1,

which is the condition for having a GUM (see (5.6)) . We mention here that condition
(5.16) is more general than having a GUM, as the following example shows.

Remark 5.5. Consider the matrix Uβ,

Uβ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
β β 1 0
β β 0 1

⎞
⎟⎟⎠ = DΓ0Dp0F (R0)Dq0 + I,

where R0 = N , Γ0 = β(1, 1, 1, 1)′ ≤ C1 = (1, 1, 1, 1)′. We compute c0 = 0, γ0 =
4β, c1 = C1, γ1 = 0 and also ρ0 = 1/2.

It is direct to check that U−1
β = U−β. Then for all β ≥ 0 the matrix Uβ ∈ M−1.

Also Uβ ∈ biP if and only if 0 ≤ β ≤ 1/2. When β ≥ 0 the condition (5.6), Γ0 ≤
C1+Γ1, is equivalent to β ≤ 1. Then, this condition does not ensure that U ∈ biP (this
happens because the filtration is not dyadic). Nevertheless, the analogous condition
in terms of the normalized factors (5.16),

ρ0γ0 ≤ c1 + γ1,

is equivalent to β ≤ 1/2, which is the correct condition.
Corollary 5.7. Assume that

(5.17) ρsγs ≤
k∑

r=s+1

cr

hold for s = k − 1, . . . , 0. Then the recursion (5.13) has a nonnegative solution that
verifies (5.15). In particular, I + tU is in class biP for all t ≥ 0, and U is in biP if
it is nonsingular.

Proof. Consider the set of inequalities

ρsγs ∨ ξs ≤ cs+1 + ξs+1,

for s = k − 1, . . . , 0. A nonnegative solution is given by

ξs = sup

{
0, γ0ρ0 −

s∑
r=1

cr, . . . , γkρk −
s∑

r=k+1

cr, . . . , γs−1ρs−1 − cs

}
.

The hypothesis of the corollary is that ξk = 0. We also notice that ξs is Rs-measurable.
We show, using a backward recursion, that ξs ≤ ds. Indeed, by construction,

1/ξs = Es(1/ξs) ≥ (cs+1 + ξs+1)−1 while 1/ds ≤ Es((cs+1 + ds+1)−1). Then the
inequality ρsγs ≤ cs+1 + ξs+1 implies ρsγs ≤ cs+1 + ds+1, so the result holds (see
Theorem 5.4).
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5.2. Conditions for class T and proof of Theorem 2.6.
Theorem 5.8. Assume that U has a decomposition

U =
�∑

s=0

as Es bs,

where as, bs are nonnegative Es+1-measurable. Then U belongs to the class T and,
moreover,

τ(U) = inf{t > 0 : (I + tU)−11 ≯ 0 or 1′(I + tU)−1 ≯ 0}.

In particular, if τ(U) < ∞, then I + τ(U)U ∈ biP.
Remark 5.6. In the case τ(U) < ∞ we have that I+t U is nonsingular for t > τ(U)

sufficiently close to τ(U). This follows from the fact that the set of nonsingular
matrices is open.

Theorem 5.8 states that every filtered matrix with a nonnegative decomposition
is in class T , which proves Theorem 2.6.

Proof of Theorem 5.8. A warning about the use of vectors and functions. Here
we consider vectors or functions on {1, . . . , n} indiscriminately. Thus for two vectors
a, b the product ab makes sense as the product of two functions, which corresponds to
the Hadamard product of the vectors. Also an expression as (1 + ab)−1 is the vector
whose components are the reciprocals of the components of 1 + ab. We also recall
that (a)i is the ith component of a.

Now, for p = 0, . . . , � consider the matrices

U(p) =
�∑

s=p

as Es bs.

We notice that U(0) = U . We shall prove that τp = τ(U(p)) is increasing in p and
τ� = ∞.

We rewrite the algorithm for I + tU . This takes the form λ�(t) = μ�(t) = κ�(t) =
1, σ�(t) = (1 + t a�b�)−1, and for p = � − 1, . . . , 0

λp(t) = λp+1(t)[1 − σp+1(t) t ap+1Ep+1(κp+1(t)bp+1)],

μp(t) = μp+1(t)[1 − σp+1(t) t bp+1Ep+1(κp+1(t)ap+1)],(5.18)

κp(t) = Ep+1(λp(t)) = Ep+1(μp(t)),

σp(t) = (1 + Ep(κp(t)tapbp))−1.

Also λ−1(t), μ−1(t) are defined similarly. If λs(t), μs(t), σs(t), s = �, . . . , p, are well
defined, then

(I + tU(p))−1 = I − N(p, t),

where

(5.19) N(p, t) =
�∑

s=p

σs(t)λs(t) t asEsbsμs(t).

D
ow

nl
oa

de
d 

03
/1

8/
13

 to
 2

00
.8

9.
68

.7
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

314 C. DELLACHERIE, S. MARTINEZ, AND J. SAN MARTIN

If λs(t), μs(t), σs(t), s = �, . . . , p, are nonnegative, then N(p, t) ≥ 0 and (I+tU(p)) ∈
M−1. Moreover, λp−1(t) and μp−1(t) are the right and left equilibrium potentials of
(I + tU(p)),

(I + tU(p))λp−1(t) = 1 and μ′
p−1(t)(I + tU(p)) = 1′.

So, if they are nonnegative, we have I + tU(p) ∈ biP . In particular, for p = � we get

(I + ta� E� b�)−1 = (I + tU(�))−1 = I − t(1 + t a�b�)−1a� E� b�.

Since E� = I we obtain that λ�−1 = μ�−1 = (1+t a�b�)−1. This means that I+tU(�) ∈
biP for all t ≥ 0. Therefore τ� = ∞, and the result is true for U(�). In particular,
τ�−1 ≤ τ�. We shall prove by induction that

• τp+1 ≤ · · · ≤ τ�

and for q = p + 1, . . . , �
• τq = inf{t > 0 : λq−1(t) � 0 or μq−1(t) � 0} = inf{t > 0 : λq−1(t) ≯

0 or μq−1(t) ≯ 0};
• λs(t), μs(t), for s = �, . . . , q − 1, are strictly positive for t ∈ [0, τq);
• if τq < ∞, we have I + τqU(q) ∈ biP .

The case τp+1 = ∞ is simple. Indeed, fix t ≥ 0. From Lemma 3.1, I+ tU(p+1) ∈
biP and its equilibrium potential are strictly positive; that is, λp(t) > 0, μp(t) > 0.
Thus, I + tU(p) is nonsingular; its inverse is I−N(p, t), where N(p, t) ≥ 0 is given by
(5.19). Hence, I + tU(p) ∈ M−1. We conclude that

τp = inf{t > 0 : I + tU(p) /∈ biP} = inf{t > 0 : λp−1(t) � 0 or μp−1(t) � 0}.

If τp = ∞, Lemma 3.1 gives

λp−1(t) > 0, μp−1(t) > 0,

and the induction step holds in this case.
Now if τp < ∞, by continuity we have I + τpU(p) ∈ biP . We shall prove later on

that λp−1(t), μp−1(t) are strictly positive in [0, τp).
We now analyze the case τp+1 < ∞. We first notice that in the algorithm the

only possible problem could arise with the definition of σp(t). Since σp(τp+1) > 0, the
algorithm is well defined, by continuity, for steps �, . . . , p on an interval [0, τp+1 + ε]
for ε > 0 small enough. This proves that the matrix I + tU(p) is nonsingular in that
interval, and that λp−1, μp−1 exist in the same interval.

Now, for a sequence tn ↓ τp+1, either λp(tn) or μp(tn) has a negative component.
Since there are a finite number of components, we can assume without loss of gener-
ality that for a fixed component i we have (λp(tn))i < 0. Then, by continuity we get
that (λp(τp+1))i = 0, which implies (by the algorithm) that (λp−1(τp+1))i = 0.

Assume now that for some t > τp+1 the matrix I + tU(p) ∈ biP . By Lemma
3.1 we will have that I + τp+1U(p) ∈ biP , but its equilibrium potential will satisfy
λp−1(τp+1) > 0, which is a contradiction. Therefore we conclude that τp ≤ τp+1.

The conclusion of this discussion is that the matrix I + tU(p), for t ∈ [0, τp+1], is
nonsingular and its inverse is I−N(p, t), with N(p, t) ≥ 0. That is, I + tU(p) ∈ M−1

and therefore

τp = inf{t > 0 : I + tU(p) /∈ biP} = inf{t > 0 : λp−1(t) � 0 or μp−1(t) � 0},

and by continuity I + τpU(p) ∈ biP .
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To finish the proof we need to show that τp coincides with

S = inf{t > 0 : λp−1(t) ≯ 0 or μp−1(t) ≯ 0}.

It is clear that S ≤ τp. If S < τp, then, due to Lemma 3.1, we have that both
λp−1(S) > 0 and μp−1(S) > 0, which is a contradiction, and then S = τp. This
shows that λp−1(t), μp−1(t) are strictly positive for t ∈ [0, τp), and the induction is
proven.

Remark 5.7. It is possible to prove that κp(τp) > 0 when τp < ∞, but this is not
central to our discussion.
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