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1. Introduction

In this work we consider the discretization of a system of partial differential equations which describes the motion of
a viscous incompressible fluid in a time dependent domain. More precisely we consider the Stokes system written in a
bounded domain £2; C R? which depends on time t € (0, T). We want to approximate this system by considering an
Arbitrary Lagrangian Eulerian (ALE) formulation for the problem and by using the finite element method.

In many problems and applications one has to work with a fluid written in a moving domain. It is generally the case for
fluid-structure interaction problems such as the displacement of fishes or of submarines or the motion of blood in arteries,
etc. Several numerical techniques have been proposed in the literature to overcome the difficulty due to the time dependent
domain: see, for instance, [ 1-10]. Here we consider the Arbitrary Lagrangian Eulerian (ALE) method, the main idea of which
consists in moving in a convenient way the mesh in order to follow the motion of the domain, instead of re-meshing at each
step time (which leads to a too expensive computation). If the deformation of the domain is not too important, it is possible
to keep the regularity properties of the initial grid. This method has been proposed and studied by many authors: [11-19].

For many fluid-structure interaction problems, the motion of the domain, which is time dependent, is also unknown
for the problem and the equations for the fluid have to be coupled with some equations for the structure. For instance, if
we deal with the motion of rigid bodies into a viscous incompressible fluid, the problem can be modeled by the coupling
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between the Navier-Stokes equations (corresponding to the fluid part) and ordinary differential equations (corresponding
to the rigid bodies). The problem could even be more complicated if the structure is deformable and although many authors
(see, for instance, [20-23]) have tackled the well-posedness of such systems, there are still many open questions (even for
deriving a model with “good” properties).

In this paper, we tackle the problem in which the motion of the domain is given. Moreover, to simplify our analysis,
we consider the non-stationary Stokes system instead of the non-stationary Navier-Stokes system. This model does not
have a clear physical interpretation: according to usual dimensional analysis, the time derivative should also be neglected.
However, from the mathematical point of view, the non-stationary Stokes system can be seen as the linearization of the
Navier-Stokes system around the trivial solution and its study is a first step to understanding the complete Navier-Stokes
system. Our main result states the convergence of the finite element/ALE method applied to this non-stationary Stokes
system. To prove this result, one of the difficulties comes from the incompressibility condition combined with the moving
domain; in particular, the spatial discretization leads us to deal with a mixed formulation in a time dependent domain.

Let us briefly recall some references about the numerical convergence for the Stokes/Navier-Stokes equations and
the fluid-structure interaction problems. In the case of a fixed domain, and for the Navier-Stokes equations, the
Lagrange-Galerkin method has been proposed and analyzed in [24]. In [25], the author has proved optimal error
estimates for the Lagrange-Galerkin mixed finite element approximation of Navier-Stokes equations in a velocity/pressure
formulation. We also mention the work of Achdou and Guermond [26], where convergence analysis of a finite element
projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations is done. In the case where the domain
is time dependent but given, the convergence analysis for the ALE method has been considered by [14-16], in the case of
the advection-diffusion equation instead of the Stokes or the Navier-Stokes equations. Finally, when the domain is time
dependent but unknown, few results exist in the literature: Grandmont, Guimet and Maday (in [27]) deal with the case
of one dimensional problem discretized by using the ALE formulation. In [8] the authors have proved the convergence of
a numerical method based on the use of characteristics and on finite elements with a fixed mesh for a two dimensional
fluid-rigid-body problem.

Let us describe more precisely our problem. Fora given T > 0, and for each t € [0, T], we consider a bounded polyhedral
convex domain £2; in R?. We set

U ={x1teR |xe2te©T}.

The Stokes system in the domain £2;, t € (0, T) can be written as follows:

ou .
o —vAu+Vp = f inQr,
divu = 0 inQr, (1.1)
u = 0 ond&x, te(0,71),
u(0) = wup in$2.

In these equations, u = (uq, uy) is the velocity of the fluid, its density is assumed to be equal to 1, v > 0 is its constant
kinematic viscosity and p is its pressure; f = (f1, f;) represents a density of body forces per unit mass (for instance, gravity).

It can be proved that the system (1.1) is well-posed provided that Qr and the data (f and ug) are smooth enough. The
difficulty in this proof, which comes from the fact that the domain is moving on time, has been overcome by several works.
We mention, among others, the paper of Otani and Yamada [28] and the work of Inoue and Wakimoto [29]. In the last one,
Eqgs. (1.1) are recast on a cylindrical space time domain by introducing a suitable diffeomorphism. A result of existence of
a weak solution is obtained also in [30,31] through an elliptic regularization, under weaker hypotheses on the regularity of
the domain boundary than in the previously cited paper.

The paper is organized as follows. In the next section we deal with the ALE formulation of the Stokes system and we
state our main results. The first result given in Theorem 2.1 consists in the convergence of a semi-discretization scheme
with respect to the space variable and the second one (Theorem 2.3) states an error estimate for a fully-discrete formulation.
Section 3 is devoted to some preliminary results useful to prove our main theorems. In Section 4 we introduce the projections
on the finite element spaces and we prove some estimates for their time derivative on the ALE frame. Section 5 is devoted
to the proof of the first main result and finally, in Section 6 we prove the second main result.

2. Statement of the main results
2.1. The ALE formulation of the Stokes equations

Let first give some assumptions on the non-cylindrical domain Qr. We assume that there exists a mapping X €
H'(0, T; W% (£24)?) such that for each t € (0, T), the mapping

xt:.Q() — .Qt,

v — Xy.0), (2.1)

isinvertible and X;1 € W1 (£2,)2. Inthe literature,y € £y is called the ALE coordinate, and X € £2; the spatial (or Eulerian)
coordinate.
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(a) Discretization of the partial time derivative. (b) Discretization of the time derivative on the ALE
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Fig. 1. Discretization of different time derivatives.

Using the transformation X, we can write the ALE formulation of (1.1). To achieve this, we introduce the following
notation: first, we denote by w the domain velocity, which is defined by

w: Qp —> R?, w(x, t) = aa—):(xgl(x), t). (2.2)

Then we use the notation ‘;—’; |Y for the time derivative on the ALE frame which is defined as follows: for any function

v: Qr — Rregular enough and defined on the Eulerian frame, we set

dv

Ll — R
dt ly (2.3)

(x,t) dl(t)—al( t) +w(x, t) - Vu(x, t)
X, — m X, _8tx’ w(x, t) - Vux, t).

Using this definition, we obtain that the Stokes system (1.1) can be rewritten as the following system, called “ALE
formulation of (1.1)":

T —vAu+Vp—(w-Vyu = f in Qr,
e
divu = 0 inQ, (24)
u = 0 onds, te(0,7),
u(0) = wuy in .

It may be noticed that in this system, the time derivative in the ALE frame, defined in (2.3), has been obtained by adding
and subtracting the convective-type term (w - V)u. The main technical reason to introduce this term is strictly numerical.
Since the domain is time dependent, it is not possible to discretize directly the partial time derivative. In fact, if x € £2; and
At > 0,the conditionXx € £2;, A, is not always fulfilled. Therefore, the term +(w- V)u could be seen as a numerical corrector
term of the partial time derivative. This numerical corrector is more important near the boundary, where the variation of
the domain is significant (see Fig. 1).

In order to write the ALE weak formulation of problem (2.4) we need some results on the time derivatives of integrals
on moving domains. These kinds of results will be developed in detail in Section 3. Using these results, we get the following
mixed weak formulation:

Find u: Qr — R? and p: Qr — R such that for each t € (0, T), u(-, t) € Hy(£2:)%, p(-,t) € L3(£2,) and the following
system holds:

d
— u.(voXt’l)dx—i—/ Vu: V(voX; ")dx
dt 2 2

—/ div (w®u)-(voxfl)dx—/ pdiv(voX; dx

2 2

=/ f-(voX; Ydx Vv e Hy(£20)?%
2

(qoX; Hdivudx =0 Vg € L*(£2),
2
u(*,0) = up() in 2,
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where for any open set 2 C R?, we have denoted by Lg(Q) the classical pressure space, that is:

15(2) = {f € *(2)] f fx)dx=0}.
fe)
Let us also introduce the classical space of free divergence fields associated to the Stokes problem, defined by
Hy,(2) = {u € Hy(2)* | divu = 0} .
Since we deal with the mixed formulation (2.5), it is natural to assume the following uniform “inf-sup” condition:
/, o, pdivvdx

inf sup > B, (2.6)
petd@0) venlian? IVlla@n? 1Pl

where 8 is a positive constant which does not depend on time. The “inf-sup” condition was introduced independently by
Babuska [32] and Bezzi [33]. Notice that a sufficient condition to guarantee (2.6) is that the deformation of £2; is “small”.
More precisely, there exists a constant « > 0 depending only on £2y such that if

X — 1dll oo (0.2 + VX = Wil (w0t < s (2.7)

then (2.6) holds true. It is important to remark that the assumption (2.7) is quite natural: indeed, in practice, the ALE
formulation cannot be used to discretize a problem when the deformation is too big and it is usually necessary to re-mesh
the domain to preserve the regularity of the mesh (see, [34] for instance).

2.2. Semi-discretization scheme and statement of the first main result

In order to discretize our problem with respect to the space variable, we introduce two finite element spaces of the
Hood-Taylor type; these spaces depend on time since our problem is written on the domain £2;.

Let h denote a discretization parameter, with 0 < h < 1. Atinitial time t = 0, we consider a quasi-uniform triangulation
Th.o of £2¢, as defined, for instance, in [35, p. 106]. We also assume that there is no triangle of 7, o with two edges on 9£2,.
These assumptions on 7; o will be assumed throughout this paper.

Foranyt € [0, T], we consider a discretization of the mapping X; by means of piecewise linear Lagrangian finite elements,
denoted by Xj ;:

Xhit:§20 —> 2,
y — Xu(y)-

We assume that X}, ; is smooth and invertible. Let 75, ; be the image of 7, o under the discrete ALE mapping Xp ;.

We associate to this triangulation two classical approximation spaces used in the mixed finite element methods for the
Stokes system. The first space, classically used for the approximation of the velocity field in the mixed statement of the
Stokes system, is denoted by W, ; and is composed with the 2,-finite elements associated to 7} ;. More precisely:

Wi,e = {vn € Hy(2) | vp, € 22(K) VK € Th.},

where 2,(K) is the set of polynomials on K of degree less than or equal to n.
The second space, classically used for the approximation of the pressure in mixed formulations of the Stokes system, is
denoted by My, ; and is composed with the #,-finite elements associated to 7, r, that is,

My, = {Qh eH' (2) | qn), € 21(K) VK € rJT&,t}-
We also consider the space
My, = My NL5(82).

Since £2 is a polyhedral convex domain and X}, ; is piecewise linear and smooth, we can characterize the spaces Wy, ; and
My, as follows:

Whe = {vno X, ; | vn € Wyo} . (2.8)
Mpe = {ano Xy} | an € Myo} . (2.9)
As in the previous subsection, we consider wy, the velocity field associated to the discrete ALE mapping:
0Xnt o
wy(X, £) = — - (X1 ().

Using this discrete velocity field, we can introduce the time derivative on the discrete ALE frame as follows: for any
v: Qr —> R smooth enough, we define
dvl|"

dv
T Y(x, t) = E(x, t) +wp(x, t) - Vo(x, t). (2.10)
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Now, using the weak ALE formulation (2.5) and the definitions above, we can derive a semi-discrete version of our
problem. For any h € (0, 1) we denote by u;, and py, the solution of the following problem:

Find u; and pj, such that u,(-,0) = w0 and forany ¢t € (0, T), uy(-, t) € (Wp)2, pp(-,t) € M,?.t and the following
system holds

4 uh-(vhoxgg)dx-i-V/ Vuh:V(Vhoxh_g)dX
dt 2 ' 2 ‘
—/ div (Wh @ up) - (Vi 0 Xj;) dx — / prdiv (vi o X ;) dx
~ V52t ' S ’
=T (O - (moXi)))  Vun € Who)?,

(qh o X;g) diVllth =0 th € Mh,O,

(2.11)

2t

where uy, ¢ is a finite element approximation of the initial data uo. In the third line we have used the notationﬁ,[ (F) todenote
a numerical quadrature formula for the integral f % F(x)dx. In the rest of paper, we assume that the quadrature formula is
exact for the continuous functions in £2;, whose restriction of each triangle is polynomial of degree less than or equal to 4.
Using this fact, each integral of the above numerical scheme can be replaced by the numerical integration formula.

To get the convergence of the numerical scheme, it is essential to assume that the discrete ALE mapping X;, approximates
X in some sense. More precisely, we assume that the following error estimate holds true:

X — xh,t||L°0(S20)2 +hIVX: — Xh,t)||L°°(QO)4 <cC h2| Inh| ||xt||w2v°0(90)2- (2.12)

For more details about the construction of a mapping X; satisfying such an estimate, we refer the reader to [16]. Let us
observe that the presence of Inh in (2.12) is due to the fact that we consider the L*°-norm (see also [36]). We can notice
that if we assume w(t) € W (£2;)?, then the following error estimate on the domain velocity holds true (for more details,
see [16]): forallt € (0, T),

IW(E) = Wh(E)l|oo ()2 + hIIV (W(E) = Wh(0)llgoe (s < ChE[In R [W(E) | yy2.00 ()2 (2.13)

The other important hypothesis to obtain the convergence of our scheme is that the triangulation 7 remains non-
degenerate with the time (see [35, pp. 106-107]): we assume that there exists o > 0 such that

diamBx > phdiamK VK € T (2.14)

forallt € [0, T] and for all h € (0, 1], where By is the largest disk contained in K. In practice, this hypothesis holds only for
a small time interval, especially when one deals with great deformations. If we assume that 7; ¢ is non-degenerate, that the
deformation is small enough (see (2.7)) and that the approximation Xj, is close to X (see (2.12)), then for h small enough, we
can prove that (2.14) holds true.

We are now in position to state the first main result of the paper:

Theorem 2.1. Suppose that the above assumptions on 7y, and on X, hold true and that (2.6) is satisfied. Let also assume that
the solution (u, p) of the problem (2.4) and the data w, f satisfy the following properties:

€ [*(0, T; H*(£2,)%), u(0) € H*(£2)°,

du
uel>0,T; H3(~Qt)2 N H(},g (£2)), E
Y

(2.15)

d
p € L®(0, T; H*(2:) N L§(£2,)), d—f € [*(0, T; H'(£2,)), p(0) € H*(£2).

Y
w e [0, T; W2 (2,)?), f e [2(0, T; W>9(£2,)?), for some q > 2.

Then there exists a constant C > 0, independent of h, such that the solution (uy, p,) of the semi-discretization problem (2.11)
satisfies

2

2
I = Wnlioe 0.1:12(202) + VIV @ = W)l 0 1,120 09)
du| |?
2 2 2 2 :
= lluo = wnoll2 g2 + Ch*[ Inh| [Hf“u(o’r;wz-q(m)z) Ul oz H At Iyl oo
L1 t
dp| |I”
2
+ IPlseo.102¢00) T H dr . o
Y 12(0,T;H(2¢))
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Remark 2.2. We recall that if the initial condition u(0) € H2(£2y)? N H(},a (£2p), then the solution (u, p) of problem (2.4) has
the following regularity

ou
uel’(0.T; H(20° NHy, (20), == € (0, T L*(20°),
p € (0, T; H'(2¢) N L§(£20)),
(for more details, see [28,37]). Let us observe that this regularity is not enough for our result stated in the previous theorem.

Nevertheless, since we deal with a linear equation, the regularity on the solution given in (2.15) is obtained provided more
regularity on the initial conditions and sufficiently smoothness on the domain movement.

2.3. The fully-discrete formulation and statement of the second main result

In order to discretize our problem with respect to the time variable, let us denote by At > 0 the time step and t, = nAt,
forn=0,...,N,where Nissuchthatty < Tandtyy; > T.

In the fully-discrete problem, we will consider a piecewise linear interpolation in time of the domain deformation. Thus,
the domain velocity is constant on each interval (¢, t,+1) and at time t = ¢, is given by:

« 1 _
wh.n,n+1(x) = Xt [X — Xt (Xh,:n+1(x)):| vx € ‘anﬂ’

forallne {0,...,N — 1}.
With the above definitions, we can introduce the fully-discrete problem, using an implicit Euler scheme, as follows:
Find {uj} and {p}} such thatu) = w, o and foranyn = 0,...,N — 1, one has that u; ™" € (Wi, )%, py*' € My, |

and the following system holds:
—At div (W g @ URT) - (Wp o Xpp  )dx — At Pt div (v o Xy )dx

J
Ptyyq 2ty (2.17)
= Al () - W0 X)) Vo € (Who)?,

/ (qn o Xﬂm) divu}T'dx =0 Vqy € Myo.
2

h41

n+1 —1
w - (vpo thtnﬂ)dx — f

up - (v o X;p )dx + vAt/ Vult V(v o X,;}M)dx
t+1 e 41

In what follows, we state the second main result of this paper, which gives the error estimate in the approach given by the
ALE method for the Stokes problem in a time depending domain. More precisely, we have the following theorem:

Theorem 2.3. Suppose that the assumptions of Theorem 2.1 hold true. Let also assume that

32Xy,
ot?

€ I2(0, T; [2(£2:)?). (2.18)

df
€ L0, T; L®(20)®) and —
dt |,

Then, there exists a positive constant C, independent of h and At, such that for all sufficiently small At and h, we have the
following error estimate:

n+1

12 i 2
lutnsn) = ui R g, o+ VALY IV () = 5) Iy g
i=1

h4
2 4 2 2
= ”uO - uh,OHLZ(QO)Z +C (E + h (||u||L°°(O,T;H3(.Q[)2) + ”p”LOO(O,T;HZ(.Q[)))

ath ’ 2 4 S 2
92 © 19 0 12202 + CALEE Y IEED 2 2
+CAt? /tm du
0 dt

100 (90)2 i=1
df
de

+cCAt? sup
5€(0,T)

2 2

(t)

Y

2 dp
+ a2 0,2 + a (®)
Y

H1(820)2 12($2r)

2

Y

12(20)
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Remark 2.4. In particular, if there exists a fixed constant Co > 0 such that h < CoAt and [[u(0) — wpoll;2(,2 < Coh, we
have that

n+1

lutnen) =y g, o 0 ALY IV (0(t) = 0h) Iy g 4 < CAE
i=1

Remark 2.5. Let us observe that the condition h < CyAt is quite natural for the convergence of mixed schemes. For instance,
in [24] the convergence is obtained for h < CyAt and in [25] for h*> < CyAt < Cih° and o0 > 1/2 (with h and At small
enough).

Remark 2.6. The regularity assumption (2.18) on X, is quite natural in the case of a time depending operator, in order to
obtain the fully error estimate (2.19) given above in Theorem 2.3. If we use the construction of X, and its continuous counter-
part X, given in [16], it is clear that this regularity with respect to t is strictly related with the displacement of the boundary.

3. Preliminary results

This section is devoted to some preliminary results which will be useful to prove Theorems 2.1 and 2.3. These results are
either easy to prove or are classical and, for this reason, we shall omit all the proofs in what follows.

Let us first recall the following classical result (see, for instance [38, pp.19-20]). In the context of ALE formulations, this
result has been also presented in [14].

Proposition 3.1. Consider £2, and £2,, two bounded open subsets of R? and assume that X € W1>°(£2). Suppose also that
X : 21 — 2, is invertible and such that X~ € W1%°(§2,). Then for any u € H'(§2,) we have that u o X € H'(£2;).

This proposition justifies the mixed formulation (2.5) and will be used throughout the paper.

Since we have to deal with integrals on a moving domain in this problem, we give also some useful formulas for the
time derivative of integrals on moving domains. First of all, we recall the Reynolds transport formula, that is, let ¥ (x, t) be
a smooth function defined on Q. Then for any open subdomain V; C §2; such that V, = X; (V) with Vy C £y, we have that

d _ [ (v . [ (v
m th//(x,t)dx_/‘; (at—i—Vl/ww—i—l//dlvw)dx_/Vt(dt

(see, for instance, [39]).
Furthermore, since for any x : £2o — R? we have that % ( Xo Xt‘l) ‘y = 0, it is not difficult to prove the following
lemma, which is a consequence of the above formula.

+ divw) dx
Y

Lemma 3.2. Let assume that ¢: Qr — R%, :Qr — Rand x : 29 — R? are smooth functions. Then we have the following
relations:

d

— (XoX[‘l)-(pdx:/

_ de
x . [ =
dt Jg, Qt(xo ) (dt

d d
— V(p:V()(oX;])dx:/ |:V<(p
de 2 2 dt

- ((Vw+ Vvw') Vo) : V(xoxtl)]dx, (32)

—i—(pdivw) dx, (3.1)
Y

):V(xoxt1)+V¢:V(ontl) divw
Y

d N g _ “1y 4o (e
a Q[(Xoxt ) divedx = /Q[ [(on[ )dw<dt

) + (x o X;') div pdivw
Y

— (xoX{") Vw: wT} dx, (3.3)

div (x o X;') + vrdiv (x o X; ') divw

d 4 _ dyr
— | ydiv (yo X7 1) dx = / [
dt Jo, (cox) o L dt |y

— Y Vw: V(on[])T:|dx. (3.4)

It is well-known (see, for instance, [40]) that the mixed formulation (2.11) is a well-posed problem, provided that the
spaces Wi, My, and the bilinear form

b(pn, vi) I=/ pn divvydx
2
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satisfy the Brezzi-Babuska (inf-sup) condition. The fact that this inf-sup condition is satisfied in our case, at each time
t € (0,T), follows from the choice of the finite element used. That is, at each time t € (0, T), there exists a positive
constant B; such that

. f Dn div vhdx
inf  sup & > B
pneM?, vpewy 2 IVellat@p2 IPalli2eay)

In fact, if h is small enough, we can choose a constant 8* independent of t instead of §; in the above inequality. More
precisely, we have the following result.

Theorem 3.3. Assume that (2.6) and (2.14) hold true. Then there exist two positive constants h* and 8* such that forallt € (0, T)
and for allh € (0, h*),

S, Pr divvydx
inf  sup el > B*. (3.5)
PhEM;?,thE(Wh,r)Z ||Vh||H1(.(2t)2 Il ||L2(S2t)

This theorem can be easily proved by using (2.14) and (2.6) and by following the proof of Theorem 10.6.6 in [35].
Therefore, we omit the proof of the preceding theorem.

4. Estimates of the projection on the finite element spaces

One of the key ingredients in the proof of our convergence results is the introduction of a projection on the finite element
space (Wj,)* x My, of the exact problem solution

(u,p) € [H7(£20)> N Hy (£20)*] x [H*(£20) NL5(820)]

(with s a real number s > 1).

Proposition 4.1. Suppose that s > 1is a real number. If u(t) € H*"'(£2,)> N H} (£2,)? and p(t) € H*(2¢) NL3(£2;), then there
exists an unique couple (U(t), P(t)) in (Wy )2 x M,?,t such that

v/ V (U(t) —u(t)) : Vvpdx — / (P(t) — p(t))divvydx =0 Vv, € (Wh,t)z,
Q2 2t

(4.1)
qndiv (U(t) —u(t))dx =0 Vqy € Mp;.
fors
Moreover, there exists a positive constant C > 0, independent of h and t, such that
lu(t) = Ul 2 + IpE) = PO l2iq < Ch" (1)1 (02 + PO a7 20) » (4.2)

forallr such that 1 < r < min(2, s).

The proof of this proposition is a direct consequence of Theorem 1.1 from Girault and Raviart (see [40, p.114]) and of
Theorem 3.3.

Remark 4.2. Due to Proposition 3.1, the problem (4.1) is equivalent to the following one:

v/ VU(t) —u(t) : V(vpo Xy p)dx — | (P(t) — p(t))div (vy o X, ;) dx =0 Vv, € (Wh)?,
& 2 (4.3)

(qn 0 X;¢) div (U(t) —u(t)) dx =0 Vg, € Myo.
¢

In order to prove our main results, we need some estimates of the time derivatives on the ALE frame for the projections
introduced above. More precisely, we get the following theorem:

Theorem 4.3. Assume that u: Q — R?, p: Qr —> R satisfy
u(t) € H(2)* NHy , (2),  p(t) € H*(2,) NL§(82), forallt € (0, T).
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Let consider the projection (U(t), P(t)) onto (W, ;)? x M,?,t of (u(t), p(t)), defined in Proposition 4.1. We assume that

(t) € H*(£2,)%, dp (t) € H'(£2). (4.4)
Y dt Y

Then there exists a positive constant C, independent of h, such that

w(t) € W (£2,)%,

dul’ o~ 49l "o- 20
t Y dl’ Hl(m)z dt dl’ 2@
du dp
< ChlInh| (uu(r)ui,s(gnz + Hdt () PO 2o + Hd ) ) (45)
Y H2($2¢)2 Y H($2¢)

Proof. Using (3.2)-(3.4) we differentiate with respect to t both equations of (4.3), then we obtain: for all v;, € (W} ¢)? and

qn € My,
du |t du _ dp dp|" _ _
v./;zt ( i t) — T (t)) V (v oXh’:) dx—/ (dt t) — i (t)) div (v oXh_:) dx
= —v/ V (U(t) — u(t)) : V (i o X; ;) divw,(t)dx
2t
+v / (VWi (t) + YWh()T) V (U(t) —u(t)) : V (v 0 X; 1) dx
2t
+ / (P(t) — p(t)) div (V4 o X; ;) divwy(1)dx — / (P(t) — p(t)) VWy(t) : V (v 0 x,;})T dx, (4.6a)
¢ 2t
and
du " d
/ (an 0 X 1) div ( (t) — d—“ (r))
2t
=— / (an 0 X;, 1) div (U(t) — u(t)) div wy (1)dx + / (qn o Xi,t) VWh(t) 1 V (U(t) — u(t))" dx. (4.6b)
2 2t
Now, we recall that
du" ()= du (&) + (Wi (t) —w(t)) - V)u(t), (4.7)
dely T dely (Wi " ’
dt dt w(t)) - Vp(t), (4.8)

therefore, the system (4.6a)-(4.6b) can be written as follows: for all v, € (Wh,o)2 and g, € My,

du|" dr|" . -
v/gt ( ac l, (t)) V (ko X ) dx — / ( o ) div (v, 0 X {) dx

= —vf VU() —ut)):V (Vh o X;z) divwy,(t)dx
2t

du

d
©- = p

+v / (VWh(t) + VWi(t)") V (U(t) —u(t)) : V (vy 0 X, {) dx
2t

(P(t) — p(t)) div (vy o X; ;) divwy(1)dx — / (P(t) — p(t)) Vwy(t) : V (vy 0 X, t) dx

¢
+v / VI((Wh(t) —w(®) - V)u®)]: V (Vo X, ;) dx — [ (wy(t) — w(D)) - Vp(t) div (vy 0 X, ) dx  (4.9a)
ot 2t
and
f (an 0 X 1) div au h(t) _ Qv (t) ) dx
2 ht dr |y dt |y
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=— / (qn 0 X;¢) div (U(t) — u(t)) divwy,(H)dx + / (an 0 X;,1) VWi(t) : V (U(t) —u(t)" dx
2 2t

+ / (qn o Xy, ) div [((wy (1) — w(t)) - V) u(t)] dx. (4.9b)
2t

On the other hand, we have that ?T‘[‘fy(t) € H*(£2,)* N H)(£2,)* and % |Y(t) € H'(£2;). In order to project them onto
(Wh,0)* x M}, since % |Y(t) ¢ L2(£2;), we need to introduce an auxiliary function p; defined by

p1(t) = dv -2
p1(l) = dt |, )
1 d
where A = @fﬂz d—‘t’|y(t)dx.

Let us note that equation (4.9a) is also true if we change ‘;—‘t’ |v(t) by p1(t).

Now, since py(t) € H'(£2,) N L3(82;), we can consider the projection (U;(t), P1(t)) € (Wy)* x My, of ( ‘3—‘[‘ |Y(t), p1(D)),
which are solutions of the following well-defined problem:

/V(U(t) de
" Ja T dr

(t)) LV (vho X ) dx

Y
d
— Pi(t) — &L (t) + A) div (Vo X, ;) dx =0 Vv, € (Wy0)?, (4.10)
% dt |y :
(qh o Xh’}) div <U1(t) — j (t)) dx=0 th (S Mh’o.
Qt ’ dt Y

From Propositions 4.1 and 3.1, we have that

du
dt

d
Pi(t) —

U (t) — i

®

Y

)+
Y

® )

d

du dp
<Ch||— + | = . (411)
12(20) dtly M2z I1dtly iy,

Subtracting (4.10) from the system obtained by (4.9a) and (4.9b), we get the following problem: for all vy, € (Wj0)? and
dn € Mh,o,

du " . dp
v/mv EY(t)—Ul(t) :V(vhoxh’t)dx—/gt n

= —V/ VU@E) —u()):V (Vh o X,::) divwy(t)dx
2t

H1(20)?

h
(t) =P (t)) div (vy 0 X; ;) dx
Y

+v / (VWh(t) + VWi ()T) V (U(t) —u(t)) : V (v4 0 X; ;) dx
¢
+ / (P(t) — p(t) div (vy o X;, ;) divwy(t)dx — / (P(t) — p(£) VWi () : V (v 0 X; 1) dx
o3 ¢

+v / V(W) = w(®) - Vyu()] : V (vyo X; 1) dx — [ (Wi (t) — w(t)) - Vp(t)div (v4 0 X; ;) dx (4.12a)
2

2t
du
X Ddiv [ —
[ @ox) (d

=— / (qn o Xy,1) div (U(t) — u(t)) div wy (1)dx + / (qn 0 X;, 1) VWh(t) : V (U(t) —u(t))" dx
¢ 2t

and

h
(t) — Ul(t)> dx
Y

+/ (qn o X;,1) div [((wy (1) — w(t)) - V) u(t)] dx. (4.12b)
2t

In the system (4.12a) and (4.12b), we can change ‘31—’; !f{(t) by the corresponding zero mean value projection 131 (t) defined
by

h
(t) — An,

= &
ETE
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where Ay, = IS;T f % g—’; ‘:(t)dx By using this zero mean value projection and Remark 1.3 from Girault and Raviart (see [40,
p. 117]), we have that

h

dely

Ui (1) + () = An = P1(0)

de H1(20)?
=C ”th(t)”LOC(Qt)‘l IV W©®) = u®) 22 + IPO) = POll2(a,))
+ CIWa(t) = WO llwroo g2 (18Ol (22 + 1PO N1 ay)) »

where the constant C > 0 is independent of h and t. Therefore, using (2.13) and (4.2) (with s = r = 2), the estimate (4.13)
becomes

12(20)

(4.13)

h h

du
a () —Uq(t) + (t) — Ap — P1(t)
Y H1(2)2 Y 12(20)
< ChlInh| [W(O)llw2e (g2 (18O 13202 + IPOl2(2)) - (4.14)
By (4.11) and (4.14) it follows that
du " © L L A 4
dt |y dt de |y
Hl(fzt)z 12(2r)
d dp
< ChlInh| { lu@®Ollp3@p2 + | 57| © + PO g2y + || 5 + ClA — Anl. (4.15)
d Y H2($2¢)? d Y H(2r)
In order to estimate the term |A — Ap|, let us remark that
/ p(t)dx = / P(t)Ydx=0 Vvt € (0,T),
Q2 2
then by differentiating with respect to t we get
1
= p(t)divw(t)dx and Ap=—— P(t)div wy(t)dx.
1$2¢] J 1£2¢] J
Hence,
1
A —Anl = |Qt| Ip(t) = POl 22 IVWR(O Nl 2004 + = 2] POl 2@ IV (WR(E) — W) | 2(,4-
This inequality together with (2.13) and (4.2) yields
|2 — Al < ChlInh|(Jlu(®) 30,2 + 1IPO l52(2,))-
Using this estimate, (4.15) becomes
W~ 8 cLif O P
dt dt |y clt de |y
Hl(:zt)2 12(%2)
du d
< ChlInh| { lu(®)lly3(2 + I + PO 22 + ar . (4.16)
t H2(2,)2 t H1(20)

Therefore, the estimate (4.5) is a direct consequence of (4.16). In fact, we have that

du|" n dp |?
dt H1(82)? dt 2(%2)
- clU du ® n ©

dtly H1(2,)? dt Yo iz

+ 1l ((Wh(t) —w(t)) - V) “(t)||1-11(52t)2 + [[(Wy(8) —w(t)) - V() 1202,
dU du d d
< | © + " d‘t’ ()
Y H1(9t)2 Y Lz(Qt)




532 J. San Martin et al. / Journal of Computational and Applied Mathematics 230 (2009) 521-545

+ ClIwh () = WO llwroe (g2 (WO 222 + 1O llg1gy) -

and we conclude by combining (2.13) and (4.16). O

5. Proof of the first main result

In this section we prove Theorem 2.1 by using the results of the previous section.
Since (u, p) is the solution of (2.4), then we have

d
i [ w0 exi ey [ a9 (wox;)ax
dt folt ’ 2 '

—/ div (w,,(t)@u(t))~(v,,oxhj})dx—/ p(t) div (vy o Xj ;) dx

2 2t
:/ f(t) - (vio X, ) dx Vv, € (Wyo)’,
2t

(qn o X; () divu(t)ydx =0 Vg, € Myo,

£2,

u(é) =uy in .

(5.1)

Subtracting (2.11) from (5.1) and introducing the projections U(t) € (Wh,t)z, P(t) € M,?’t of the exact solutions u(t), p(t)

defined in Proposition 4.1, we obtain

d -1 -1
— [ () —up(0) - (vi o X ;) dx + v/ V (U(t) — up(t) : V (vy 0 X ) dx

= f £(t) - (vh 0 X, {) dx —The (F(0) - (Vi o X;p)) VWi € (Who)?,
2t

(an o X;1) div (U(t) — up(t) dx =0 gy € M,
2
ll(é) —up(0) =up —upp in 2.

For the time derivative of the first integral, we apply formula (3.1) to obtain

/ du
o | dt v

—/ Wi () - V) (u(t) — up(0) - (vh 0 X; ) dx — / (P(t) — pa()div (vy 0 X; 1) dx
2 ¢

h h

v dr

(t):| - (Vho X, ) dx + v/ VU(t) — up(t) - V (v 0 X; 1) dx
¢

= / f(t) - (vh 0 X 1) dx ~Tne (£Ct) - (Va0 Xi1)) Y€ (Wpo)?,
2t

(qn o Xj,1) div (U(t) — up(t)) dx =0 Vg € M,

2 ‘
u(0) —up(0) =ug —upo  in £2.

Using Proposition 3.1, we can choose in the above system the test functions (vy, gi) such that
Vi o X} =U() — uy(t) € (W),
qn o X} = P(t) = pu(t) € M.

Then it follows that

/ du
o | dt

- (W (t) - V) (u(t) — up(t)) - (U(t) — up(t))dx
fors

Clllh h

h
) — —
Y dt |y

(f)i| - (U(t) — uy(1))dx + v/ IV(U(t) — up())[* dx
2

= / £(t) - (U(E) — uyp(0)dx — Ty (£(E) - (U(E) — up(t))) .
2t

dt 2 2¢
—/ div [wy(t) ® (1) — wp(0)] - (Va0 X; 1) dx — [ (P(t) — pu(t)) div (v4 o X; 1) dx
2 ¢

(5.2)

(5.3)
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On the other hand, due to the Reynolds formula, it can be checked that

h h

1d du
(f)] - (U(t) — up(6))dx
Y

2 — b
EEHU(t) —u(Ollzp,2 = /;}t |: ar

— | (wp(t) - V)(U() — up(0)) - (U(t) — up(t))dx.

¢

dllh
(t) — ar
Y

Combining this identity with (5.3), we obtain that:

1d ) ) 23
i=1

where the terms Ty, T, and T3 are defined as follows:

T, = du " t u’ t u(t t)d
1——/@ EY()_EY() - (U(t) — up(6))dx,
L= (Wy(t) V) @) —U®) - UE) —u(t))dx,

2t

T3 = / £(t) - (U(t) — up(0))dx — T (£(E) - (U(E) — up(1))).
2t

Now, let us estimate separately each term. Due to the Cauchy-Schwarz inequality and Theorem 4.3 we get that the first
term is bounded as follows:

du
dt

dp
+ POy + H a ) U@ — up ()22

Ty < Ch|Inh| <||u(t)”H3(.Q[)2 + H

(t) (t)
Y Y

H2(£2,)2 H1($2¢)

The next term can be bounded using the Cauchy-Schwarz inequality, the estimates (2.13) and (4.2) and we obtain that
Ty < Ch* [W(D) [l g2 (18O 143202 + PO I12(2,) 10E) — a(©)[l2(g02-
Now, let us estimate Ts. Using the fact that 2, = [y, K we can write
T; = / £(6) - (U(E) — u())dx — T (F(E) - (U(D) —up(0)) = Y Eg (£(t) - (U(E) — uy(1)))
2 KeTh,

where E represents the quadrature error on triangle K. To estimate this term, we apply Theorem 4.1.5 from [41, p. 195]
and we obtain that for any q > 2,

Ty < b Y K12 VIR 221U — (Ol 2.
KeTh ¢

Combining the above inequality and the Hélder inequality (with % + !1) + % = 1), it follows that

1/p 1/q 1/2

_1
e 3 ik > IO e 3 IUE — w12

KeTh ¢ KeTh ¢ KeTh ¢
2
= Ch2JIfO) w222 1UE) — @r(O)lly1(op2.

By using all previous bounds and the Poincaré inequality, (5.4) becomes

[N

1d
5 32 10O = 0O g2 +v IV U = 0O g
du dp
< ChlInh| | 8O llysce2 + | 5| © IOy + | 2| ©
ly H2($2¢)? t H1(2)

+ IIf(t)Ilwz,qmr)Z} IVU(E) = up(E) [l 24
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Now, integrating the above inequality, from 0 to t, we get

1 t
SIUO = w Ol g + v / VU — un($) % 4ds
0

)

Y

\]

¢ du
*||U(0) llh(0)||Lz(Q 2+ ChlInh| / |:||“(5)||H3(95)2 + H a
0

H2(£25)2

(s)

+ PG 2oy + H + ||f(S)||w2<q(95>2} IV (U(s) — up($)) ll2(go,4ds,

H1(%2s)

then, due to the inequality ab < ;—vaz + 5b* Va, b € R, we obtain that forall t € (0, T),

1 v [*
SIu® - (O g2 + 5 /0 IVUES) = ()7 g, a0

5||U<0> — 0% g2 + CHlInhP? / [uu(s)n,,g(g ot H of
Y H2(£2)2
+ PO 2o, + H + ||f(s>||€vz,q<gs)2} ds.
H1(%2s)
Hence,
1 v 2
7||U uh”LOQ(OTLZ(.Qt)Z 7||V(U - uh)”Lz(O,T;LZ(Qt)“)
5 du| |I?
5||U<0) ~ O g2 + NI | 0l 1 gy + | o
Yl12(0,T;H2(21)?)
dp 2
2
+ ”p”LZ(O’T;HZ(Qt)) + H E + ||f||L2(0 T; w2, (82t )2) (5'5)
Y Il12(0,T;H(2r))
In order to obtain the estimation (2.16), let us first observe that
7”“ uh”Loo(OT LZ(_Q[)Z ”v(u uh)”L2(0T LZ(QI)4)
1
5”“ U”LOO(OTLZ(.Qt)Z) ”V(u U)||L2(0TL2<Qf)4) EHU uh”LOO(OTLZ(Qt)Z)
v
+ E ||V(U uh)||L2(0 T: LZ(.Q )4) (5'6)
On the other hand, since (4.2) holds true for each t € (0, T), we get that
4
7”“ U”LOO(O T: L2(.Q) ) ”V(u U)”LZ(O T: L2(Q[)4) = Ch (”u”LOO(O T: H3(.Q[)2 + ||p||LOO(0 T: HZ(.Q[))) (57)
and
1 2 2 2
= i (1) 25 gy 2 + PO 22 g ) + 18(0) = wr (@ o (5.8)

By using (5.5)—(5.8), we get the result stated in Theorem 2.1.
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6. Proof of the second main result

In this section, we will analyze the full discretization of the problem (2.5) given in (2.11). We will prove that the numerical
solution converges to the exact solution of the problem, when the discretization parameters At and h go to zero, if a
compatibility condition between At and h is fulfilled.

6.1. Proof of Theorem 2.3

We remark that the approximation error u(t;;1) — U(t,4+1) is well-known, and is given in the estimate (4.2). For this
reason, we will study the following error:

el =U(ty ) —uf™' vn=0,...,N—1. (6.1)
Since (u, p) is the solution of (2.4), we have that
i -1 . —1
n u(t) - (Vpo X ) dx+v [ Vu(t) : V (v, 0 X; ;) dx
2t t '

—/ p(t)div (v ox};})dx—/ div (w;,(t) ® u(®)) - (vy 0 X;, ) dx
2 2t

= f f(t) - (Vho X, () dx Vv, € (Wio)?, (6.2)
¢
(qn o X, ;) divu(t)dx =0 Vg, € My,
2
u(é) =ug in 2.
Then, integrating the first equation of the above system from ¢, to t, 1, we get
/ ll(th) . (Vh o Xhﬁ}r&]) dx — / l.l(t,.,) . (Vh o sz:n) dx
2ty44 24
th41 thi1
+v f / Vu(t) : V (vy 0 X; ;) dxdt — / / p(t)div (v o X; ;) dxdt
th Q2 ' tn 2 Y
41
- / / div (Wx () ® u(t)) - (V4 o X, ;) dxdt
th 2 '
tht1
= f / f(t) - (vho X; ;) dxdt Vv, € (Wyo)?.
th 2t ’
The previous identity could be rewritten similarly to the numerical equations as follows:
f u(tarq) - (vh o Xh_}nﬂ) dx — / u(t,) - (vh o X,y ) dx
Pty $2tn
At v/ Vu(tery) : V (vh ° x,;}m) dx — At/ DP(tas1)div (vh ° x,;}m) dx
Ltnyq Pty
- At/ div (W (tn11) @ u(tny1)) - (Vh ° szgnH) dx
2t yq
4
= At / f(tny1) - (v,, o x,;}n+1) dx+ Y Q  Yvy € (Who)?, (6.3)
Pty i=1
where Q; (i = 1, ..., 4) are the differences between the time integrals and the numerical approximations given by the right
point integration formula. That is,
thy1
Q =v At/ Vu(tery) : V (vh ° x,;}m) dx — v/ / Vau(t) : V (vy o X; 1) dxdt, (6.4)
244 tn 2 '

Q@ = _At/ div (W (tg11) @ u(tny1)) - (Vh ox;,gn-%—l) dx
2

41

th1
+/ ’ / div (Wi (1) @ u(t)) - (v 0 X;, ;) dxdt, (6.5)
th Q2
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tht1
0 = —At/ Ptnsp)div (vh ° Xﬂw) dx +/ / p(t)div (vy o X; ) dxdt, (6.6)
244 , tn S
Iy
Q= —At/ f(tniq) - (v,, o x,;}m) dx +[ / £(t) - (v 0 X;, ;) dxdt. (6.7)
Pty ' tn S

Using the projections of u(t,+1) and p(t,+1), denoted by U(t,+1) € (Wh,tnﬂ)2 and P(tp41) € M,?_,tm, and defined in (4.3),
the problem (6.2) can be written as follows:

—1
/Q l.l(trhq) . (Vh o thth) dx

fn41

-,

—At f div (Wi(tns1) @ u(ts1) - (Vi 0 Xip ) dx
2

th1

u(ty) - (Va0 X; 1 ) dx + At v/

VU(tyy1) 0 V (Vh ° XE:,HJ dx
2

th fht1

—At / P(tps1)div (vh 0 Xi1,, ) dx (6.8)
2

th41
= At /
214

/ (qh o x,;}m) divU(ty1)dx =0 Vgy € Mo,
£2,

1

4
o) (Vo Xir ) dx+ Y Q Vuy € (Wio)?
i=1

u(O) = Uy in 2.

The preceding system allows us to compare directly the numerical solution with the exact one: by subtracting (6.8) and
(2.17) we get

/Q (u(tpyr) —uf™') - (vh o xhj}w) dx — /9 (u(ty) —up) - (vy o X} ) dx

th41 tn

+At U/ Vv (U(tn—H) - uZ-H) 1V (vh © X"'_,:nﬂ) dx
2

h41

~At / div (Wh(tas1) ® 6(6r1)) - (vh 0 Xih ) dx
£2

h41
o [ i @07 (0% o

214 (69)
At / (Pnsn) — ) div (vyo X! ) dx

Pty

4
=Y a+ At/ f(ts1) - (vh o X,z:nH) dx — Al (f(tn+]) - (Who X:?}m)) VWi € (Who)?,
i=1 2

1
/ (qh o x;gm) div (U(tps1) —up ') dx =0 Vg, € My,
2ty q

u(O) — ug =Upg — Uppo in 2.

We note that in the previous problem there are two convective terms, with the velocities w, and wj ;. In order to
compare these two velocities, we use the definition of w}, . ;, and therefore we get

(x,;}m x), 5) ds. (6.10)

o 1 41 32Xh
Wy (X, tat1) = Wy ;0 (%) + AL . (s— tn)ﬁ

Combining this identity and (6.9), and by using the notation (6.1) it follows the following system:
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/Q (ll(t,H_]) - U(tn+1)) : (vh ° Xh_,}wr]) dx

tht1

- / (u(t) — U(E) - (v 0 X} ) dx

2ty

+/ el (vh o Xh_}m) dx — / e (vho X, )dx
241 $2tn

+Atv Vet : v (v,1 o Xh_}m) dx

A?tn+1

—At/ div (wj, .. ®ept') - ( o X, 2 +1> dx

. (6.11)
.

) 41 82Xh .
. div (-/rn (s —ty)—— 952 ( - x), s) ds ® u(t,,+1)> . (vh o Xh,tm) dx

At (P(tr) = ) div (vi o Xip ) dx

4
=Y Q+a f f(tni1) - (vh 0 Xt ) dx— At (ECri) - o Xih D) Vi € Wio)?
i=1 Sty

/ (qh o Xh_j +1) divelt'dx = Vqn € Mo,
0 a1}

th41 0
u(0) —u, =up — g in £2.

In the above system, we choose the following test functions:

n

2
vy = e}’ o Xphtny € (Wh,o) ,
Gh = (P(tas1) — P*") 0 Xty € Mo

and we get

9
l€i g, et ALIVE g, 0 =D R (6.12)
j=1

where the right hand side is given by

Ry :/ e - (eht! o Xy, 0 Xpp ) X+ At/ div (W}, 1 @ €fT!) - efdx, (6.13)
2t ‘Q[n+1
Re= [ (u(t)) —Ut)) - (™" 0 Xny,,, 0 Xyl ) dx — f W(tap1) — Ultnir)) - €)dx, (6.14)
2ty 244
Ry = —At/ div (W} g ® Wtas1) — U(tni1))) - e dx, (6.15)
Pty44
: {1 azx n+1
R, = div (s — t) (htﬂ(x) )ds@u(tn+1) el ldx, (6.16)
Pty tn 9s !
thg1
Rs = um/ Vu(t,i1) : Vel 'dx — v/ / vu(t) : V (ef! o X, o X, ) dxd, (6.17)
‘Qtn-H S Y
Ro= —ac [ div (W) © ultyen) -} dx
2ty 4q
1
/ /Q div (Wx(t) @ u(t)) - (e o Xpe,,, 0 X; ;) dxdt, (6.18)
t
tn+1
Ry = —At/ p(tn+1)d1veh+1dx+f / p(t)div (ef*! o Xp,,, o X; ;) dxdt, (6.19)
Pty 2

1
Rg = —At/ f(tys1) - € +1dx+/ / f(t) - (ef" o X, 0 X 1) dxd, (6.20)
P41 S
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Ry = At/ f(tn1) - €0 Tdx — Atlyy,, (Ftayr) - €7 (6.21)
Lty
The estimates of the terms R; (i = 1, ..., 9) are very technical, and we prefer to postpone their proof to Section 6.2. For
the sake of completeness, in what follows we present the results obtained, nevertheless, the precise results are stated in
Lemmas 6.1-6.4. We get that

T a2 n+1 n+1
R] = EHeh”LZ(Q[n)Z + ”e ”LZ(Q[n 2 + At )’”e ”LZ(Q[nJrl)Z, (622)
where
y = max sup  [divwy(O)lliece) Sup |Jx Jx-—1
n=0,...,N—1 |:te(tn,tn+1) (@ te(tn,tyy1) || e “LOO('QO) X”~fn+1 Loo(.Q[nH)
+ ”divw;.n,rH-l||L°°(9tn+1):|'
Furthermore,
R <C—||u u|? + ! — VAt Vel |2 (6.23)
2 L0220 T 18 (20, )% :
1 n+1
R3 < CAt ”u U”LOO(O T; LZ(_Q[)Z) + = 18 VAL ||Ve ||L2(Qtn+l)4s (624)
2 2
Ry < CAt® su X " (s) ]l +— ! — VAt | Vel T2 (6.25)
4= o I o2 12O n2@0?) T 1g 12(Q,, ) '
nstn41 Lw(Qo)
In addition,
2 [ 2 n+1
Rs < CAt / ||u(t)||H1(9t)2 + (t) dt + —SvAt Ve, ”L2<m e (6.26)
H‘I(Q )2
2 [ 2 " n+1
Rs < CAt / (17,2 + (t) dt + vat IVer g, . (6.27)
n
Yo lzn?
fnt1 2 n+1
Ry < CAE? / P11, + (t) dt + —vAt IVer g, , - (6.28)
Yo llze)
Iy h
1
Rs < CAL? / IO 2 + | 5| © dt + —vAt Vel g, (6.29)
fn Yo llzen?
and
Ro < CAt h*||f(ts1) |12 + 45 vAt||Ve"+1|| (6.30)
9 = n+1 WZ,q(Q 2 LZ(an+1)4' .
By using these estimates of R; (i = 1, .. 9) in (6.12), we obtain
||eﬂ+1 ”LZ(Q )2 + v At ”Ve"+1 ”LZ(SZ )4 S At 7/ ||e"+1 ||L2(Qtn+1 )2

1
+ ekl g, 2+ € (E + At) 0 = Ul o 2y T CA R If ) 2o, 2

a 2
[ 952 (s)}

th1
2 2
I / IO 0 +
n

+cat? sup

s€(tn,th1)

flull?
12(20)

L%°(0,T:L2(82)?)

Hl(.Q )2

h

(®) dt.

(t)

Y

+ IO g 2 +

de 12(2)

dt

12(2)?
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In order to obtain the global error, we sum over n, that is,

n+1
+1),2 i2
”ez ||L2(an+.] )2 + v At Zl ”Ve;l”LZ(Q[i)‘l
i=
n+1 ) 1 n+1
< 1€ l72 gy + ALY Y l€hlg, 2 + C+ 1) (E + At) = Ul o roizgany + CALRY Y IEE)12 20, 12
i=1 ' i=1 '
3 Xy 1 2 2 [ 2 aul' |’
+Cn+ DAL SléPT [ 92 (S)} Il 0,712 (2y2) + CAL [ w151 g2 + i (©)
se(0.T) 199(20) 0 Yo o2
2 2
5 dp h 5 f h
+ POz, + T (©) + IFO12g,)2 + a ) de.
Yo lz@ Yo llzn?
By applying the discrete Gronwall lemma, we get
n+1
+1),2 i2
leh e, o + Y AL Zl NCA
i=
1 n+1
02 2 4 2
< Gille}li} g, 2 + CCiT <E + 1) Iu = Ullfx o 1120, y2) + CC1AL R Z] IECE) 2, 2
i=
32X, 1
2 2
+CC1TAt 5:(l(l]l:;') [ 852 (5)] ||u||LDO(O’T;L2(Qt)2>
' 1°°(820)
2 41 2 du h 2
+CG At /0 a5 g2 + T (®)
H1(20)?
2
5 dp h 5 h
+ POz, + pr (©) + IFO12 (0,02 + i ) de, (6.31)
Yo lz@ Yo lzn?

where the constant C; is given by

14
Ci=exp|thyu1————— ).
1 p(““]—yAt)

In the previous estimate, we will introduce the continuous ALE derivatives using the identities (4.7) and (4.8) and

df|" df
a = —
tly dt

Therefore, the estimate (6.31) becomes

(&) + (Wi (t) —w()) - V) £(t).

Y

n+1

n+1,2 in2
ler Iz, 2 v A Zl IVl
1=

1 n+1
=< C”eg”iZ(QO)Z + C <7 + 1) ”u - U”fOO(O,T;LZ(_Q[)Z) + CAt h4 Z ”f(ti)”a/lq(gti)Z

At? —
i=1
2 RPN 2 o [ 2 du ’
+ CAt” sup > (9) 0l 0,112 (2 y2) T CAL (52 g2 + || 77| ©
seo,n || L 9s . T 0 de |yl a2
(£20) t
+ llp(O1I? + H 4 () 2 + IfI1? + H af () 2 de (6.32)
p 1 - 100,12 - . .
H1 (%) dt |y 2@ R ($20) dt |y 12(2,)2

This inequality gives us the numerical error U(t,+1) — uﬂ“. In order to obtain the complete error, we observe that

n+1

12 i 2
) =0y v AE DIV ((t) = 03) g o
i=1
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n+1
< 20u(ts1) = Ultn )z, o+ 20 A D IV @) = U(0) g, o
n i=1 '
n+1
n+1p2 in2
26y g, o+ 20 AL ; Vel 1

Combining the previous inequalities and using (4.2), we conclude the proof of the second main result of this paper.

6.2. Some additional estimates
In this subsection, we derive estimates on R; (i = 1, ..., 9) which have been used in the proof of Theorem 2.3.

Lemma 6.1. Suppose that the assumptions of Theorem 2.3 hold true. Then, the terms Ry and R, defined in (6.13) and (6.14)
satisfy (6.22), respectively (6.23).

Proof. By using the Cauchy-Schwarz inequality, we have that

1 1
2 +1 -1 2 . 1 +1
Ri < Sll€flEg, o + 5 1€h™ 0 Xney 0 Xi o g, o + A / div (W @ € 7) - € dx,

Qtn+1

then, integrating twice by parts, we obtain

1 1 _ 1 .
Ry < g”eﬁ”fmn)z + 5||e;;+1 0 X1 © Xpgy 720, 12 + 5 At /Q el Pdivwy , ., dx. (6.33)

41
In order to transform the second term in the right hand side, we use the Reynolds formula:

d

+1 1|2 +1 -12 5.
— |eﬁ 0 Xp,tyyr © Xh’[| dx =/ |eZ 0 Xp, 41 oXh,[| div wy, (t)dx.
dt Jo, 2

Therefore, integrating from ¢, to t,,,, we get

n+12 n+1 -1 |2 _ [ n+1 —12 4
”eh ”LZ(Q[nJrl )2 - ”eh o Xh,tn_H o thtn “ Lz(grn)z = \/; . |eh [e] thtn-H [e] Xh,t ’ leWh(t)dx dt.
n t
By combining the above equation with (6.33), we get

1 1 1 w
- 112 TERT S
R = 5||eh||Lz(_Q[n)z + 5”911 I|L2(Q[n+1)2 + EAt /_@ ley " |1"divwy  qdX
41

1 1
_ 5/{ (/9 lef ™" o Xt ox,;gyzdivw,,(t)dx> dt.
n t

Hence, we get that

1 1 1
< M2 ~llalt1)2 _ : * n+1)2
Ry = 5 ||eh||Lz(_Q[n)z + 3 lle, ||L2(Qtn+1)2 + ZAt Idivwy oyl e, ) e, ||L2(.Qtn+1)2

1 ) tht1 1 1
+ = sup |ldivwy () |2 / ||e;+ 0 Xh.tpq © Xy ||fz(9[)2dt. (6.34)
te(tn,th1) tn

In order to bound the last integral, let us remark that, due to the change of variabley = X, ., (X;: (x)), we have that

n+1 ~12 n+12
“eh Oxhstn+1 oxh,t ||L2(_Qt)2 = ”]Xh.t ”LOO(_QO) ]Xh’g ||eh ||L2(_Q[ 1)2' (6-35)
2Int1 LOO(Qt,H_]) n+
Let us observe that
2
Dt ey = 0t (b )| ) = € 0 iy + IR I

Thus, there exists C; depending on X and hg > 0 such that

i oy < €1 ¥E €10, T), Vh € (0, ho). (6.36)
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We can prove in a similar way that there exists C; depending on X and hy > 0 such that

’] . <G, Vtel0,T], Vhe (0, hy). (6.37)
Xne Nl ()

From (6.35)-(6.37), we obtain

|ei*! 0 Xngyy 0 Xt [y 0 < CiGallelt 2 (6.38)

— 2 2
L2(£2¢)2 (26, 1)

Combining the above inequality with (6.34) we get (6.22).
Let us estimate the term R,. The Cauchy-Schwarz inequality together with (6.38) yields

n+1
Ry = Cllu— Ul oo 0, 1:12(20)2) 1€ ||L2(9tn+1)2-

To conclude, it is enough to use the Poincaré inequality and that

2 2 1 2
ab < Zd®+ —b* Va,beR. O (6.39)
9 18

Lemma 6.2. Suppose that the assumptions of Theorem 2.3 hold true. Then, the terms R3 and R4 defined in (6.15) and (6.16)
satisfy (6.24), respectively (6.25).

Proof. To estimate Rs, first we integrate by parts:
Ry = —At / (W, V) € - @trs1) — Ut 1)) dx,
2

41

Then, by the Cauchy-Schwarz inequality and (6.39), we obtain

4 1 n
+1
R3 < At ||whnn+] ||L°O(Q[ )Z”u U||L°°(OTL2(Q )2) + ISVAt ”Ve ||L2(~Qtn+1)4’

which 1mpl1es the estimate (6.24).
Let us estimate the term R4. First, we integrate by parts and use the Einstein notation:

{1 azx n+1
Ry = — 5=t 55" t (X, ®0.5) ds-V Uty )dx
Pt tn

thi1 ath n+1)l
— —t — th1)dxd
f[n cwf [ oo (Xah, 00,5 )] 2 1) s

j ]

In order to write the integral in the domain £2¢, we use the change of variable X,;:m (X) =y € £, then it follows that

-1
tn1 _82Xh 0 (ez+] o Xh t ) 9 [xh [n+1]
Ry =— s—t .S SIARYA R u(t oX dyds.
4 /[n (s —tn) o | 0 (y )]j ™ o%; < (utnrn) 0 Xy ); S, 4Y
Applying the Cauchy-Schwarz inequality, we have
. ; ( o x ) ) 1/2
n+1 e 0 Ap, tn 3}’1
e [ ([ [P Rdin
tn 2 Yk 0x; nt
92X, 2 s
2
( / [ 5z W S)} (u(tm)oXh,tn+1)inh_tn+]dy> ds,
and therefore,
1/2
tnt1 32xh 2
Ry = / s — tal ”Vez+1”L2(.Qt D [72(5)i| lu(tor) 2, D2 ds.
tn f ds [°(£29)2 "

By simple computations, it follows that
tz 82 9 1/2
Ry<— | sup [ 552 (S)]

n+1
Il r:2202) Ve 2,14
s€(tn,tn41)

1%°(£20)?

which yields (6.25). O
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Lemma 6.3. Suppose that the assumptions of Theorem 2.3 hold true. Then, the terms Rs—Rg defined in (6.17)-(6.20) satisfy
(6.26)-(6.29), respectively.

Proof. In order to simplify matters, let us start our proof by studying the terms Q;-Q4 defined in (6.4)-(6.7), which are
basically the same as the terms Rs—Rg, but written for a general test function v, € (Wh,o)2 .
We will begin by rewriting the term Q; as follows:

tay1 |
v
th

L 'Q[n+1

i1 [ rh+1 / d
v f f — / Vu(s) : V(vy o X; Ddx | ds | dt.
o LJt ds Jo, '

Due to Lemma 3.2, it follows that

1 [ i du
AL

= ((VWh(s) + Vwi(s)") Vu(s)) : V(v 0 x,;;)} dx] ds:| de. (6.40)

Q Vu(tpi1) - V(vp o X;:ﬂﬂ)dx - /

2

Vu(t) : V (vy 0 X; 1) dx] dr

h
(s)) :V(p o X, 1) + Vu(s) : V(v o X, )div wy(s)
Y

Similarly, we deduce that

41 41 dWh h
Q = —/ / / div | — | (5) ® u(s) | + div (wy(s) ® u(s))divwy(s)
th t 25 dt Y
. du|" 1
+div (Wi ® - O] |- (Vi o X 1) dx ¢ ds | dt, (6.41)
Y
th+1 1 dp h ) i ] e
Q = - / / f pr ()div (V4 o X}, o) + p(s)div (v, 0 X, ¢ )div wy(s)
th t 25 Y
— p(s)VWi(s) : V(Vy 0 xh;)} dx} ds] dt, (6.42)
tnt1 1 df h
Q= — / / / —| () +f(s)divwy(s) | - (vh 0 X; 1) dx ¢ ds | dt. (6.43)
tn t o \ dt]y ’
In order to obtain the estimates (6.26)-(6.29), let us choose in the terms Q;, foralli = 1, ..., 4, the following test function:

n+1 2
Vp =€ Oxhqfnﬂ € (Whvo) :

Therefore, we have that

i1 i1 du
NIRRT
tn t 2 de

— ((VWi(s) + VWi(s)") Vu(s)) : V(eh™ o X, © x,;j)} dx} ds:| dt.

h

(s)) DV o Xp,y 0 X D) + Vu(s) 1 V(eRt! o Xy, o X 1)divwy(s)
Y

Applying the Cauchy-Schwarz inequality, we obtain

Rs < v/tm /tm \ du h(s)
U t de |y

IV (€ o Xntr 0 Xis) [ 12y dsj| de. (6.44)

+ 3[VWL(S) [ oo ()¢ | V() ||L2(S25)4>
12 (£25)%
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By using the following inequality
2

n4+1 —1\12 < 4”
Hv(eh 0 X tns1 Oxh,t)Hl_Z(gt)‘l =2 Jxm 109(20)" th’_z 1%0(20)
2
+1)12
X -1 X Ve! , 6.45)
th~fn+1 10(2¢,, )4 / Mol 1 L% (£20) | h ||L2(Q‘n+1)4 (

then (6.44) yields

th+1 41 du
&gcf / v
tn tn dt

: ||Vez+lHL2(Qm+1)4 ds:| dt.

h
(S)> + 3[VWL(S) [ 1o ()4 ”VU(S)HLZ(95)4>
Y 12(25)4

By the Cauchy-Schwarz inequality and (2.13), the previous estimation becomes

thy1 d h
Rs < CALY / ( v (“ (t))
. a |,

and therefore, due to (6.39), we get
i 2
(t ))
Y

5 th41 du
Rs < CAt v @
fn 12(20)4

which completes the proof of the estimate (6.26).
On the other hand, we have that

th+1 th+1 dWh
Rg = — div | —
S IRALTE:

h
(s)>:| (e 0 Xp gy 0 Xira) dx} ds:| dt,
Y

then, integrating by parts, it follows that

41 41 dwy,
AT A
tn ¢ o \ dt

2
1
+ ||V“(t)||L2(Qt)4> de ”Ve;+ ||L2(Qtn+1)4a

12(204

1
VUl g | de + Sovat Ve

”22 4
(@t )

h
() ® U(S)> + div (W, (s) ® u(s))div wy(s)
Y

+ div [wys) @
1v —_—
h dt

h

Y

(s) - v) (eh*! o Xy 0 Xps) - u(s)dx) ds] dt

tnt1 thy1 du

+ / / Wi (s) - V) (€ o Xp ey 0 Xip) - —
tn t 25 ’ dt

h
(s) dx) dsi| dt
K Y

i1 [ platt
- / f ( [divwy(s)1*u(s) - (e o Xpe,,, 0 Xp1) dx) ds] de
th LJt £2s

tht1 [ LI
- f f ( / div wy(s) (Wx(s) - V) u(s) - (€h! o Xy, 0 X;1) dx) ds] dt.
th t 825

Applying the Cauchy-Schwarz inequality, (6.35) and (6.45), we get

th+1 tht1 dwy, h
Rs < C/ / a (s) lu(s) 2,2
th tn t Y 100(£25)2
du|" 1
1w o2 | 2| © )”Vﬂ+“%mﬂﬂ“ dt
Y LZ(QS)Z

th1 th+1 )
+c]‘ [/‘ (19WA () 2 g 10O 2,2
tn tn

1
+ ||th(5)||L°O(.QS)4”wh(s)”LO@(QS)Z||Vu(5)||LZ(S25)4) llent ||L2(:2[n+1)2d5:| dt.
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Using the estimate (2.13), the hypothesis (2.18) and the Cauchy-Schwarz inequality, it follows that
1/2

h 2
1
(t) de [Vent ||L2(Q[n+1)4
Yo lz@n?

32 tht1 du
Rs < CAt w22 + a
tn

tnt1 1/2
2
+CAt3? [/ ()l 222 + IVUO 12(0,¢) dt] ||ez+l||L2(_an+1)2,

tn
then, by the Poincaré inequality and (6.39), we get (6.27).
Estimates (6.28) and (6.29) can be obtained in a similar way, so we skip their derivation. O

Lemma 6.4. Suppose that the assumptions of Theorem 2.3 hold true. Then, the term Rq defined in (6.21) satisfies (6.30).

Proof. First of all, we observe that this term is similar to T3, which has been estimated in the proof of Theorem 2.1. Hence,
we are going to proceed similarly. We have that

Ry = At f f(tas1) - €hT'dx — Atlyg,, (F(tnsr) - €f)
2

fh41

At Z Ex (f(tn+1) . eZ“) .

KET’”IH—]

In order to obtain this error, we use Theorem 4.1.5 from [41, p. 195], then for any q > 2,

Ro < CAth > K[>V 8ty ) lwzager l€h " i op2-

K€y

Now, applying the Holder inequality (with 1+ % + % = 1), we get

Q=
N

1

1
1_1),\"
Ro < CAth Z|1<|(2 i) DIt g | A D ler 2
K K K

2 1
< CAth ||f(fn+1)||W2«q(9[n+1)2||‘3;+ ||H1(9[n+1)2-

To conclude, we combine the above relations with the Poincaré inequality and with (6.39). O
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