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Scattering of First Sound by SuperAuid Vortices
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The simplest interaction between sound and quantized superfluid vortices is investigated both analyti-

cally in the Born approximation and numerically, using the nonlinear Schrodinger equation. Compared

with the scattering by a classical vortex, the quantum result reflects the structure of the vortex core and

has an extra phase shift. The order of magnitude of the efl'ects suggests possible experiments in rotating

superfluid helium.

PACS numbers: 67.40.Vs, 47. 10.+g, 47.37.+q, 67.40.Mj

The scattering of phonons by vortex filaments in

superAuid helium has been calculated long ago by Pi-
taevskii, in order to compute the phonon part (dominant
below T 0.5 K) of the mutual friction force between the
normal Auid and the quantum vortices [I]. Pitaevskii's
computation is based on a hydrodynamical description of
the vortices. Such a classical description does not take
into account the density variation in the vortex core. In

this Letter, we commute, as suggested by Nozieres and
Pines [2], the scattering cross section using the nonlinear
Schrodinger equation (NLSE) as a semiclassical model
of neutral superfiows [3]. Two diA'erent regimes are con-
tained in NLSE: nonlinear dispersive acoustics and Eu-
lerian dynamics of superAuid vortices with characteristic
size, the so-called coherence length, g [4]. We derive an

explicit formula for the first order acoustic scattering in

the Born approximation which we integrate numerically
to obtain the scattering cross section. In order to validate
the Born approximation, we simulate numerically the
response of NLSE vortices to an acoustic excitation using
Fourier pseudospectral methods. Similarities to and dif-
ferences from Pitaevskii's calculation are discussed in the
conclusion. We also consider the order of magnitude for
the total cross section for the scattering of sound in a ro-
tating bulk of helium and discuss the possibilities of ex-
perimentally observing this eA'ect.

The NLSE in 2D is (a,P, Q )0)

which admits exact vortex solutions. A vortex at the ori-

gin is yo(x) =D(r)exp(imp), m = ~ I, where (r,y) are
polar coordinates. The function D(r) is a function van-

ishing linearly at the origin, D"(r) (0, D(r) JQ/p
+O(r ~) for r css [5]. The equation for a small per-
turbation w around a vortex is obtained by putting
tII'= l//p+ w. Taking a second time derivative and keeping
only linear terms in w, one has .Lw =S(w), X=—|I, —2a
x AV2+a2V, where the source S(w) depends on yo(x).
If G(x, t) is the retarded Green function of L, this last

equation is equivalent to

w(x, t) =w;„(x,t)

+) dx'dt'G(x x', t —t')—S(w(x', t')),

where w;„ is the value of w for t — and satisfies
.Ew;„=0.We take

w;„(x,t) =wo[oexp[i(k x —vot)]+(vo —n —ak')

xexp[ —i(k x —vot)]],

~here wp is a small amplitude, k kx points in the direc-

tion of the x axis, and v0=42aQk +a k . The form of
w;„is dictated by the fact that it must also satisfy asymp-
totically the first order equation derived from (I) through
y=yp+w. The scattered wave w in the Born approxi-
mation will be w~ =G*S(w;„)[» is the convolution prod-
uct in (2)]. After a long calculation, we obtain in the ra-
diation zone

—trw a exp(i tr/4)
wsc(x t )

2a[trk(Q + vj)ixi]'
f(8,k) [0exp[i(k ixi —vot)]+i (vo —0 —ak ) exp[ i (k ixi —v t)]—[0

with
r

~+oo 8f(8,k) = dr rU(r) Jo 2kr sin-~o 2

where 8 is the polar angle between x and x and

(4)
U(r) = —aP(3P p +2PQp+4aPk p)

with p=(yo( —0/p and Jo is the zero order Bessel func-
tion. One can easily estimate the corresponding differ-
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FIG. 2. Plot of the total cross section (8) vs k, with (J2 as
unit of length.

FIG. 1. Plot of the Iogarithm (in dB) of the differential cross
section computed from (7) in polar coordinates for k 0.8, 1.6,
and 3.2, with pe as unit of length.

ential scattering cross section

~(8,k) =, ", , I(8,k)',
4a k(n + vii)

which gives for the total scattering section

S, (k) =2 a(8,k)d8.

By scaling appropriately time, space, and amplitude,
we can set without loss of generality 0 =1, a= 2, and

P I. This amounts to a choice of units such that the
coherence length ( II42, the sound velocity c=l, and
the superfluid condensate density p =1.

The scattered wave (4) depends on the vortex density
profile through the potential U(r). This profile is ob-
tained numerically by expanding on mapped Chebychev
polynomials and minimizing the appropriate free energy.
With ten Chebychev polynomials, this method reproduces
the results of [6] with S digit accuracy. Then (4) is com-
puted directly for r smaller than a cutoff and by replacing
U(r) and the Bessel function with their large r expansions
above the cutofl'. The total cross section (7) is finally

computed using the asymptotic form of o for small values

of 8. The values for the cross sections obtained by this
procedure are represented in Figs. I and 2 for difTerent

values of k and 8 with (J2 as unit of length.
To validate the above results, we performed numerical

simulations of NLSE using a standard Fourier pseudo-
spectral method [71. To study the scattering of a weak
acoustic wave by superAuid vortices in a periodic domain,
we have to use for initial data a periodic array of vortices.
We have chosen to work with a square lattice of alternate
sign vortices (similar to a 2D NaCI crystal) which has
the advantages of containing + and —vortices and of a

simple preparation by minimization of free energy. The
minimum is found by integrating the rea1 Ginzburg-
Landau equation (RGLE):

8v =w+ —v'v —
I v I'v

We first initialize a periodic complex field with a system
of zeros at the locations of the vortices. We then let the
field evolve through RGLE dynamics on a time scale
suflicient for amplitude relaxation [4]. The initial data
for the scattering computation is the superposition of a
weak acoustic wave with the vortex lattice. Figure 3

displays the total amplitude of acoustic waves at t 80
time units. The scattering is mainly forward, which is a
characteristic of quadrupolar radiation. The numerical
scattered amplitude is fitted with formula (4), thus deter-
mining a scattering coeScient f(8,k) (see Fig. 4). This
coeflicient is compared to the Born approximation in

Table I. The agreement is seen to be better when the box
is larger, that is, when the vortices are more widely

separated. The numerical simulations thus validate (4)
in this limit.

Note that Pitaevskii s [I] classical cross sections are

I.IG. 3. Density plot of the scattering of an incident plane

wave (k =1.6, w0=0.01) by direct simulation of NLSE (I).
The density is proportional to I yI.
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TABLE I. Comparison of the scattering amplitude obtained
from numerical simulations in diA'erent periodical boxes with

the Born approximation.
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FIG. 4. Fit of the scattered amplitude obtained by numerical
simulation (dotted lines) with formula (4) in the Born approxi-
mation (solid lines) for 8=5' and k =1.6.

valid in the limit of small k whereas the cross sections ob-
tained from NLSE are valid for k of the order of the in-
verse core radius. In the latter case, the effects stemming
from the density variation in the core region are dom-
inant. The main qualitative difference for the scattering
of sound between a classical filament and a topological
vortex is the phase dependence of the scattering ampli-
tude. Indeed, in the classical case [1,8], the amplitude is
antisymmetric in (), whereas (4) is symmetric.

The attenuation length )i. of first sound corresponding
to the scattering of acoustic phonons in a rotating bulk of
helium turning at 0 rads ' is equal to A, =I/2&10 0(
x J2Stot(k). An acoustic wave at k =0.1 (in the units of
Fig. 2) corresponds to a frequency of 50 GHz with a
sound velocity of 300 ms '. The order of magnitude of
k is found to be 30 cm for D =10 rad s '. This value
suggests that it might be possible to detect experimental-
ly the scattering of sound by quantum vortices in a
geometry similar to that used in [9]. Such an experiment
would give direct access to the density in the vortex core.
The phase dependence of the scattering amplitude could
be established by interference. However, note that Fetter
[10,11] showed that the vortex core in an imperfect Bose
gas is not empty, due to many body effects which are not
included in the NLSE model of superflows. The dif-
ferences between the present calculations and future ex-
periments could provide new information needed to un-
derstand many body effects on the structure of quantum
vortices in real helium II.

In summary, we have computed the cross sections for
the scattering of sound by quantum vortices in a semi-
classical model that takes into account the density varia-
tion in the vortex core.

Finally, note that, at a frequency of 50 GHz, the ele-
mentary excitations can be described as acoustic phonons.
For frequencies an order of magnitude higher, the excita-
tions are in the vicinity of the roton minimum in the
dispersion curve. In this regime, a nonlocal generaliza-
tion of NLSE [12] could be used. However, a classical
model [13], ignoring the vortex core, is able to account
for the roton part of the mutual friction, with the same
approximations as Pitaevskii, in a semiempirical way.

The numerical simulations were performed on the
CRAY-2 of the "Centre de Calcul Vectoriel pour la Re-
cherche" de 1'Ecole Polytechnique and on local worksta-
tions. Laboratoire de Physique Statistique associe au
CNRS et aux Universites Paris VI et Paris VII.
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