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This paper presents the application of a direct Fractional Order Model Reference Adaptive Controller
(FOMRAC) to an Automatic Voltage Regulator (AVR). A direct FOMRAC is a direct Model Reference Adaptive
Control (MRAC), whose controller parameters are adjusted using fractional order differential equations. Four
realizations of the FOMRAC were designed in this work, each one considering different orders for the plant
model. The design procedure consisted of determining the optimal values of the fractional order and the
adaptive gains for each adaptive law, using Genetic algorithm optimization. Comparisons were made among
the four FOMRAC designs, a fractional order PID (FOPID), a classical PID, and four Integer Order Model
Reference Adaptive Controllers (IOMRAC), showing that the FOMRAC can improve the controlled system
behavior and its robustness with respect to model uncertainties. Finally, some performance indices are
presented here for the controlled schemes, in order to show the advantages and disadvantages of the
FOMRAC.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Adaptive control refers to the control of partially known
systems. This uncertainty may be caused by unknown (fixed or
time-varying) system parameters, and/or the plant being only
partially modeled or subjected to external disturbances. In these
cases, conventional control theory does not achieve satisfactory
performance, whereas adaptive control has been a very useful tool,
given its ability to adjust parameters automatically by means of
adaptive laws, which allow dealing with uncertainty while achiev-
ing the desired system behavior.

One of the most popular adaptive control schemes is Model
Reference Adaptive Control (MRAC), where the aim is to find a
suitable control signal such that the controlled system output
follows the reference model output, while at the same time the
stability of the closed loop system is preserved [14].

The subject of fractional calculus (calculus of integrals and
derivatives of arbitrary real or complex order) has gained con-
siderable interest and importance during recent years, mainly due
to its demonstrated applicability in numerous seemingly diverse
and widespread fields of science and engineering [10].

There has been growing interest in combining classical MRAC
schemes and fractional calculus in recent years. Some MRAC
by Elsevier Ltd. All rights reserved
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schemes have been proposed, in which the model of the plant to
be controlled, the reference model and/or the adaptive laws for
adjusting the parameters are defined by fractional order differ-
ential equations [20,12,13,22,18].

The lifestyle of modern society is deeply linked to the use of
electricity. Most of the equipment used today operates on the basis
of electrical energy, and is sensitive to both the continuity of the
power supply, and its quality (voltage and frequency levels).

The power demand is never constant in power generation
systems, and this affects the output voltage and frequency levels of
the generators. For this reason, any power generation system
should have a control scheme, in order to maintain the voltage
and frequency levels within desired values, regardless of the
demand.

The Automatic Voltage Regulator (AVR) is the controller whose
main purpose is to maintain the voltage level in an electric
generator at acceptable values by adjusting the generator exciter
voltage.

Many control schemes have been proposed for AVR. PID
controllers are the most reported control scheme for the AVR,
and the difference between these works lies in the technique
used to select the PID parameters. It can be cited for example PID
controllers whose parameters have been adjusted using Particle
Swarm Optimization (PSO) [7,16], using third order PSO [8], using
Quantum-behaved PSO [2], using optimization method based in
Continuous Action Reinforcement Learning Automata (CARLA) [9],
using Adaptive Tabu Search algorithm [15], and using combined
genetic algorithm and fuzzy logic approach [3].
.
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Other control schemes have been proposed, different from
PIDs, such as Fuzzy Gain Scheduled PI Controllers (FGSPIC) [17],
Brain Emotional Learning Intelligent Controllers (BELBIC) [19],
Nonlinear adaptive controllers [6] and Fractional order PID con-
trollers [23]. This last one is a fractional PID, whose parameters are
adjusted using PSO. However, given the importance of the control
problem, this topic is still open to control solutions that would
improve the performance of the controlled system, for example
minimizing the overshoot and the convergence time of the control
error to zero.

This paper presents a direct Fractional Order Model Reference
Adaptive Controller (direct FOMRAC) for an AVR, where the para-
meters of the controller are adjusted using adaptive laws defined by
fractional order differential equations. This FOMRAC shows an
improvement in characteristics of the response of the controlled
system and in robustness with respect to model uncertainties.

The paper is organized as follows: Section 2 introduces general
concepts of direct FOMRAC, fractional calculus and Genetic algorithm
optimization. In Section 3 the model of the plant to be controlled is
presented, and the proposed fractional adaptive control scheme is
introduced. Section 4 contains the results obtained through simula-
tions of the proposed control scheme, and its comparison with other
control schemes proposed in the control literature. Section 5 contains
the evaluation of the system behavior for the different control
schemes studied, making use of various performance indices. Finally,
Section 6 presents the conclusions of the work.
Table 1
Fractional MRAC implementations details.

Reference model
GmðsÞ ¼

1:2
s3 þ 5:2s2 þ 7sþ 1:2

Control law uðtÞ ¼ θðtÞTωðtÞ
θT ðtÞ ¼ ½kðtÞ θ1TðtÞ θ0ðtÞ θT2ðtÞ�∈R10

ωðtÞ ¼ ½rðtÞ ωT
1ðtÞ ypðtÞ ωT

2ðtÞ�T∈R10

Auxiliary signals _ω1ðtÞ ¼ Λω1ðtÞ þ luðtÞ
_ω2ðtÞ ¼ Λω2ðtÞ þ lypðtÞ

Λ¼

−1 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −4

2
6664

3
7775

l¼ ½−1 1 3 4T

Errors e1ðtÞ ¼ ypðtÞ−ymðtÞ
e2ðtÞ ¼ θT ðtÞωðtÞ−uðtÞ
εðtÞ ¼ e1ðtÞ þ k1ðtÞe2ðtÞ
uðtÞ ¼ GmðsÞuðtÞ

Adaptive law
Dαk1ðtÞ ¼ −γ

εðtÞe2ðtÞ
1þ ωðtÞωT ðtÞ

DαθðtÞ ¼ −γ
εðtÞωðtÞ

1þ ωðtÞωT ðtÞ
ωðtÞ ¼ GmðsÞωðtÞ
2. General concepts

This section introduces some general concepts, which are used
throughout the work, in order to ease the understanding of the
proposed schemes.

2.1. Fractional calculus

In fractional calculus, the traditional definitions of the integral
and derivative of a function are generalized from integer orders to
real orders.

In the time domain, the fractional order derivative and fractional
order integral operators are defined by a convolution operation.

According to Kilbas et al. [10], the Riemann–Liouville fractional
integral of order α∈R , with α≥0 and denoted as RIα0 , is defined as

RIα0 f ðtÞ ¼
1

ΓðαÞ
Z t

0

f ðτÞ
ðt−τÞ1−α

dτ; t40 ð1Þ

where ΓðαÞ is the Gamma function, defined as

ΓðαÞ ¼
Z ∞

0
tα−1e−t dt

Several definitions exist regarding the fractional derivative of
order α≥0, but the Caputo definition defined in (2) is used the
most in engineering applications, since this definition incorporates
initial conditions for f ð � Þ and its integer order derivatives, i.e.,
initial conditions that are physically appealing in the traditional
way:

CDα
0 f ðtÞ ¼

1
Γðn−αÞ

Z t

0

f nðτÞ
ðt−τÞα−nþ1 dτ; n−1oαon; n∈Zþ ð2Þ

One of the most common ways of using fractional integrals and
derivatives in simulations and practical implementations is by means
of numerical approximations of these operators. The idea is to obtain
integer-order transfer functions whose behavior approximates the
fractional order Laplace operator:

CðsÞ ¼ ksα ð3Þ
Oustaloup's method is one of the available frequency-domain
methods for making this approximation, which uses a recursive
distribution of N poles and N zeros [21] of the form

CðsÞ ¼ k′ ∏
N

n ¼ 1

1þ s=ωzn

1þ s=ωpn
ð4Þ

The gain k′ is adjusted so that if k¼1 then jCðsÞj ¼ 0 dB at 1 rad/s.
Zeros and poles are placed inside a frequency interval ½ωl;ωh�.

This approximation is available in the fractional derivative
block of the Ninteger Toolbox for Matlab [4], and is the one used
in this work.

2.2. Fractional model reference adaptive control

According to Narendra and Annaswamy [14], the Model Refer-
ence Adaptive Control (MRAC) problem can be stated qualitatively
as follows: let a linear time-invariant (LTI) plant P be defined by
input–output pairs fuð � Þ; ypð � Þg. Let a stable LTI reference model M
be defined by its input–output pair frð � Þ; ymð � Þg where r : Rþ-R

is a bounded piecewise-continuous function. The aim of the MRAC
is to determine the control input uðtÞ for all t≥t0 so that

lim
t-∞

jypðtÞ−ymðtÞj ¼ 0

In the case of direct MRAC, the parameters of the controller are
directly adjusted; that is to say, no identification of the plant
parameters is attempted.

For the classical direct MRAC, the controller parameters are
adjusted by using a differential equation of integer order (adaptive
law). In the case of direct FOMRAC, the controller parameters are
adjusted using a differential equation of fractional order (fractional
adaptive law), with the same structure of the adaptive laws
used in the integer order MRAC [14], but the derivative order is
fractional. Details of the fractional adaptive law are given in
Table 1.

In this work, a direct FOMRAC has been implemented for the AVR.
In general terms, the control scheme is defined as follows.

Given a known reference model, defined by the transfer
function GmðsÞ, a reference signal rðtÞ is applied to obtain the
measurable output ymðtÞ. This output is compared with the AVR
output voltage ypðtÞ to compute the control error defined as
eðtÞ ¼ ypðtÞ−ymðtÞ.

Using this control error and other available signals in the control
scheme, the controller parameters are adjusted, using a fractional
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adaptive law. These parameter values are then used to compute the
control signal uðtÞ applied to the AVR, in order to achieve AVR output
voltage ypðtÞ equal to the model reference output ymðtÞ. Specific
details of the control scheme are given in Section 3.

2.3. Genetic algorithm optimization

Genetic algorithms (GA) belong to the larger class of Evolu-
tionary Algorithms (EA), which generate solutions to optimization
problems using techniques inspired by natural evolution, such as
inheritance, mutation, selection, and crossover. Applied to control
schemes, GA's have proved to be useful, for example, selecting the
optimal controller parameters to minimize a fitness function for a
controlled system.

In the real world, an organism's characteristics are encoded in
its DNA. Genetic algorithms store the characteristics of artificial
organisms in an electronic genotype, which mimics the DNA of
natural life [1]. So GA's work with a population of potential
solutions to a specific problem, in which each individual within
the population represents a particular solution to the problem. The
population evolves, over generations, to produce better solutions
to the problem.

A fitness value is assigned to each individual within the
population, in order to measure the quality of the solution it
represents. Later, evolution is performed using a set of stochastic
genetic operators, which manipulates the genetic code, perform-
ing, for example, crossover and mutation. This evolution generally
results in better individuals, that is, solutions of the problem with
better fitness values.

Usually, the evolution process stops when a limited number of
generations have been reached or when the fitness function is
under a prefixed value.

In this work, Matlab Genetic Algorithm Toolbox was used to
find the optimal fractional orders and adaptive gains for the
FOMRAC adaptive laws. Details of the GA implementation are
given in Section 3.
3. AVR design using FOMRAC and Genetic algorithms

This section introduces the AVR model used in this work, and
presents the design procedure of the FOMRAC.

3.1. FOMRAC for AVR

The role of an AVR is to maintain the terminal voltage
magnitude of a synchronous generator at a specified value. As
shown in Fig. 1(a), a simple AVR system is comprised of four main
Fig. 1. Block diagrams for AVR and generator. [23]. (a) Block
components, namely the amplifier, exciter, generator, and sensor.
Reasonable transfer functions for these components are the result
of a linearization procedure [7]. Fig. 1(a) shows the block diagram
of the AVR with the corresponding transfer functions for each
block, and Fig. 1(b) shows the generator model [11], used in this
study. The system parameter values used for simulations in this
work are kA¼10, τA ¼ 0:1 s, kE¼1, τE ¼ 0:5 s, k1¼1.591, k2¼1.5,
k3¼0.333, k4¼1.8, k5 ¼ −0:12, k6¼0.3, τ3 ¼ 1:91 s, H¼3, KD ¼ 0,
ω0 ¼ 377 rad=s, kR¼1 and τR ¼ 0:06 s. These values were taken
from [23].

Thus, for fractional adaptive controller design purposes, the
plant to be controlled (from control signal input to sensor output)
has a sixth order transfer function. However, since the dynamics of
the sensor is very fast, its influence in the transfer function can be
neglected, and the plant transfer function GpðsÞ is then considered
as one of the fifth order of the form

GpðsÞ ¼
b2s2 þ b1sþ b0

a5s5 þ a4s4 þ a3s3 þ a2s2 þ a1sþ a0
ð5Þ

where b2¼5.994, b1 ¼ 0, b0¼825.2, a5¼0.573, a4¼7.176, a3¼72.36,
a2¼706.6, a1 ¼ 1302 and a0¼260.8. Even though the sensor transfer
function is neglected from the point of view of controller design, the
sixth order transfer function is used in the simulations.

According to Narendra and Annaswamy [14], the reference model
has to be chosen with a relative degree greater or equal to the plant
relative degree, which in this case is nn ¼ 3. Beyond this, selection of
the reference model is the responsibility of the control designer, and
will be chosen according to the requirements to be met by the
control scheme. In this case, given the characteristics of the power
generation process, a smooth step response is desired, a small
overshoot and settling time, and zero (or minimal) steady-state
error. In order to satisfy these requirements, the reference model
was selected by the transfer function GmðsÞ shown in Table 1.

Since the relative degree of the transfer function of the plant is
nn ¼ 3, according to Narendra and Annaswamy [14], the direct
MRAC implementation is like the one shown in Fig. 2.

The controller parameters are given by the vector θT ¼
½k θT1 θ0 θT2�∈R10 and the scalar k1∈R. However, they are not
adjusted using differential equations of integer order as in [14], but
by using fractional order differential equations, with order 0oαo1.
Table 1 summarizes the design of the direct FOMRAC and the
corresponding values used in the implementation. The control signal
generated by the FOMRAC corresponds to the field voltage.

According to Narendra and Annaswamy [14], the number of
parameters to be adjusted is 2n+1, where n is the order of the
plant transfer function. So in this case, where n¼5, the total
number of parameters to be adjusted is 11.
diagram of the AVR. (b) Block diagram of the generator.



Fig. 2. Block diagram for the implementation of the FOMRAC for the AVR [14].

Fig. 3. Block diagram used for the implementation of the fractional adaptive law.
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Since the derivative order α of the adaptive laws is fractional,
different derivative orders could be used to adjust each one of the
parameters. The same comment can be made for the adaptive gain
γ, in the sense that different values for each parameter could also
be used. Thus, in this control scheme, different fractional orders
and adaptive gains are considered for each one of the 11 para-
meters to be adjusted.

3.2. Optimization of FOMRAC design parameters

Genetic algorithm (GA) optimization is used to select the
optimal derivative order and adaptive gain for each controller
parameter adaptive law, so that the controlled system exhibits the
desired behavior, measured through the proposed performance
criterion.

The parameter vector optimized by the GA corresponds to
x¼ ½αT γT �∈R22, where α and γ are vectors of dimension 11.

Simulation studies suggest that when using fractional order in
the interval 0oαo2, the FOMRAC remains stable, however when
using 1oαo2, transient behavior of the controlled system is quite
oscillatory. That is why a lower bound of 0 and an upper bound of
1 for the optimization of α were considered, and the search space
of the GA was restricted to this interval. In the case of the adaptive
gains, lower and upper bounds of 0 and 100 were used. Zero initial
conditions were chosen for every controller parameter.

In order to achieve system performance in accord with control
specifications and based on [23], the performance criterion used in
the optimization process was defined as

JðxÞ ¼w1Mp þw2ts þw3Ess þw4

Z tf

0
jecðtÞj dt þw5

Z tf

0
u2ðtÞ dt ð6Þ

where Mp is the overshoot, ts is the settling time, Ess is the steady-
state control error, ecðtÞ ¼ rðtÞ−ypðtÞ is the control error (difference
between the reference voltage and the output voltage), and uðtÞ
corresponds to the control signal generated by the FOMRAC. The
importance of each of these elements in the performance criterion
function is given by weighting factors wi; i¼ 1;…;5 and it is up to
the designer to select these values.

The choice of the weighting factors is not an easy task, and there
are many ways to do it. In the case of this paper, the values used in
Zamani et al. [23] were used as a starting point. Several trials were
performed for the optimization process, using values for the weight-
ing factors around the values used in Zamani et al. [23]. The smallest
value of Jwas obtained for w1 ¼w2 ¼w4 ¼ 1, w3 ¼ 1000 and w5 ¼ 7.
The integration limit tf in (6) was set to 100 s.
The optimization process was carried out using the Matlab GA
toolbox. The most representative GA parameters used in the optimi-
zation procedure are
�
 Population type: double vector.

�
 Population size¼25.

�
 Number of generations¼130.
The remaining parameters were chosen at their default values.
The fractional adaptive laws were implemented using the

Ninteger Toolbox for Matlab [4], specifically the NID block. In
order to include the initial conditions, which are not included in
the NID block, the definition of the Caputo fractional derivative (2)
and a property of the fractional integrals were used. When
0oαo1, as it is in our case, the block diagram used to generate
the estimated parameters in the FOMRAC is shown in Fig. 3.

The NID block used in the scheme is based on the Oustaloup's
approximation method mentioned in Section 2.1, with 5 poles,
5 zeros and a frequency interval ½0:001; 1000� rad=seg.

In general terms, the optimization process is carried out in the
following way:
1.
 In the first generation the population is randomly initialized.
Every individual contains the values of the derivative orders
and the adaptive gains for the adaptive law.
2.
 For every individual of the population, the value of the perfor-
mance criterion (6) is calculated. This means that at every
iteration, the simulation of the controlled system (plant +
FOMRAC) is performed.
3.
 Evolution is performed and new individuals result.

4.
 If the number of iterations reaches the maximum, then go to

step 5, otherwise go to step 2.

5.
 The optimal controller parameters have been found with the

lowest performance criterion.

4. Simulation results

This section presents the simulation results obtained for the AVR
controlled by the FOMRAC designed in Section 3. These results are
compared with those obtained using fractional PID and classical PID,
which are reported in the technical literature. Besides, some other less
complex FOMRAC's are designed and presented through simulations.

4.1. Behavior of the FOMRAC

Several trials were performed for the optimization process in
order to find the best set of controller parameters. The best case
gave J¼130.93 and the following optimal values for the fractional
differential orders and the adaptive gains:

α1 ¼ 0:1508; α2 ¼ 0:4152; α3 ¼ 0:6; α4 ¼ 0:1844
α5 ¼ 0:7627; α6 ¼ 0:2944; α7 ¼ 0:8110; α8 ¼ 0:9998
α9 ¼ 0:7024; α10 ¼ 0:1446; α11 ¼ 0:9885

γ1 ¼ 3:4345; γ2 ¼ 1:8095; γ3 ¼ 0:4423; γ4 ¼ 1:9116
γ5 ¼ 1:8242; γ6 ¼ 0:7816; γ7 ¼ 0:0582; γ8 ¼ 2:3671
γ9 ¼ 0:1756; γ10 ¼ 0:7980; γ11 ¼ 2:9059

Fig. 4 shows the step responses of the controlled system using
FOMRAC, as well as the system being controlled by a fractional order
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proportional–integral-derivative controller (FOPID), a classical PID
and an Integer Order Model Reference Adaptive Controller (IOMRAC).

The results corresponding to FOPID and PID were reported in [23],
and they were also tuned optimally. In the case of the IOMRAC, it was
designed and analyzed in this work for comparison purposes, and it
was followed the same design procedure as in the FOMRAC. In this
case, due to the fact that derivative orders are integers, only the
optimization of the adaptive gains (γie; i¼ 1;2;…;11) was required.
The optimized values for the adaptive gains in the IOMRAC case were
found to be

γ1e ¼ 1:8138; γ2e ¼ 10:179; γ3e ¼ 11:4493; γ4e ¼ 9:9687
γ5e ¼ 4:5219; γ6e ¼ 3:8443; γ7e ¼ 1:2544; γ8e ¼ 5:1298
γ9e ¼ 0:3906; γ10e ¼ 1:8225; γ11e ¼ 20:3988

As can be seen from Fig. 4, the settling time is shorter for the
IOMRAC and the FOMRAC, but a more demanding control signal is
required as compared with the cases of FOPID and PID. The control
signal of the IOMRAC, however, is more demanding than the
FOMRAC control signal, that is to say, the FOPID delivers a good
balance between the transient response and the control signal
behavior.

The FOMRAC better transient response relies on the possibility
of selecting different fractional orders for the adaptive laws,
through the optimization process. The fractional order adaptive
laws, depending on the value of alpha, allow obtaining smoother
transient responses than the IOMRAC, and using the optimization
procedure the best combination of fractional orders as well as
adaptive gains was found.

As far as the controller dimension is concerned, and consequently
the complexity of the FOMRAC, some other simpler approaches can
be implemented. The transfer function of the plant corresponds to a
fifth order model plus a first order sensor dynamic, which is usually
neglected. However, this transfer function can be approximated quite
well by a fourth order transfer function (Gp4ðsÞ), by a third order
transfer function (Gp3ðsÞ) and even by a second order transfer
function (Gp2ðsÞ). Details of these reduced order models are shown
Fig. 4. Step responses (a) and control signals (b) of the A
in (7). Fig. 5 shows the step response of the plant (fifth order transfer
function plus first order sensor dynamic) together with the step
response of three reduced order models (fourth, third and second),
which supports the previous statement. The step response of the fifth
order transfer function is plotted as well, in order to show that the
influence of the sensor dynamic can be neglected.

The reduced order transfer functions are as follows:

Gp4ðsÞ ¼
82:52sþ 825:2

5:73s4 þ 714:46s3 þ 579s2 þ 1276sþ 260:8

Gp3ðsÞ ¼
13:8

s3 þ 12:21s2 þ 22:6sþ 4:34

Gp2ðsÞ ¼
1:375

s2 þ 2:21sþ 0:4348
ð7Þ

For this reason, simpler FOMRAC's can be designed, considering
the reduced order transfer functions rather than the original one,
adjusting fewer parameters than in the case already presented in
Fig. 4. Following the same design procedure presented in Section 3,
three other FOMRAC's were proposed. These correspond to a fourth
order controller (FOMRAC4), a third order controller (FOMRAC3) and
a second order controller (FOMRAC2). In the simulation of these
cases, the plant to be controlled is the real one, that is to say, a fifth
order model with a first order sensor dynamic.

Implementation details for each scheme are given in Table 2.
The rest of the implementation details is the same as those used in
the simulations of Section 3 and shown in Table 1. The resulting
value of functional J and the optimal values for each controller
adaptive law are given in Table 3. The controller designed in
Section 3 is referenced here as FOMRAC5.

Similarly, three other IOMRAC's were proposed for comparison
purposes, following the same design procedure than for the frac-
tional case and the specifications given in Table 3, but with integer
order adaptive laws. Those controllers are referenced as IOMRAC4,
IOMRAC3 and IOMRAC2. The resulting values of functional J and the
optimal values for each integer order controller adaptive law are
given in Table 4.
VR controlled by FOMRAC, IOMRAC, FOPID and PID.
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Fig. 6 shows the step response of the controlled system for each
of the four FOMRAC's designed, and compared again with the
controlled system using FOPID and integer order PID, reported in
[23]. Fig. 7 shows the control signal for each case.

The behavior of the controlled system is similar for each case
when using FOMRAC, and in all cases the settling time is shorter
than in the cases using FOPID and PID. This result confirms that it
is possible to use a reduced order controller to control the plant.
The control signal, however, is more demanding for the fractional
order adaptive controllers than for the PID and PIDF.
Fig. 5. Step responses of the plant model compared with the reduced order models

Table 3
Optimal controller design parameters for FOMRAC implementation cons

Controller Order Second order controller

Optimal value of J 130.08

Optimal derivative orders
α1 ¼ 0:1076; α2 ¼ 0:7375
α3 ¼ 0:1892; α4 ¼ 0:9969
α5 ¼ 0:6272

Optimal adaptive gains
γ1 ¼ 3:2318; γ2 ¼ 0:2691
γ3 ¼ 0:4442; γ4 ¼ 1:8235
γ5 ¼ 4:3721

Table 2
FOMRAC implementations details considering reduced order controllers

Controller Order Second order controller Th

Reference model
GmðsÞ ¼

1:2
s3 þ 5:2s2 þ 7sþ 1:2

Gm

Control law uðtÞ ¼ θðtÞTωðtÞ uð
ðθ;ω∈R4Þ ðθ

Auxiliary signals _ω1ðtÞ ¼ Λω1ðtÞ þ luðtÞ _ω1

_ω2ðtÞ ¼ Λω2ðtÞ þ lypðtÞ _ω2

Λ¼ −2
Λ¼

l¼ 1 l¼
Fig. 8 shows the step response of the controlled system for each
of the four IOMRAC's designed, compared with the controlled
system using FOPID and integer order PID. In this case the
behavior of the controlled system is similar for each case when
using IOMRAC5, IOMRAC4 and IOMRAC3, with settling times
shorter than in the cases of using FOPID and integer order PID.
However, in the case of using IOMRAC2, the controlled system has
an oscillatory transient response, exhibiting an important differ-
ence with the FOMRAC2 case.

As can be seen from Fig. 9, the control signal for the integer
order controllers is, in all the cases, more demanding than for the
PID and the PIDF. Comparing Figs. 7 and 9, it can be seen that the
control signal for the integer order controllers is, in all the cases,
more demanding than for the fractional order adaptive controllers.

4.2. Robustness of the FOMRAC

Due to the nature of the electric generation process, variations in
parameter values usually occur. For example, changes in load
conditions are presented. In order to check the robustness of the
FOMRAC with respect to parameter changes, some simulations were
performed, using the same parameter changes reported in [23].

First it is assumed that at t ¼ 100 s, parameter K1¼1.59, changes
to K1 ¼ 1 due to changes in load conditions. Fig. 10 shows the
terminal voltage response of the AVR using the FOMRAC3 designed in
this study, (which considers that the plant can be modeled as a third
order model) and compared with FOPID, PID and IOMRAC3. The
FOMRAC4 and the FOMRAC5 present quite similar behaviors to the
FOMRAC3, therefor only the controller with less dimension was
plotted (FOMRAC3). The FOMRAC2 presents some oscillations in the
transient responses under parameter changes, so it was not con-
sidered as a good choice.
idering reduced order controllers.
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Table 4
Optimal controller design parameters for IOMRAC implementation considering reduced order controllers.

Controller Order Second order controller Third order controller Fourth order controller

Optimal value of J 173.03 118.99 118.85

Optimal adaptive gains
γ1e ¼ 0:1074; γ2e ¼ 0:4772 γ1e ¼ 0:7501; γ2e ¼ 10:9832 γ1e ¼ 0:9633; γ2e ¼ 8:6064
γ3e ¼ 0:3272; γ4e ¼ 0:4377 γ3e ¼ 3:4511; γ4e ¼ 3:9595 γ3e ¼ 4:4762; γ4e ¼ 4:002
γ5e ¼ 0:2062 γ5e ¼ 0:0606; γ6e ¼ 0:06 γ5e ¼ 3:4331; γ6e ¼ 0:06

γ7e ¼ 11:9 γ7e ¼ 0:2612; γ8e ¼ 0:3744
γ9e ¼ 12:9981

Fig. 6. Step responses of the AVR controlled by the four FOMRACs, PID and FOPID.

Fig. 7. Control signals of the AVR controlled by the four FOMRACs, PID and FOPID.

Fig. 8. Step responses of the AVR controlled by the four IOMRACs, PID and FOPID.

Fig. 9. Control signals of the AVR controlled by the four IOMRACs, PID and FOPID.
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As can be seen in Fig. 10, FOMRAC3 and IOMRAC3 are similar, in
the sense that both have a lesser overshoot and settling time than the
FOPID and PID, when the change occurs. Both characteristics are
highly desirable in an electric generation process control scheme.
This improvement is obtained at the expense of a more demanding
control signal, as can be seen in Fig. 11. The IOMRAC3 control signal is,
however, more demanding than the FOMRAC3 control signal.
In the second robustness test, another uncertainty in the exciter
model was assumed, where the transfer function varies from
Vf ðsÞ=VrðsÞ ¼ 1=0:5sþ 1 to Vf ðsÞ=VrðsÞ ¼ 1=0:5sþ 0:5, at t ¼ 100 s.

Fig. 12 shows the terminal voltage response of the AVR with the
FOMRAC3 designed in this work and compared with FOPID, PID
and IOMRAC3, under parameter changes in the generator and the
exciter. Again in this case, the fractional order adaptive controller



Fig. 10. Step responses of the AVR controlled by the FOMRAC3, IOMRAC3, PID and
FOPID, under a parameter variation in the generator.

Fig. 11. Control signals of the AVR controlled by the FOMRAC3, IOMRAC3, PID and
FOPID, under a parameter variation in the generator.

Fig. 12. Step responses of the AVR controlled by the FOMRAC3, IOMRAC3, PID and
FOPID, under variations in the parameters of the generator and the exciter transfer
function at t¼100 s.

Fig. 13. Control signals of the AVR controlled by the FOMRAC3, IOMRAC3, PID and
FOPID, under variations in the parameters of the generator and the exciter transfer
function at t¼100 s.
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and the integer order adaptive controller have lesser overshoot
and settling time than the FOPID and PID, and the control signal is
more demanding in the case of the IOMRAC3, as can be seen
in Fig. 13.
5. Performance evaluation for the control scheme

Measuring the quality of a system response is a tough problem.
One of the most serious difficulties is deciding what characteristics
of the system response are important to take into account, and
how they should be weighted [5].

In order to measure the quality of the FOMRAC proposed in this
work, some performance indices taken from [5] are used. These
performance indices are overshoot (Mp), rise time (tr), settling time
(ts), steady-state error (Ess), integral of the absolute error (IAE),
integral of the squared error (ISE), integral of the time-weighted
squared error (ITSE), integral of the squared input (ISI), and the
sum of all these as another performance index.
Table 5 presents the corresponding values of these indices for
the four FOMRAC's designed in this work, as well as for the four
IOMRAC's designed, the FOPID and PID reported in [23]. In Table 5
it is observed that the fractional order adaptive controllers have
smaller values than the FOPID and PID on almost all the perfor-
mance indices. However, the ISI is smaller for the FOPID.

The four IOMRAC's designed have smaller indices values than
the FOMRAC's, in almost all the performance indices, but the
difference is not meaningful. The ISI has smaller values for the
FOMRAC's than for the integer order counterparts, which is in
agreement with the behavior obtained in the simulations.

It is interesting to note that the FOPID is not better than the
PID in all performance indices, as can be seen in Table 5. This is
due to the fact that they were tuned in Zamani et al. [23] using an
specific criterion function, which includes only some of the
performance indices of Table 5. However, a better result could
be probably obtained for the FOPID over the PID, according to our
performance indices, if the optimization procedure was made
using a different functional J and/or different values for the
weighting factors.



Table 5
Performance indices values for the four direct FOMRACs, the four direct IOMRACs, PID and FPID.

Performance Indice Mp tr ts Ess IAE ITAE ISE ITSE ISI ∑

FOMRAC5 0 13.19 28.83 0.02 7.82 59.10 4.59 14.65 9.59 137.79
FOMRAC4 0 11.72 25.67 0.02 7.65 52.40 4.76 14.73 9.63 126.58
FOMRAC3 0 11.36 26.60 0.02 7.89 54.99 5.02 15.87 9.61 131.36
FOMRAC2 0 11.40 31.11 0.02 9.93 81.47 6.75 27.04 9.32 177.04
FOPID 0 26.69 53.57 0.02 11.87 172.57 5.37 31.52 8.75 310.36
PID 3.23 17.35 45.42 0.02 12.89 120.97 8.65 49.07 9.09 266.69
IOMRAC5 0 9.15 21.63 0.02 7.08 35.87 5.03 14.46 9.93 103.17
IOMRAC4 0 4.61 22.15 0.02 7.58 38.66 5.67 17.78 9.87 106.34
IOMRAC3 0 4.74 22.31 0.02 7.88 40.71 6.00 19.73 9.83 111.22
IOMRAC2 20.30 9.60 52.40 0.02 14.92 164.28 10.66 66.05 6.42 344.65
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These performance indices offer a valuable tool for evaluating
the controlled systems, but also offer a tool for control engineers
for choosing a suitable controller for the AVR, based on the most
relevant aspects they want to preserve in the controlled system.
6. Conclusions

This paper presents the application of a FOMRAC to an AVR.
Selection of the controller design parameters is made through an
optimization procedure using GA's. Considering different orders
for the plant model, four FOMRAC's were designed and imple-
mented, reducing the number of parameters adjusted in the
control scheme. Simulation studies show an improvement in
characteristics of the response of the controlled system and in
robustness with respect to model uncertainties when using the
FOMRAC, compared with the controlled system using FOPID and
PID reported by other authors and using IOMRAC's designed in this
work. Several performance indices used to evaluate the behavior
show the advantages and disadvantages of the FOMRAC, making
evident the utility of its use.
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