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Aggregate Implications of Lumpy Investment:  
New Evidence and a DSGE Model†

By Rüdiger Bachmann, Ricardo J. Caballero, and Eduardo M. R. A. Engel*

The sensitivity of US aggregate investment to shocks is procyclical. 
The response upon impact increases by approximately 50 percent 
from the trough to the peak of the business cycle. This feature of 
the data follows naturally from a DSGE model with lumpy micro-
economic capital adjustment. Beyond explaining this specific time 
variation, our model and evidence provide a counterexample to the 
claim that microeconomic investment lumpiness is inconsequential 
for macroeconomic analysis. (JEL E13, E22, E32)

United States nonresidential, private fixed investment exhibits conditional het-
eroscedasticity. Figure 1 depicts a smooth, nonparametric, normalized estimate 

of the squared residual from fitting an autoregressive process to quarterly aggregate 
investment rates from 1960 to 2005, as a function of the average recent investment 
rate. This figure suggests that investment is significantly more responsive to shocks 
in times of high investment.

In this paper, we show that conditional heteroskedasticity is a robust feature of 
US aggregate investment rates and that this nonlinearity in the data follows naturally 
from a DSGE model with lumpy microeconomic investment. The reason for condi-
tional heteroscedasticity in the model is that the impulse response function is history 
dependent, with an initial response that increases by approximately 50 percent from 
the bottom to the peak of the business cycle. In particular, the longer an expansion, 
the larger the response of investment to further shocks. Conversely, recovering from 
investment slumps is hard.

The left and center panels in Figure 2 depict the response over five quarters to a 
one standard deviation shock taking place at selected points of the US investment 
cycle, for an ARCH-type time series model and our calibrated lumpy investment 
DSGE model, respectively.
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The periods considered are the trough in 1961, a period of average investment 
activity in 1989, and the peak in 2000. The differences in the impulse response 
functions are due to differences in the distribution of productivity levels and capital 

Figure 1. Conditional Heteroscedasticity of the Aggregate Investment Rate

Notes: This figure depicts a smooth, nonparametric, normalized estimate of the squared resid-
ual from fitting an autoregressive process to quarterly aggregate investment rates from 1960 to 
2005, as a function of the average recent investment rate. We use a Gaussian kernel and deter-
mine the bandwidth via cross-validation. Both the autoregressive process and the average of 
recent investment rates consider six lags. These choices follow from the results we present in 
Section I. The dotted lines depict one-standard error bands. 

Figure 2. Impulse Response in Different Years–Time Series, Lumpy and Frictionless Models

Notes: This figure depicts the response over five quarters to a one standard deviation shock taking place at selected 
points of the US investment cycle: a trough in 1961, a period of average investment activity in 1989, and a peak 
in 2000. The figures in the three panels are normalized so that the impulse response in 1989:I (normal investment 
activity) is one upon impact. It does so for an ARCH-type time series model (left panel), our calibrated lumpy 
investment DSGE model (center panel), and a frictionless investment model (right panel).
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stocks across productive units. Following a sequence of above average productiv-
ity shocks, these units concentrate in a region of the state-space where they are 
more responsive to any additional shock. The variability of these impulse responses 
is large and similar in the left and center panels. For example, the immediate 
response to a shock in the trough in 1961 and to the peak in 2000 differs by roughly  
50 percent. The contrast with the right panel of this figure, which depicts the impulse 
responses for a model with no microeconomic frictions in investment (essentially, 
the standard RBC model), is evident. For the latter, the impulse responses vary little 
over time.

Beyond explaining the rich nonlinear dynamics of aggregate investment rates, 
our model provides a counterexample to the claim that microeconomic investment 
lumpiness is inconsequential for macroeconomic analysis. This is relevant, since 
even though Caballero and Engel (1999) found substantial aggregate nonlinearities 
in a partial equilibrium model with lumpy capital adjustment, Veracierto (2002), 
Thomas (2002), and Khan and Thomas (2003, 2008) have provided examples in 
which general equilibrium undoes the partial equilibrium features.

Why do we reach a different conclusion? Because, implicitly, earlier calibrations 
imposed that the bulk of investment dynamics was determined by general equilib-
rium price responses rather than by adjustment costs. Instead, we focus our calibra-
tion effort on gauging the relative importance of these forces, and conclude that 
both, adjustment costs and price responses, play a relevant role.

Our calibration begins by noting that the objective in any dynamic macroeco-
nomic model is to trace the impact of aggregate shocks on aggregate endogenous 
variables (investment in our context). The typical response of the endogenous vari-
able is attenuated and spread over time by both microeconomic frictions and aggre-
gate price responses. We refer to this process as smoothing, and decompose it into 
its adjustment cost (AC) and price response (PR) components.

In the context of nonlinear lumpy-adjustment models, AC-smoothing does not 
merely refer to the existence of microeconomic inaction and lumpiness per se, but 
to their impact in smoothing the response of aggregates. This is a key distinction in 
this class of models, as in many instances microeconomic inaction translates into 
limited aggregate inertia (recall the classic Caplin and Spulber 1987 result, where 
price-setters follow Ss rules but the aggregate price level behaves as if there were no 
microeconomic frictions).

In a nutshell, our key difference with the previous literature is that the latter 
explored combinations of parameter values that implied microeconomic lumpiness 
but left almost no role for AC-smoothing, thereby precluding the possibility of fit-
ting facts, such as the conditional heteroscedasticity of aggregate investment rates 
depicted in Figures 1 and 2.

Table 1 illustrates our model’s decomposition into AC- and PR-smoothing. The 
lower entry shows the volatility of quarterly aggregate investment rates in our 
model with adjustment costs and price responses. The upper entry reports this sta-
tistic when neither smoothing mechanism is present, that is, when adjustment costs 
are set to zero and prices to their average value in our model with both sources of 
smoothing. The intermediate entries consider only one source of smoothing at a 
time, for example, “only AC-smoothing” retains adjustment costs but sets prices 
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at their average values in the economy that leads to the lower entry. The reduction 
of the standard deviation of the quarterly aggregate investment rate achieved by 
AC-smoothing alone amounts to 81.0 percent of the reduction achieved by the 
combination of both smoothing mechanisms. At the other extreme, the additional 
smoothing achieved by AC-forces, beyond what PR-smoothing achieves by itself, 
is 15.4 percent of the total, since PR-smoothing can account for 84.6 percent of 
total smoothing.

It is clear from Table 1 that both sources of smoothing do not enter additively, 
so some care is needed when quantifying their relative importance. Averaging the 
upper and lower bounds mentioned above suggests roughly similar roles for both. 
By contrast, as discussed in detail in Section III, the contribution of AC-smoothing 
is typically much smaller in the recent DSGE literature.

Our calibration strategy is designed to capture the role of AC-smoothing as 
directly as possible. To this effect, we use sectoral data to calibrate the param-
eters that control the impact of micro-frictions on aggregates, before general 
equilibrium price responses have a chance to play a significant smoothing role. 
Specifically, we argue that the response of semiaggregated (e.g., three-digit) 
investment to corresponding sectoral shocks is less subject to general equilib-
rium price responses, and, hence, serves to identify the relative importance of 
AC-smoothing.

The first row in Table 2 shows the observed volatility of annual sectoral and 
aggregate investment rates, and their ratio. The second and third rows show these 
values for our baseline lumpy model and the model with no adjustment costs in 
investment, respectively. The fourth row reports these statistics for the model 
in Khan and Thomas (2008). It is apparent from this table that the frictionless 
model fails to match the sectoral data (it was never designed to do so). In con-
trast, by reallocating smoothing from the PR- to the AC-component, the lumpy 
investment model is able to match both aggregate and sectoral volatility.

Table 1—Contribution of AC and PR Forces to Smoothing of I/K

No smoothing
(0.0425)
0 percent

↙ ↘
Only AC smoothing Only PR smoothing

(0.0040) ↓ (0.0036)
81.0 percent 84.6 percent

↘ ↙ 

AC and PR smoothing
(0.0023)

100 percent

Notes: This table shows the quarterly volatility of the aggregate investment rate from four 
models. The upper entry refers to the case when adjustment costs are set to zero and prices to 
their average value in our baseline lumpy investment model. The intermediate entries consider 
only one source of smoothing at a time, for example, “only AC-smoothing” retains adjustment 
costs, but sets prices at their average values in the economy that leads to the lower entry. The 
lower entry refers to our baseline lumpy investment model with adjustment costs and prices 
that adjust to clear markets (AC and PR smoothing).
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The calibration strategy described above goes a long way toward capturing the 
heteroscedasticity present in aggregate investment data. It accounts for more than 
60 percent of this heteroscedasticity. To match all the heteroscedasticity in aggre-
gate investment data, we introduce maintenance and replacement investment as an 
essential feature of production units, and assume that some within-period main-
tenance is necessary to continue operation. Even though there is evidence on the 
quantitative relevance of maintenance and replacement investment (e.g., McGrattan 
and Schmitz 1999 and Verick, Letterie, and Pfann 2004), there is a lack of micro-
economic studies to help gauge the extent to which these forms of investment are 
needed to continue operation. We therefore use aggregate statistics, prominent 
among them a conditional heteroscedasticity measure, to help us identify the main-
tenance parameter.

The remainder of the paper is organized as follows. In the next section, we provide 
additional evidence on conditional heteroscedasticity in aggregate investment data. 
Section II presents our dynamic general equilibrium model. Section III discusses the 
calibration method in detail. Section IV presents the main macroeconomic implica-
tions of the model. Section V concludes and is followed by several appendices.

I.  Conditional Heteroscedasticity

In this section, we present time series evidence for conditional heteroscedasticity 
in aggregate US investment-to-capital ratios. We also explain why we prefer non-
linearity measures based on conditional heteroscedasticity rather than the skewness 
and kurtosis measures commonly used in the investment literature.

A. Time Series Models

We consider two stationary time series models within the ARCH family to explore 
whether aggregate investment exhibits the kind of heteroscedasticity predicted by 
Ss-type models, namely that investment responds more to a shock during a boom 
than during a slump. Both models share the following autoregressive structure:

(1) 	​  x​t​  = ​ ∑​ 
j=1

 ​ 
p

  ​ ​ϕ​j​ ​x​t−j​  + ​ σ​t​ ​e​t​ ,

Table 2—Volatility and Aggregation

Model 3-digit Aggregate 3-digit/aggregate − ratio

Data 0.0163 0.0098 1.66
This paper 0.0163 0.0098 1.66
Frictionless 0.1839 0.0098 18.77
Khan-Thomas (2008) 0.4401 0.0100 44.01

Notes: This table compares annual sectoral and aggregate investment rates, and their ratio, for 
the data and three models. Sectoral investment data are only available at an annual frequency. 
The numbers in rows two and three come from the annual analogues of our quarterly baseline 
models. For details, see Appendices A.B and A.C. The volatility of aggregate investment rates 
in the Khan and Thomas (2008) entry of this table is taken from table III in their paper. The 
volatility of sectoral investment rates is based on our calculations.
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where ​x​t​ ≡ ​I​t​/​K​t​ denotes the investment to capital ratio, the ​e​t​ are independently and 
identically distributed with zero mean and unit variance, and ​σ​t​ is a simple function 
of recent values of ​x​t​ as summarized by the following index:1

(2) 	​​ 
_
 x ​​ t−1​ k
  ​  ≡ ​  1 _ 

k
 ​ ​∑​ 

j=1
 ​ 

k

  ​ ​x​t−j​ .

For model 1, we stipulate

(3) 	​  σ​t​  = ​ α​1​  + ​ η​1​ ​​
_
 x ​​ t−1​ k
  ​ ,

while for model 2, we posit

(4) 	​  σ​ t​ 2​  = ​ α​2​  + ​ η​2​ ​​
_
 x ​​ t−1​ k
  ​ .

It follows from (1) that the impulse response of x to e upon impact at time t, denoted 
by IR​F​0, t​ , is equal to ​σ​t​ . Hence,

(5) 
IR​F​0, t​  = 

⎧
⎪
⎨
⎪
⎩

​α​1​  + ​ η​1​ ​​
_
 x ​​ t−1​ k
  ​ , for model 1;

​√ 
_

  ​α​2​  + ​ η​ 2​ ​​
_
 x ​​ t−1​ k
  ​ ​ ,    for model 2.

When ​η​1​ = ​η​ 2​ = 0, the above models simplify to a standard autoregressive time 
series, with an impulse response that does not vary over time.

The models with lumpy adjustment developed in this paper (and earlier models 
such as Caballero and Engel 1999) predict positive values for ​η​1​ and ​η​ 2​. The rea-
son is that in these models the cross section of mandated investment concentrates 
in a region with a steeper likelihood of adjusting when recent investment was  
high, which implies that investment becomes more responsive to shocks during 
these times.

B. Estimation and Results

Assume observations for ​x​t​ are available for t = 1, … , T, and denote by ​p​max​ and ​
k​max​ the largest values considered for p and k in (1) and (2), respectively. For all pairs 

1 This index can be viewed as a parsimonious and robust approximation to the sequence of innovations up to 
period t − 1.
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(p, k) with p ≤ ​p​max​ and k ≤ ​k​max​, we estimate an AR( p) using OLS, and then use 
the residuals from this regression, denoted ​ϵ​t​ , to estimate α and η via OLS from:2

(6) 	  Model 1:      | ​ε​t​ |  = ​ √ 
_

 ​ 2 _ π ​ ​ ​( ​α​1​  + ​ η​1​ ​​
_
 x ​​ t−1​ k
  ​ )​  +  error,

	 Model 2:     ​   ε​ t​ 2​  = ​ α​2​  + ​ η​ 2​ ​​
_
 x ​​ t−1​ k
  ​  +  error.

We choose the optimal values for p and k, denoted by ​p​∗​ and ​k​ ∗​, using the Akaike 
Information Criterion (AIC).

Table 3 presents the estimates obtained for both models; for US private, fixed, 
nonresidential investment; and for equipment and structures separately. The fre-
quency is quarterly, from 1960:I to 2005:IV. We use ​p​max​ = ​k​max​ = 12.

The first and second rows report the optimal values for p and k. The following 
seven rows report statistics related to the magnitude and significance of the param-
eter that captures heteroscedasticity and time variation in impulse responses, η. 
The third row has the point estimate for η, and the fourth row has the corre-
sponding t-statistic, obtained from OLS estimates for (6). The latter may overstate 
the significance of η, since it ignores variations in the first-stage regressions that 
determine the autoregressive order, ​p​∗​. For this reason, we use 10,000 bootstrap 
simulations for the investment rate series, starting from our estimates for ​e​t​ in (1), 
to provide an alternative measure of the precision of our estimates for η.3 The 
fifth row presents the p-values we obtain for η > 0 via bootstrap simulations. We 

2 The first equation is based on

 	  E ​[ | ​ϵ​t​ || ​​_ x ​​ t−1​ k
  ​ ]​  = ​ √ 

_
 ​ 2 _ π ​ ​ ​( ​α​1​  + ​ η​1​ ​​

_
 x ​​ t−1​ k
  ​ )​,

while the second equation comes from

	 E ​[ ​ϵ​ t​ 2​ | ​​
_
 x ​​ t−1​ k
  ​ ]​  = ​ α​2​  + ​ η​ 2​  ​​

_
 x ​​ t−1​ k
  ​.

Also note that we use the same number of observations when estimating all regressions: T − max( ​p​max​, ​k​max​).
3 For each series generated via bootstrap, we estimate the ​p​max​ × ​k​max​ models and determine the optimal values 

for p, k, and, most importantly, η.

Table 3—Evidence of Heteroscedasticity—US Investment to Capital Ratio

Series All Equipment Structures

Model 1 2 1 2 1 2

​p​∗​ 6 6 7 7 6 6
​k​ ∗​ 6 6 8 8 2 2
η × 1​0​3​ 45.93 0.03731 30.62 0.05380 39.95 0.02581
t − η 3.121 2.496 2.089 1.724 4.097 3.245
p-value(η > 0)-bootstrap 0.0088 0.0236 0.0375 0.0742 0.0033 0.0094
± log(​σ​max​/​σ​min​) 0.7367 0.5933 0.5521 0.4395 1.1167 1.1169
± log(​σ​95​/​σ​5​) 0.6118 0.4816 0.4520 0.3547 0.9194 0.8894
± log(​σ​90​/​σ​10​) 0.5203 0.4082 0.3355 0.2646 0.8003 0.7403
Skewness 0.1574 0.1574 0.3759 0.3759 −0.1051 −0.1051 
Excess kurtosis −0.9803 −0.9803 −0.1401 −0.1401 −0.9864 −0.9864 
First-order autocorrelation ​e​t​ −0.0452 −0.0412 −0.0151 −0.0131 −0.0823 −0.0826 

Observations 172 172 172 172 172 172
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report one-sided p-values since Ss-type models predict η > 0. The next four rows 
present measures for the range of values taken by the estimated impulse response 
upon impact; ​σ​max​ , and ​σ​min​ denote the largest and smallest heteroscedasticity esti-
mates over the sample considered (172 observations), ​σ​p​ the p-th percentile. We 
sign the range estimates by the estimated sign of η. The last row reports the first-
order autocorrelation for the estimated innovations (the ​e​t​ in (1)), which are con-
sistent with the independently and identically distributed assumption.

Table 3 shows that nonresidential investment exhibits significant (both sta-
tistically and economically) heteroscedasticity for both models. This is also the 
case for structures, and for equipment under Model 1. The range of heterosce-
dasticity values implied by the estimated models is large. For example, the esti-
mates for model 2 imply that the ninety-fifth percentile is 61.9 percent larger  
(​e​0.4816​ ≃ 1.619) than the fifth percentile.

It also follows from Table 3 that nonlinearities in aggregate investment are much 
larger (and more significant) for structures than for equipment. This is consistent 
with a more prominent role for lumpy adjustment in the case of structures.4

Appendix B provides additional evidence supporting our heteroscedasticity find-
ing for aggregate investment. We apply the methodology described above to the 
cyclical component of TFP and find no significant heteroscedasticity. This suggests 
that the heteroscedastic behavior we find in aggregate investment does not come 
from the underlying shocks and lends credibility to the explanation we explore in 
this paper, based on lumpy investment behavior. We also show that there is no signif-
icant heteroscedasticity in the cyclical component of GDP, while Berger and Vavra 
(2012) apply the methodology developed here to durables consumption, which is 
likely to be subject to similar nonconvex adjustment costs as business investment, 
and find significant heteroscedasticity.

C. Choosing a Nonlinearity Measure

In this paper, we introduce a new measure to capture nonlinear relations between 
shocks and the endogenous aggregate of interest (the investment-to-capital ratio). It 
is worth comparing this measure with measures that have been used previously in 
the lumpy investment literature.

Caballero, Engel, and Haltiwanger (1995) and Caballero and Engel (1999) used 
skewness and kurtosis of the aggregate investment rate to capture nonlinear behav-
ior, as did Thomas (2002) and Khan and Thomas (2003, 2008). This approach is 
justified as follows: If the model’s driving force is Gaussian and the relation between 
aggregate investment and shocks is linear, the investment rate will also be Gaussian. 
Finding skewness and kurtosis measures for aggregate investment that differ from 
those expected under normality can then be interpreted as evidence in favor of a 
nonlinear relationship.

4 Similarly, when comparing lumpy investment models with linear time-series models, Caballero and Engel 
(1999) find a much larger reduction in out-of-sample forecast errors for structures than for equipment.
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A problem with this approach is that mapping skewness and kurtosis of aggre-
gate investment into quantities of interest in macroeconomics is far from obvi-
ous. Beyond what threshold do departures from normality in the skewness and 
kurtosis coefficients become relevant from a macroeconomic perspective? By 
contrast, the reduced-form time-series models introduced in Section IA estab-
lish a direct relation between the nonlinearity measure introduced in this paper 
and the impulse response function for aggregate investment (see equation (5)). 
Furthermore, a simple function of the parameters of our time-series model mea-
sures the time-variation of the impulse response upon impact. This is, we believe, 
an important advantage when it comes to assessing the macroeconomic relevance 
of nonlinearities.

A second advantage of the nonlinearity measure we advocate in this paper is that 
its statistical power is significantly higher than that of the skewness and kurtosis 
measures. As shown in Appendix B, statistical tests that detect departures from a 
frictionless RBC-type model using skewness and kurtosis statistics have consider-
ably lower power than tests based on estimates of η (or a function thereof) using 
the simple time-series models presented in this section.5 It is not surprising that a 
statistic especially tailored to capture the specific type of nonlinearity characteristic 
of Ss models does a better job, as reflected in higher statistical power.

II.  The Model

In this section, we describe our model economy. We start with the problem of the 
production units, followed by a brief description of the households and the defini-
tion of equilibrium. We conclude with a sketch of the equilibrium computation. We 
follow closely Khan and Thomas (2008), both in terms of substance and notation. 
Aside from parameter differences, we have three main departures from Khan and 
Thomas (2008). First, production units face persistent sector-specific productivity 
shocks, in addition to aggregate and idiosyncratic shocks. Second, production units 
undertake some within-period maintenance investment, which is necessary to con-
tinue operation; some parts and machines that break down need to be replaced. 
Third, the distribution of aggregate productivity shocks is continuous rather than a 
Markov discretization, which allows us to back out the aggregate shocks that are fed 
into the model to produce Figures 2 and 3.

A. Production Units

The economy consists of a large number of sectors, which are each populated by 
a continuum of production units. Since we do not model entry and exit decisions, the 
mass of these continua is fixed and normalized to one. There is one commodity in 
the economy that can be consumed or invested. Each production unit produces this 
commodity, employing its predetermined capital stock (k) and labor (n), according 

5 Caballero, Engel, and Haltiwanger (1995) and Caballero and Engel (1999) did not face the statistical power 
problem we highlight here because they worked with 20 sectoral investment series instead of one aggregate invest-
ment series, as is common in the DSGE literature.
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to the following Cobb-Douglas decreasing-returns-to-scale production function  
(θ > 0, ν > 0, θ + ν < 1):

(7) 	​  y​t​  = ​ z​t​ ​ϵ​S, t​ ​ϵ​I, t​ ​k​ t​ θ​ ​n​ t​ ν​ ,

where z, ​ϵ​S​ , and ​ϵ​I​ denote aggregate, sectoral, and unit-specific (idiosyncratic) pro-
ductivity shocks.

We denote the trend growth rate of aggregate productivity by (1 − θ)(γ − 1), so 
that y and k grow at rate γ − 1 along the balanced growth path. From now on we 
work with k and y (and later C  ) in efficiency units. The detrended aggregate pro-
ductivity level, which we also denote by z, evolves according to an AR(1) process 
in logs, with persistence parameter ​ρ​A​ and normal innovations with zero mean and 
variance ​σ​ A​ 2

 ​.
The sectoral and idiosyncratic technology processes follow Markov chains that 

are approximations to continuous AR(1) processes with Gaussian innovations.6 The 
latter have standard deviations ​σ​S​ and ​σ​I​ , and autocorrelations ​ρ​S​ and ​ρ​I​ , respec-
tively. Productivity innovations at different aggregation levels are independent. 
Also, sectoral productivity shocks are independent across sectors and idiosyncratic 
productivity shocks are independent across productive units.

Each period a production unit draws from a time invariant distribution, G, its cur-
rent cost of capital adjustment, ξ ≥ 0, which is denominated in units of labor. G is 
a uniform distribution on [0, ​

_
 ξ ​], common to all units. Draws are independent across 

units and over time, and employment is freely adjustable.
At the beginning of a period, a production unit is characterized by its predetermined 

capital stock, the sector it belongs to and the corresponding sectoral productivity 
level, its idiosyncratic productivity, and its capital adjustment cost. Given the aggre-
gate state, it decides its employment level, n, production occurs, workers are paid, 
and investment decisions are made. Upon investment the unit incurs a fixed cost of 
ωξ, where ω is the current real wage rate. Capital depreciates at a rate δ and a frac-
tion of depreciated capital is replaced to continue operation. Then the period ends.

We also introduce replacement and maintenance investment as an essential fea-
ture of actual production units. This is justified when each productive unit can be 
viewed as a composite of core and peripheral components, where core components 
need to be replaced immediately for the unit to continue production. Alternatively, 
maintaining certain components of a productive unit on a regular basis so that they 
do not depreciate at all, can be considerably more cost effective than using a stop-go 
approach to maintenance.7

Note that (​i​ M​  )/(k) ≡ γ − 1 + δ is the investment rate needed to fully compen-
sate depreciation and trend growth. The degree of necessary maintenance or replace-
ment, χ, can then be conveniently defined as a fraction of (​i​ M​)/(k). If χ = 0, no 
maintenance investment is needed; if χ = 1, all depreciation and trend growth must 
be replaced for a production unit to continue operation. We can now summarize the 

6 We use the discretization in Tauchen (1986), see online Appendix D for details.
7 For instance, maintaining the roof of a structure on a regular basis is likely to dominate over the alternative of 

repairing it only when it begins to leak.
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evolution of the unit’s capital stock (in efficiency units) between two consecutive 
periods, from k to ​k′​, after nonmaintenance investment i and maintenance investment ​
i​ M​ take place, as follows:

Fixed cost paid Future capital ​k′​ Total investment i + ​i​ M​ 

i ≠ 0 ωξ any ​k′​ > 0 γ​k′​ − (1 − δ)k 

i = 0 0 (1 − χ) ​ 
(1 − δ)
 _ 

γk
  ​ k+ χk χ(γ − 1 + δ)k 

If i = 0 and χ = 0, then ​k′​ = ((1 − δ)k)/(γ), while ​k′​ = k if χ = 100 percent. We 
treat χ as a primitive parameter.8

As we will discuss in Section IV, replacement and maintenance investment play 
an important role in shaping aggregate investment dynamics, since it determines the 
effective (i.e., after maintenance) depreciation rate. This differs from what happens 
with linear investment models, where the depreciation rate plays a minor role. We 
have introduced these determinants of investment in an admittedly stylized manner 
with a single structural parameter, and leave for future research a more detailed 
study of these issues.

Given the independently and identically distributed nature of the adjustment 
costs, it is sufficient to describe differences across production units and their evo-
lution by the distribution of units over (​ϵ​S​ , ​ϵ​I​ , k). We denote this distribution by μ. 
Thus, (z, μ) constitutes the current aggregate state and μ evolves according to the 
law of motion ​μ′​ = Γ(z, μ), which production units take as given.

Next, we describe the dynamic programming problem of each production unit. 
We take two shortcuts (details can be found in Khan and Thomas 2008, section 2.4). 
First we state the problem in terms of utils of the representative household (rather 
than physical units), and denote by p = p(z, μ) the marginal utility of consump-
tion. This is the relative intertemporal price faced by a production unit. Second, 
given the independently and identically distributed nature of the adjustment costs, 
continuation values can be expressed without explicitly taking into account future 
adjustment costs.

We simplify notation by writing maintenance investment as

(8) 	​  i​ M​  =  (ψ  −  1)(1  −  δ) k,

with ψ ∈ ​[ 1, ​ 
γ
 _ 

1 − δ ​ ]​ defined via

(9) 	  ψ  =  1  + ​ ( ​  γ
 _ 

1 − δ
 ​  −  1 )​ χ.

8 We note that our version of maintenance investment differs from what Khan and Thomas (2008) call “con-
strained investment.” Here, maintenance refers to the replacement of parts and machines without which production 
cannot continue, while in Khan and Thomas (2008) it is an extra margin of adjustment for small investment projects.
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Let ​V​1​(​ϵ​S​ , ​ϵ​I​ , k, ξ; z, μ) denote the expected discounted value, in utils, of a unit 
that is in idiosyncratic state (​ϵ​I​ , k, ξ), and is in a sector with sectoral productivity ​ϵ​S​ ,  
given the aggregate state (z, μ). Then the expected value prior to the realization of 
the adjustment cost draw is given by

(10) 	​  V​ 0​ (​ϵ​S​ , ​ϵ​I​ , k; z, μ)  = ​ ∫​ 
0
​ 
​
_
 ξ ​
​ ​V​1​ (​ϵ​S​ , ​ϵ​I​ , k, ξ; z, μ) G (dξ).

With this notation the dynamic programming problem is given by

(11) 	​  V​1​ (​ϵ​S​ , ​ϵ​I​ , k, ξ; z, μ)  = ​ max   
n
  ​ ​{ CF  +  max ​( ​V​ I​ , ​max   

​k​ ′​
  ​ [−AC  + ​ V​ A​] )​ }​,

where CF denotes the firm’s f low value; ​V​ I​ the firm’s continuation value if it chooses 
inaction and does not adjust; and ​V​ A​ the continuation value, net of adjustment costs 
AC, if the firm adjusts its capital stock. That is,

(12A) 	  CF  = ​ [ z ​ϵ​S​ ​ϵ​I​ ​k​θ​ ​n​ν​  −  ω (z, μ)n  − ​ i​ M​ ]​ p (z, μ),

(12B) 	​  V​ I​   =  β E ​[ ​V​ 0​(​ϵ​ S​ ′ ​ , ​ϵ​ I​ ′ ​ , ψ (1  −  δ) k/γ; ​z′​, ​μ′​  ) ]​,

(12C) 	  AC  =  ξω (z, μ) p (z, μ),

(12D) 	​  V​ A​  =  −ip (z, μ)  +  β E ​[ ​V​ 0​(​ϵ​ S​ ′ ​, ​ϵ​ I​ ′ ​, ​k′​; ​z′​, ​μ′​  ) ]​,

where both expectation operators average over next period’s realizations of the 
aggregate, sectoral, and idiosyncratic shocks, conditional on this period’s values, 
and we recall that ​i​ M​ = (ψ − 1)(1 − δ  )k and i = γ k′ − (1 − δ  )k − ​i​ M​. Also, β 
denotes the discount factor from the representative household.

Taking as given intra- and intertemporal prices ω(z, μ) and p(z, μ), and the law of 
motion ​μ′​ = Γ(z, μ), the production unit chooses optimally labor demand, whether 
to adjust its capital stock at the end of the period, and the return capital stock, condi-
tional on adjustment. This leads to policy functions N = N(​ϵ​S​ , ​ϵ​I​ , k; z, μ) and K = K(​
ϵ​S​ , ​ϵ​I​ , k, ξ; z, μ). Since capital is predetermined, the optimal employment decision is 
independent of the current adjustment cost draw.

B. Households

We assume a continuum of identical households that have access to a complete 
set of state-contingent claims. Hence, there is no heterogeneity across households. 
Moreover, they own shares in the production units and are paid dividends. Following 
the argument in Khan and Thomas (2008, section 2.4), we focus on the first-order 
conditions of the households that determine the equilibrium wage and the intertem-
poral price.
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Households have a standard felicity function in consumption and (indivisible) 
labor:

(13) 	  U ​( C, ​N​ h​ )​  =  log C  −  A​N​ h​,

where C denotes consumption and ​N​ h​ the fraction of household members that work. 
Households maximize the expected present discounted value of the above felicity 
function. By definition we have

(14) 	  p (z, μ)  ≡ ​ U​C​ ​( C, ​N​ h​ )​  = ​   1 _ 
C (z, μ)

 ​ ,

and from the intratemporal first-order condition:

(15) 	  ω (z, μ)  =  −  ​ 
​U​ N​ ​( C, ​N​ h​ )​

 _ 
p (z, μ)

 ​   = ​   A _ 
p (z, μ)

 ​ .

C. Recursive Equilibrium

A recursive competitive equilibrium is a set of functions

 	​  ( ω, p, ​V​ 1​, N, K, C, ​N​ h​, Γ )​,

that satisfy

	 (i)	 Production unit optimality: Taking ω, p, and Γ as given, ​V​ 1​(​ϵ​S​ , ​ϵ​I​ , k; z, μ) 
solves (10) and the corresponding policy functions are N(​ϵ​S​ , ​ϵ​I​ , k; z, μ) and  
K(​ϵ​S​, ​ϵ​I​, k, ξ; z, μ).

	 (ii)	 Household optimality: Taking ω and p as given, the household’s consumption 
and labor supply satisfy (13) and (14).

	 (iii)	 Commodity market clearing:

   C    (z, μ)  = ​ ∫​ 
 
​ 
 
​ z ​ϵ​S​ ​ϵ​I​ ​k​ θ​ N (​ϵ​S​ , ​ϵ​I​ , k; z, μ​)​ν​ dμ

	 − ​ ∫​ 
 
​ 
 
​ ​∫​ 

0
​ 
​
_
 ξ ​
​ [γ K (​ϵ​S​ , ​ϵ​I​ , k, ξ; z, μ)  −  (1  −  δ) k] dGdμ.

	 (iv)	 Labor market clearing:

   ​N   ​ h​ (z, μ)  = ​ ∫​ 
 
​ 
 
​ N (​ϵ​S​ , ​ϵ​I​ , k; z, μ) dμ

	 + ​ ∫​ 
 
​ 
 
​ ​∫​ 

0
​ 
​
_
 ξ ​
​ ξ (γ K (​ϵ​S​ , ​ϵ​I​ , k, ξ; z, μ)  −  ψ (1  −  δ  ) k) dGdμ,

		  where  (x) = 0, if x = 0 and 1, otherwise.
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	 (v)	 Model consistent dynamics: The evolution of the cross section that charac-
terizes the economy, ​μ′​ = Γ(z, μ), is induced by K(​ϵ​S​ , ​ϵ​I​ , k, ξ; z, μ) and the 
exogenous processes for z, ​ϵ​S​ , and ​ϵ​I​ .

Conditions (i), (ii), (iii), and (iv) define an equilibrium given Γ, while step (v) 
specifies the equilibrium condition for Γ.

D. Solution

As is well-known, (11) is not computable, since μ is infinite dimensional. Hence, 
we follow Krusell and Smith (1997, 1998) and approximate the distribution μ by 
its first moment over capital, and its evolution, Γ, by a simple log-linear rule. In the 
same vein, we approximate the equilibrium pricing function by a log-linear rule:

(16A) 	  log ​​
_
 k ​′​  = ​ a​k​  + ​ b​k​ log ​

_
 k ​  + ​ c​k​  log z,

(16B) 	  log p  = ​ a​p​  + ​ b​p​ log ​
_
 k ​  + ​ c​p​ log z,

where ​
_
 k ​ denotes aggregate capital holdings. Given (15), we do not have to specify 

an equilibrium rule for the real wage. As usual with this procedure, we posit this 
form and verify that in equilibrium it yields a good fit to the actual law of motion 
(see online Appendix D for details).

To implement the computation of sectoral investment rates, we simplify the prob-
lem further and impose two additional assumptions: (i) ​ρ​S​ = ​ρ​I​ = ρ and (ii) enough 
sectors, so that sectoral shocks have no aggregate effects. Combining both assump-
tions reduces the state space in the production unit’s problem further to a combined 
technology level ϵ ≡ ​ϵ​S​ ​ϵ​I​ . Now, log ϵ follows an AR(1) with first-order autocorre-
lation ρ and Gaussian innovations N(0, ​σ​2​), with ​σ​2​ ≡ ​σ​ S​ 2​ + ​σ​ I​ 2​ . Since the sectoral 
technology level has no aggregate consequences by assumption, the production unit 
cannot use it to extract any more information about the future than it has already from 
the combined technology level. Finally, it is this combined productivity level that is 
discretized into a 19-state Markov chain. The second assumption allows us to compute 
the sectoral problem independently of the aggregate general equilibrium problem.9

Combining these assumptions and substituting ​
_
 k ​ for μ into (11) and using (16A)– 

(16B), we have that (12A)–(12D) become

(17A) 	  CF  = ​ [ zϵ ​k​ θ​ ​n​ ν​  −  ω (z, ​
_
 k ​) n  − ​ i​ M​ ]​ p (z, ​

_
 k ​),

(17B) 	​  V​ I​  =  β E ​[ ​V​ 0​ (​ϵ′​, ψ (1  −  δ) k/γ; ​z′​, ​
_
 k ​′  ) ]​,

(17C) 	  AC  =  ξω (z, ​
_
 k ​) p (z, ​

_
 k ​),

(17D) 	​  V​ A​  =  −ip (z, ​
_
 k ​)  +  β E ​[ ​V​ 0​ (​ϵ′​, ​k′​; ​z′​, ​

_
 k ​′  ) ]​.

9 In online Appendix D.3 we show that our results are robust to this simplifying assumption.
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With the above expressions, (11) becomes a computable dynamic programming 
problem with policy functions N = N(ϵ, k; z, ​

_
 k ​) and K = K(ϵ, k, ξ; z, ​

_
 k ​). We solve 

this problem via value function iteration on ​V​ 0​ and Gauss-Hermitian numerical inte-
gration over log(z) (see online Appendix D for details).

Several features facilitate the solution of the model. First, as mentioned above, 
the employment decision is static. In particular, it is independent of the investment 
decision at the end of the period. Hence, we can use the production unit’s first-order 
condition to maximize out the optimal employment level:

(18) 	N   (ϵ, k; z, ​
_
 k ​)  = ​​ ( ​ ω (z, ​

_
 k ​)
 _ 

ν z ϵ​ k​ θ​
 ​  )​​1/(ν−1)

​.

Next, we comment on the computation of the production unit’s decision rules and 
value function, given the equilibrium pricing and movement rules (16A)–(16B). 
From (17D) it is obvious that neither ​V​ A​ nor the optimal target capital level, condi-
tional on adjustment, depend on current capital holdings. This reduces the number 
of optimization problems in the value function iteration considerably. Comparing 
(17D) with (17B) shows that ​V​ A​(ϵ; z, ​

_
 k ​) ≥ ​V​ I​(ϵ, k; z, ​

_
 k ​).10 It follows that there exists 

an adjustment cost factor that makes a production unit indifferent between adjusting 
and not adjusting:

(19) 	​    ξ ​ (ϵ, k; z, ​
_
 k ​)  = ​ 

​V​ A​ (ϵ; z, ​
_
 k ​)  − ​ V​ I​ (ϵ, k; z, ​

_
 k ​)
   __  

ω (z, ​
_
 k ​) p (z, ​

_
 k ​)
 ​   ≥  0.

We define ​ξ​ T​(ϵ, k; z, ​
_
 k ​) ≡ min​( ​

_
 ξ ​, ​  ξ ​(ϵ, k; z, ​

_
 k ​) )​. Production units with ξ ≤ ​ξ​ T​(ϵ, k; z, ​

_
 k ​)  

will adjust their capital stock. Thus,

​k′​  =  K (ϵ, k, ξ; z, ​
_
 k ​)  = 

⎧
⎪
⎨
⎪
⎩

​k​ ∗​ (ϵ; z, ​
_
 k ​) if ξ ≤ ​ξ​ T​ (ϵ, k; z, ​

_
 k ​),

(20)
ψ (1  −  δ) k/γ otherwise.

We define mandated investment for a unit with current state (ϵ, z, ​
_
 k ​) and current 

capital k as:

 	  Mandated investment  ≡  log γ ​k​ ∗​ (ϵ; z, ​
_
 k ​)  −  log ψ (1  −  δ  ) k.

That is, mandated investment is the investment rate the unit would undertake, after 
maintaining its capital, if its current adjustment cost draw were equal to zero.

Now we turn to the second step of the computational procedure that takes the 
value function ​V​ 0​(ϵ, k; z, ​

_
 k ​) as given, and prespecifies a randomly drawn sequence of 

aggregate technology levels: {​z​ t​}. We start from an arbitrary distribution ​μ​0​, implying  
a value ​​

_
 k ​​0​. We then recompute (11), using (17A)–(17D), at every point along the 

10 The production unit can always choose i = 0, and thus ​k​ ∗​ = ψ(1 − δ)k/γ.
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sequence {​z​ t​}, and the implied sequence of aggregate capital levels {​​
_
 k ​​t​}, without 

imposing the equilibrium pricing rule (16B):

 ​​    V​​ 1​ (ϵ, k, ξ; ​z​ t​ , ​​
_
 k ​​ t​ ; p)  = ​ max   

n
  ​ ​{ ​[ ​z​ t​ ϵ ​k​ θ​ ​n​ ν​  − ​ i​ M​ ]​ p  −  An

	 +  max ​{ β​V​ I​ , ​max   
​k​ ′​
  ​ ​( −ξA  −  ip 

	 +  β E ​[ ​V​ 0​ ​( ​ϵ′​, ​k′​; ​z′​, ​
_
 k ​′ (​k​t​) )​ ]​ )​ }​ }​ ,

with ​V​ I​ defined in (12B) and evaluated at ​
_
 k ​′ = ​

_
 k ​′(​k​t​). This yields new “policy 

functions”:

 	​     N​  = ​   N​ (ϵ, k; ​z​ t​ , ​​
_
 k ​​t​ , p)

 	​     K​  = ​   K​ (ϵ, k, ξ; ​z​ t​ , ​​
_
 k ​​t​ , p).

We then search for a p such that, given these new decision rules and after aggrega-
tion, the goods market clears (labor market clearing is trivially satisfied). We then 
use this p to find the new aggregate capital level.

This procedure generates a time series of { ​p​t​} and {​​
_
 k ​​t​} endogenously, with 

which assumed rules (16A)–(16B) can be updated via a simple OLS regression. 
The procedure stops when the updated coefficients ​a​k​ , ​b​k​ , ​c​k​ and ​a​p​ , ​b​p​ , ​c​p​ are  
sufficiently close to the previous ones. We show in online Appendix D that the 
implied ​R​2​ of these regressions are high for all model specifications—generally 
well above 0.99—indicating that production units do not make large mistakes 
by using the rules (16A)–(16B). This is confirmed by the fact that adding higher 
moments of the capital distribution does not increase forecasting performance 
significantly.

III.  Calibration

Our calibration strategy and parameters are standard with two additional features: 
we combine sectoral and aggregate investment rate volatilities and conditional het-
eroskedasticity of the aggregate investment rate in order to infer the relative impor-
tance of AC- and PR-smoothing as well as the maintenance parameter.

A. Calibration Strategy

The model period is a quarter. The following parameters have standard val-
ues: β = 0.9942, γ = 1.004, ν = 0.64, and ​ρ​A​ = 0.95. The depreciation rate δ  
matches the average quarterly investment rate in the data, 0.026, which leads to 
δ = 0.022. The disutility of work parameter, A, is chosen to generate an employ-
ment rate of 0.6.

Next we explain our choices for θ and the parameters of the sectoral and idio-
syncratic technology process (​ρ​S​ , ​σ​S​ , ​ρ​I​ , and ​σ​I​). The output elasticity of capital, θ, 
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is set to 0.18, in order to capture a revenue elasticity of capital, ​  θ _ 1 − ν ​ , equal to 0.5,  
while keeping the labor share at its 0.64-value.11 We determine ​σ​S​ and ​ρ​S​ by a stan-
dard Solow residual calculation on annual three-digit manufacturing data, taking 
into account sector-specific trends and time aggregation. This leads to values of 
0.0273 for ​σ​s​ and 0.8612 for ​ρ​S​ .12 For computational convenience we set ​ρ​I​ = ​ρ​S​ , 
and ​σ​I​ to 0.0472, which leads to an annual standard deviation of the sum of sectoral 
and idiosyncratic shocks equal to 0.10.13

We turn now to the joint calibration of the two key parameters of the model, the 
adjustment cost parameter, ​

_
 ξ ​, and the maintenance parameter, χ, together with the 

volatility of aggregate productivity shocks.
With the availability of new and more detailed establishment level data, research-

ers have calibrated adjustment costs by matching establishment level moments (see, 
e.g., Khan and Thomas 2008). This is a promising strategy in many instances, how-
ever, there are two sources of concern in the context of this paper’s objectives. First, 
one must take a stance regarding the number of productive units in the model that 
correspond to one productive unit in the available micro data. Some authors assume 
that this correspondence is one-to-one, while others match a large number of model-
micro-units to one observed productive unit.14

Second, in state dependent models the frequency of microeconomic adjustment 
is not sufficient to pin down the object of primary concern, which is the aggre-
gate impact of adjustment costs. Parameter changes in other parts of the model can 
have a substantial effect on this statistic, even in partial equilibrium. For example, 
anything that changes the drift of mandated investment (such as the maintenance 
investment parameter), changes the mapping from microeconomic adjustment costs 
to aggregate dynamics. Caplin and Spulber (1987) provide an extreme example of 
this phenomenon, where aggregate behavior is totally unrelated to microeconomic 
adjustment costs. In the online Appendix E, we present a straightforward extension 
of this paper’s main model that provides a good fit of observed establishment level 
moments. This extension adds two micro parameters which, as in the Caplin and 
Spulber model, have no aggregate (or sectoral) consequences, yet can alter signifi-
cantly establishment level moments.

11 In a world with constant returns to scale and imperfect competition this amounts to a markup of approxi-
mately 22 percent. The curvature of our production function lies between the values considered by Khan and 
Thomas (2008) and Gourio and Kashyap (2007). Cooper and Haltiwanger (2006), using LRD manufacturing data, 
estimate this parameter to be 0.592; Henessy and Whited (2005), using Compustat data, find 0.551.

12 See Appendix A, Section C for details and online Appendix C for robustness checks. We note that both this 
paper and Cooper and Haltiwanger (2006) use direct evidence on the driving forces to calibrate the parameters for 
these processes; in our case, evidence at the sectoral level, in the case of Cooper and Haltiwanger (2006), evidence 
at the plant level. By contrast, Khan and Thomas (2008) treat parameters of the idiosyncratic driving force as a 
free parameter to match the plant-level investment rate histogram. This may explain why Khan and Thomas (2008) 
obtain a smaller value for the volatility of idiosyncratic productivity shocks than other studies as well as why their 
adjustment costs are much smaller than those obtained in other papers (see Table 4). We thank a referee for pointing 
out this insight.

13 In Table 11 in online Appendix C we consider values of 0.075 and 0.15 for the annual total standard deviation, 
with no significant changes to our baseline calibration.

14 See Cooper and Haltiwanger (2006) and Khan and Thomas (2008) for an example of the former, and Abel 
and Eberly (2002) and Bloom (2009), who respectively assume that a continuum and 250 model micro units cor-
respond to one observed plant or firm, for examples of the latter.
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We believe that ultimately information about investment rates and shock pro-
cesses at many levels of aggregation, including the plant or the production unit level, 
should be brought to bear in order to evaluate richer nonlinear models of invest-
ment dynamics. Nevertheless, because of the aforementioned concerns, we follow 
an approach here where we use three-digit sectoral rather than plant level data to 
calibrate adjustment costs. More precisely, we choose ​σ​A​, ​

_
 ξ ​, and χ jointly to match 

three statistics in the data: the volatility of the aggregate US investment rate, the 
volatility of sectoral US investment rates, and the logarithm of the ratio between the 
ninety-fifth and the fifth percentile of the estimated values for the conditional het-
eroscedasticity of a simple ARCH model (see Section IA). We refer to this statistic 
as the heteroscedasticity range in what follows.

The novelty in our calibration strategy is that it focuses on matching the rela-
tive importance of AC- and PR-smoothing directly. This approach assumes that the 
sectors we consider are sufficiently disaggregated so that general equilibrium price 
responses can be ignored while, at the same time, there are enough micro units in 
them to justify the computational simplifications that can be made with a large num-
ber of units. Hence, the choice of the three-digit level.15

Given a set of parameters, the sequence of sectoral investment rates is gener-
ated as follows. First, the units’ optimal policies are determined as described in 
Section IID, working in general equilibrium. Next, starting at the steady state, the 
economy is subjected to a sequence of sectoral shocks. Since sectoral shocks are 
assumed to have no aggregate effects and ​ρ​I​ = ​ρ​S​ , productive units perceive them as 
part of their idiosyncratic shock and use their optimal policies with a value of one 
for the aggregate shock and a value equal to the product of the sectoral and idiosyn-
cratic shock—i.e., log(ϵ) = log(​ϵ​S​) + log(​ϵ​I​)—for the idiosyncratic shock.16 The 
value of sectoral volatility of annual investment rates we match is 0.0163. To obtain 
this number we compute the volatilities of the linearly detrended three-digit sectoral 
investment rates and take a weighted average. As noted in the introduction, this 
number is one order of magnitude smaller than the one predicted by the frictionless 
model. To match this annual sectoral volatility in the model simulations, we aggre-
gate over time the quarterly investment rates generated by the model.

As shown in Figure 1 and Section IA, the residuals from estimating an autoregres-
sive process for aggregate US investment exhibit time-varying heteroscedasticity. 
We use this information as follows. Given a quarterly series of aggregate investment-
to-capital ratios, ​x​t​ , the moment we match is obtained—both for actual and model-
simulated data—by first regressing the series on its lagged value and then regressing 
the squared residual from this regression, ​​  e ​​ t​ 2​, on ​x​t−1​. Denoting by ​σ​95​ and ​σ​5​ the 

15 Table A3 in Appendix A, Section C provides information on the average number of establishments per two-
digit, three-digit, and four-digit sectors, both in absolute terms as well as in relation to the whole US economy. 
Table 11 in online Appendix C shows that our calibration results do not change significantly if we work with two- or 
four-digit sectors.

16 Online Appendix D.3 describes the details of the sectoral computation. There we also document a robustness 
exercise where we relax the assumption that sectoral shocks have no general equilibrium effects, and recompute 
the optimal policies when micro units consider the distribution of sectoral productivity shocks—summarized by 
its mean—as an additional state variable. Our main results are essentially unchanged. Finally, it should be noted 
that our calibration abstracts from relative price effects between sectors that may dampen sectoral investment rate 
volatilities in response to sectoral shocks.
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ninety-fifth and fifth percentile of the fitted values from the latter regression, the  
heteroscedasticity range is equal to log(​σ​95​/​σ​5​). The target value for the heterosce-
dasticity range in the data is 0.3021.17

B. Calibration Results

The upper bound of the adjustment cost distribution, ​
_
 ξ ​, the maintenance param-

eter, χ, and the volatility of aggregate productivity innovations, ​σ​A​, that jointly 
match the sectoral and aggregate investment volatilities as well as the conditional 
heteroscedasticity statistic are ​

_
 ξ ​ = 8.8, χ = 0.50, and ​σ​A​ = 0.0080.18 The average 

cost actually paid is much lower than the average adjustment cost, ​
_
 ξ ​/2, as shown 

in Table 4, since productive units wait for good draws to adjust. The third row 
shows that, conditional on adjusting, in our calibrated model a production unit pays  
3.6 percent of its annual output (column 1) or, equivalently, 5.6 percent of its regular 
wage bill (column 2).19 These costs are at the lower end of previous estimates, as 
shown by comparing them with rows 4–6.

The first two rows in Table 4 report the magnitude of adjustment costs for χ = 0 
and χ = 0.25. When calibrating these models, we no longer match the heteroscedas-
ticity range in the data, but continue to match both sectoral and aggregate investment 

17 See Appendix B, Section C for further details on our calibration strategy.
18 Cooper and Haltiwanger (2006) find the mode in the distribution of annual establishment-level investment 

rates at 0.04. With an effective annual drift of 0.104, this would suggest a maintenance parameter just below 40 per-
cent. Alternatively, McGrattan and Schmitz (1999) show, for Canadian data, that maintenance and repair expendi-
tures for equipment and structures amounts to roughly 30 percent of expenditures on new equipment and structures. 
This would suggest just below 25 percent maintenance as a fraction of overall investment. And Verick, Letterie, 
and Pfann (2004) report that replacement investment in Germany accounts for 66 percent of all investment, which 
would suggest a value for χ of 0.66. Notice that we do not necessarily need these types of investment to be friction-
less, as long as their adjustment costs are much smaller than those for large and lumpy investment projects and are 
required for the continuing operation of a production unit.

19 To compare our findings with the annual adjustment cost estimates in the literature, we report these numbers 
for an annual analogue of the quarterly model.

Table 4—The Economic Magnitude of Adjustment Costs—Annual

Adjustment costs/ Adjustment costs/
unit’s output unit’s wage bill
(in percent) (in percent)

Model (1) (2)
This paper (χ = 0) 38.9 60.9
This paper (χ = 0.25) 12.7 19.8
This paper (χ = 0.50) 3.6 5.6
Caballero-Engel (1999) 16.5 —
Cooper-Haltiwanger (2006) 22.9 —
Bloom (2009) 35.4 —
Khan-Thomas (2008) 0.5 0.8
Khan-Thomas (2008) “Huge Adj. Costs” 3.7 5.8

Notes: This table displays the average adjustment costs paid, conditional on adjustment, as a 
fraction of output (left column) and as a fraction of the wage bill (right column), for various 
models. Rows 4–6 are based on table IV in Bloom (2009). For Cooper and Haltiwanger (2006) 
and Bloom (2009) we report the sum of costs associated with two sources of lumpy adjust-
ment: fixed adjustment costs and partial irreversibility. The remaining models only have fixed 
adjustment costs.
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volatilities. For χ = 0.25, the magnitude of adjustment costs lies slightly below the 
average of those estimated in the literature, for χ = 0 they are slightly above the 
maximum value, but still within the ballpark.

Table 4 also shows that, ultimately, the main difference between our calibration 
and Khan and Thomas (2008) is the size of the adjustment cost. As the next to last 
row indicates, the average adjustment costs paid by firms in the Khan and Thomas 
(2008) baseline economy are small, compared to the estimates in the literature and 
our calibration. This is true even for Khan and Thomas’ “huge adjustment costs” 
calibration (see Khan and Thomas 2008, section 6), namely a 25 fold increase in ​_
 ξ ​. Since the option value of waiting is higher when ​

_
 ξ ​ is larger, actual adjustment 

costs are still only one-tenth of what we obtain for the same maintenance parameter, 
χ = 0. Conversely, for χ = 0 we find that approximately a 400 fold increase in the 
value of ​

_
 ξ ​ used by Khan and Thomas (2008) in their benchmark model is needed to 

jointly match the aggregate and sectoral volatility of investment rates.
The first two rows of Table 2 and Table 5 show that our model fits both the sectoral 

and aggregate volatility of investment, as well as the range of conditional heterosce-
dasticity in aggregate data. This is not surprising, since our calibration strategy is 
designed to match these moments. In contrast, the bottom two rows in each of these 
tables show that neither the frictionless counterpart of our model nor the Khan and 
Thomas (2008) model match these features.20

The first row in Table 5 shows the values obtained directly from the data using 
our ARCH model. The second and third rows show the range of heteroscedasticity 
values for versions of our model with values of χ smaller than in the benchmark 
case. Even though these ranges now are smaller than those in the data, they continue 
being significantly larger than those implied by a frictionless model. The model 
with χ = 0 has a heteroscedasticity range three times as large as in the frictionless 
model, and it accounts for more than 60 percent of the conditional heteroscedasticity 

20 As noted earlier, Khan and Thomas (2008) exhibits slightly lower nonlinearity than our calibration of a fric-
tionless model because of differences in the curvature of the revenue function.

Table 5—Heteroscedasticity Range

Model log (​σ​95​/​σ​5​) 

Data 0.3021
This paper (χ = 0) 0.1830
This paper (χ = 0.25) 0.2173
This paper (χ = 0.50) 0.2901
Quadratic adj. costs (χ = 0) 0.0487
Quadratic adj. costs (χ = 0.25) 0.0411
Quadratic adj. costs (χ = 0.50) 0.0321
Frictionless 0.0539
Khan-Thomas (2008) 0.0468

Notes: This table displays heteroscedasticity range (log(​σ​95​/​σ​5​)) for the data (row 1) and var-
ious model specifications that vary in terms of the maintenance parameter χ and the adjust-
ment technology for capital: fixed adjustment costs (rows 2– 4), quadratic adjustment costs 
(rows 5–7), a frictionless model, and the Khan-Thomas (2008) model. The adjustment costs 
for the models in rows 2–7 have been calibrated to match aggregate and sectoral investment 
rate volatilities.
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found in the data, for the model with χ = 0.25 it is four times as large. Both are 
much closer to the value in the data than the frictionless model.

Table 5 also shows (in rows 5–7) that convex, quadratic adjustment costs do not 
generate significant conditional heteroscedasticity for any level of the maintenance 
parameter, and are, in fact, close to the frictionless model in this respect. This is not 
surprising, given that quadratic adjustment cost models lead to partial adjustment 
in the aggregate and thus to essentially linear aggregate investment rate dynamics.

A final way to see the difference between our calibration and Khan and Thomas 
(2008) is given by a smoothing decomposition, similar to Table 1. Table 6 shows 
this smoothing decomposition, by reporting upper and lower bounds for the con-
tribution of AC-smoothing to total smoothing, for several models, at different fre-
quencies. The upper and lower bounds for the contribution of AC-smoothing are 
calculated as follows:

 	  UB  =  log [σ (NONE)/σ(AC)]/log [σ (NONE)/σ (BOTH)],

 	  LB  =  1  −  log [σ (NONE)/σ (PR)]/log [σ (NONE)/σ (BOTH)],

where σ denotes the standard deviation of aggregate investment rates, NONE refers 
to the model with fixed prices and with no microeconomic frictions, BOTH to the 
model with both micro frictions and endogenous price movements, AC to the model 
that only has microeconomic frictions so that prices are fixed at their average levels 
of the BOTH specification, and PR to the model with aggregate price responses and 
no adjustment costs.

The main message can be gathered from the first two rows of this table. By chang-
ing the adjustment cost distribution in Khan and Thomas’ (2008) model for ours,21 
its ability to generate substantial AC-smoothing rises significantly. Conversely, 
introducing Khan and Thomas (2008) adjustment costs into an annual version of 

21 Since Khan and Thomas (2008) measure labor in time units (and therefore calibrate to a steady-state value 
of 0.3), and we measure labor in employment units, the steady-state value of which is 0.6, and adjustment costs in 
both cases are measured in labor units, we actually use half of our calibrated adjustment cost parameter. Conversely, 
when we insert Khan and Thomas (2008) adjustment costs into our model, we double it.

Table 6—Smoothing Decomposition

AC smoothing/total smoothing 
(in percent)

Model LB UB Average 

Khan-Thomas-lumpy annual 0.0 16.1 8.0
Khan-Thomas-lumpy annual, our ​

_
 ξ ​ 8.1 59.2 33.7

Our model annual (χ = 0), Khan and Thomas’ ​
_
 ξ ​ 0.8 16.0 8.4

Our model annual (χ = 0) 18.9 75.3 47.0
Our model annual (χ = 0.25) 19.1 75.7 47.4
Our model annual (χ = 0.50) 19.9 76.6 48.3
Our model quarterly (χ = 0) 14.5 80.9 47.7
Our model quarterly (χ = 0.25) 15.4 80.9 48.2
Our model quarterly (χ = 0.5) 15.4 81.0 48.2
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our lumpy model with zero maintenance (third row) leads to a similarly small role 
of AC-smoothing as in their model. Rows four to nine show the much larger role 
for AC-smoothing under our calibration strategy, robustly for annual and quarterly 
calibrations and low and high values of the maintenance parameter.

C. Conventional RBC Moments

Before turning to the specific aggregate implications and mechanisms of 
microeconomic lumpiness that are behind the empirical success of our model, 
we show that these gains do not come at the cost of sacrificing conventional 
RBC-moment-matching. Tables 7 and 8 report standard longitudinal second 
moments for both the lumpy model and its frictionless counterpart. We also include 
a model with no idiosyncratic shocks (we label it RBC). As with all models, the 
volatility of aggregate productivity shocks is chosen to match the volatility of the 
aggregate investment rate.22

Overall, the second moments of the lumpy model are reasonable and comparable 
to those of the frictionless models. While the former exacerbates the inability of 
RBC models to match the volatility of employment (we use data from the establish-
ment survey on total nonfarm payroll employment from the BLS), the lumpy model 
improves significantly when matching the volatility of consumption.23 The lumpy 
model also slightly increases the persistence of most aggregate variables, bringing 
these statistics closer to their values in the data.

22 The value of ​σ​A​ required for the frictionless model is ​σ​A​ = 0.0051, the one for the RBC model is 0.0058. 
This shows that lumpy microeconomic adjustment also dampens conventional second moments in our calibration, 
thereby providing an additional dimension in which nonconvex adjustment costs have macroeconomic implications. 
Nonetheless, since the focus of this paper is on aggregate nonlinearities (in the relation between the aggregate invest-
ment rate and aggregate productivity shocks), we recalibrate ​σ​A​ for each model so as to match aggregate investment 
volatility. Also note that for the lumpy model, the employment statistics are computed from total employment, that 
is, including workers that work on adjusting the capital stock. We work with all variables in logs and detrend with 
an HP-filter using a bandwidth of 1,600.

23 Consistent with our model, we define aggregate consumption as consumption of nondurables and service 
minus housing services. Also, we define output as the sum of this consumption aggregate and aggregate investment.

Table 7—Volatility of Aggregates in Percent

Model Y C I N

Lumpy 1.34 0.83 4.34 0.56
Frictionless 1.11 0.44 5.39 0.73
RBC 1.35 0.45 5.03 0.97
Data 1.36 0.94 4.87 1.27

Table 8—Persistence of Aggregates

Model Y C I N I/K

Lumpy 0.70 0.71 0.70 0.70 0.92
Frictionless 0.69 0.79 0.67 0.67 0.86
RBC 0.70 0.80 0.68 0.68 0.92
Data 0.91 0.87 0.91 0.94 0.96
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IV.  Aggregate Investment Dynamics

In this section, we describe the mechanism behind our model’s ability to match 
the conditional heteroscedasticity of aggregate investment rates. In particular, we 
show that lumpy adjustment models generate history dependent aggregate impulse 
responses.

A. Understanding Time-Varying Impulse Responses

In order to understand the different behavior of the frictionless model and the 
baseline lumpy model (χ = 0.50), we first, following Caballero and Engel (1993b), 
define the so-called responsiveness index at time t . Given an economy characterized 
by a joint distribution of capital and productivity ​μ​t​ , and an aggregate productivity 
level ​z​ t​ , we denote the resulting aggregate investment rate by ​( I/K )​(​μ​t​ ,  log ​z​ t​) and 
define the normalized response of this economy to a positive and negative one stan-
dard deviation aggregate productivity shock, respectively, as

 	​  ​+​ (​μ​t​ , log ​z​ t​)  ≡ ​ ( ​ I _ 
K

 ​ (​μ​t​ , log ​z​ t​  + ​ σ​A​)  − ​  I _ 
K

 ​ (​μ​t​ , log ​z​ t​) )​,

 	​  ​−​ (​μ​t​ , log ​z​ t​)  ≡ ​ ( ​ I _ 
K

 ​ (​μ​t​ , log ​z​t​  − ​ σ​A​)  − ​  I _ 
K

 ​ (​μ​t​ , log ​z​ t​) )​,
where ​σ​A​ is the standard deviation of the aggregate innovation. The responsiveness 
index at time t then is defined as

(21) 	​  F​t​  ≡  0.5 ​[ ​​+​ (​μ​t​ , log ​z​ t​)  − ​ ​−​ (​μ​t​ , log ​z​ t​) ]​.

That is, this index captures the response upon impact of the aggregate investment 
rate to an aggregate productivity innovation, conditional on the current state of the 
economy.24

Figure 3 plots the evolution of the quarterly responsiveness index for the 1960–
2005 period (in log deviations from its average value). The solid and dashed lines 
represent the index for the lumpy and frictionless models, while the dotted line rep-
resents the index for the ARCH-type time series model.

To generate Figure 3 we back out, for each of the two DSGE models, the aggre-
gate shock that matches the aggregate quarterly investment rate at each point in 
time over the sample period. Using these shocks, we run the models to compute the 
responsiveness index. We initialize the process with the economy at its steady state 
in the fourth quarter of 1959.25

24 Using both ​​+​ and ​​−​ to define F is motivated by the possibility of asymmetric responses to positive and 
negative shocks. This concern turns out to be unwarranted, as the actual time-series behavior of both series is very 
similar.

25 By “steady state” we mean the ergodic (time-average) distribution, which we calculate as follows: start-
ing from an arbitrary capital distribution and the ergodic distribution of the idiosyncratic shocks, we simulate the 
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The figure confirms the statement in the introduction, according to which, in the 
lumpy capital adjustment model, the initial response to an aggregate shock varies 
significantly more over time than in a frictionless model. The responsiveness index 
grows by 50.9 percent between trough and peak, and is considerably larger than the 
11.6 percent variation implied by the frictionless model.

To understand how lumpy adjustment models generate time-varying impulse 
responses, two features of the time paths of the responsiveness index are important. 
Note first that the index fluctuates much less in the frictionless economy than in the 
lumpy economy. Recall also that the frictionless economy only has general equilib-
rium price responses to move this index around. From these two observations we 
can conjecture that the contribution of the price responses to the volatility of the 
index in the lumpy economy is minor.

It follows from this figure that it is the decline in the strength of the AC-smoothing 
mechanism that is responsible for the rise in the index during the boom phase. When 
this mechanism is weakened, the responsiveness index in the lumpy economy grows 
by more than that of the frictionless economy in a boom.

Figure 4 illustrates why the AC-smoothing mechanism weakens as the boom 
progresses. The figure shows the cross section of mandated investment (and the 
probability of adjusting, conditional on mandated investment) at two points in the 
US business cycle: a period of booming aggregate investment, the second quarter 
of 2000 (dashed line); and a period of depressed aggregate investment in the first 

development of an economy with no aggregate innovations for 300 periods, but using the policy functions under the 
assumption of an economy subject to aggregate shocks.
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Figure 3. Time Paths of the Responsiveness Index

Notes: This figure plots the evolution of the quarterly responsiveness index for the 1960–2005 
period (in log deviations from its average value). The solid and dashed lines represent the index 
for the lumpy (χ = 0.50) and frictionless models, while the dotted line represents the index for 
the ARCH-type time series model.
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quarter of 1961 (dotted line).26 These cross-sectional densities of mandated invest-
ment are computed from our baseline lumpy investment model.

The concept of mandated investment used here extends, to a general equilib-
rium setting, the analogous partial equilibrium concept that played a central role in 
Caballero, Engel, and Haltiwanger (1995) and Caballero and Engel (1999). Even 
though the general equilibrium counterpart does not fully characterize a production 
unit’s state, it continues being useful when describing the mechanism through which 
lumpy investment models lead to aggregate nonlinearities.

It is apparent from Figure 4 that during the boom the cross section of mandated 
investment moves toward regions where the probability of adjustment is higher 
and steeper. The fraction of micro units with mandated investment close to zero 
decreases considerably during the boom, while the fraction of units with mandated 
investment rates above 40 percent increases significantly. Also note that the fraction 
of units in the region where mandated investment is negative decreases during the 
boom, since the sequence of positive shocks moves units away from this region.

The convex curves in Figure 4 depict the state-dependent adjustment hazard; that 
is, the probability of adjusting conditional on mandated investment. These adjust-
ment hazards are computed from our baseline lumpy investment model. It is clear 
that the probability of adjusting increases with the (absolute) value of mandated 
investment. This is the “increasing hazard property” described in Caballero and 
Engel (1993a). The convexity of the estimated state-dependent adjustment hazards 
implies that the probability that a shock induces a micro unit to adjust is larger for 

26 See Section IID for the formal definition of mandated investment. See Appendix A, Section B, Figure A1 for 
a time path of the quarterly aggregate investment rate in the United States.

Figure 4. Investment Boom-Bust Episode: Cross-Section and Hazard

Notes: This figure shows the cross section of mandated investment (the hump-shaped curves), 
and the probability of adjusting, conditional on mandated investment (the U-shaped curves), 
at two points in the US business cycle: a period of booming aggregate investment, the second 
quarter of 2000 (dashed line), and a period of depressed aggregate investment in the first quar-
ter of 1961 (dotted line). All graphs are computed from the baseline lumpy investment model 
(χ = 0.50).
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units with larger values of mandated investment. Since units move into the region 
with a higher slope of the adjustment hazard during the boom, aggregate investment 
becomes more responsive. This effect is further compounded by the fact that the 
adjustment hazard shifts upward as the boom proceeds, although this effect is small.

In summary, the decline in the strength of AC-smoothing during the boom (and 
hence the larger response to shocks) results mainly from the rise in the share of 
agents that adjust to further shocks. This is in contrast with the frictionless (and 
Calvo style) models where the only margin of adjustment is the average size of 
these adjustments. This is shown in Figure 5, which decomposes the time path of 
the responsiveness index of the lumpy model into two components: one that reflects 
the response of the fraction of adjusters (the extensive margin), and another that 
captures the response of average adjustments of those who adjust (the intensive mar-
gin). It is apparent that most of the change in the responsiveness index is accounted 
for by variations in the fraction of adjusters, that is, by the extensive margin.

The importance of fluctuations in the fraction of adjusters is also apparent in the 
decomposition of the path of the aggregate investment rate into the contributions 
from the fluctuation of the fraction of adjusters and the fluctuation of the average 
size of adjustments, as shown in Figure 6. Both series are in log-deviations from their 
average values. This is consistent with what Doms and Dunne (1998) documented 
for establishment-level investment in the United States and Gourio and Kashyap 
(2007) for the United States and Chile, where the fraction of units undergoing major 
investment episodes accounts for a much higher share of aggregate (manufacturing 
in their case) investment than the average size of their investment.27

27 Doms and Dunne (1998) show that the number of plants that have their highest investment in a given year 
has a correlation with aggregate investment of roughly 60 percent. Gourio and Kashyap (2007, figure 2) show that 
aggregate investment is mainly driven by investment spikes, and those, to a large degree, are accounted for by the 
fraction of units undergoing major investment episodes.

Figure 5. Decomposition of Responsiveness Index: Intensive and Extensive Margins
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B. The Turn-of-the-Millennium Boom-Bust Cycle—A Case Study

Next we illustrate the time variation of the investment response during the 
turn-of-the-millennium boom-bust cycle. Figure 7 depicts the responses over five 
quarters of the baseline lumpy model to a one standard deviation shock taking place 
during the peak of this cycle in the second quarter of 2000 and the trough in the first 
quarter of 2003, normalized by the average impulse response upon impact over the 
entire sample. The response of investment to a stimulus (e.g., an investment credit) 
varies systematically over the cycle, being least responsive during a slowdown.

Figure 6. Decomposition of I/K into Intensive and Extensive Margins
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Figure 7. Impulse Responses of the Aggregate Investment Rate  
in the 2000 Boom-Bust Cycle

Notes: This figure depicts the responses over five quarters of the baseline lumpy model 
(χ = 0.50) to a 1 standard deviation shock taking place, respectively, during the second 
quarter of 2000 (solid line) and the trough in the first quarter of 2003 (dashed line), normal-
ized by the average impulse response upon impact over the entire sample.
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Using a linear model to gauge the effect of a stimulus is likely to overestimate 
the investment response during a downturn, by approximately 20 percent. This is 
because the response to a sequence of average shocks, which corresponds to the 
standard impulse response function calculated for a linear model, is in between both 
cases and fails to capture the significant time variation of the impulse responses in a 
world with lumpy investment.

C. The Role of the Maintenance Parameter

We end this section by analyzing the role of the maintenance parameter in deter-
mining aggregate investment dynamics. As discussed in Section IIIB, the magni-
tude of adjustment costs decreases with χ, while the extent to which the investment 
response varies over the cycle increases with χ. The insights we have gained earlier 
in this section provide an explanation for why the adjustment costs and maintenance 
parameters move in opposite directions as χ varies.

The negative correlation between adjustment costs and the maintenance param-
eter follows from noting that a higher maintenance parameter lowers the effec-
tive drift of mandated investment, defined as depreciation that is not necessarily 
undone in a given period.28 Without maintenance, the effective drift is large and 
dominates over microeconomic uncertainty shocks, resulting in a cross section of 
mandated investment that is close to the Caplin and Spulber extreme where there is 
no AC-smoothing (see Caballero and Engel 2007).

Figure 8 shows the average cross-sectional distribution of mandated investment for 
our baseline model and for the model with χ = 0. The former is clearly farther away 
from the Caplin-Spulber uniform limit, leaving more space for AC-smoothing.29 
It follows that we need to increase the adjustment cost parameter in order to keep 
AC-smoothing constant when we reduce the value of the maintenance parameter.

Note, however, that the compensation via an increase in adjustment costs is not 
enough to preserve the volatility of the impulse response as we drop maintenance 
(see Table 5). Nonetheless, Figure 9 shows that even with zero maintenance, the 
responsiveness index of the lumpy economy varies considerably more than in the 
frictionless economy.

V.  Final Remarks

This paper begins by presenting time series evidence showing that the impulse 
response function for US investment is history dependent; investment responds 
more to a given shock during booms than during slumps.

Next we argue that it is important to identify the relative contribution of micro-
economic adjustment costs and general equilibrium price responses toward the 
smoothing of the impact of shocks on aggregate variables. In particular, in the case 

28 In the partial equilibrium Ss literature an effective drift of zero leads to a triangular ergodic distribution for 
mandated investment, while a large effective drift, relative to the standard deviation of shocks, leads to an approxi-
mately uniform ergodic distribution, as in Caplin and Spulber (1987).

29 Our result from Table 3 in Section IB, that structures with a smaller effective drift display higher and statisti-
cally more significant nonlinearity, is consistent with this mechanism.



Vol. 5 No. 4� 57bachmann et al.: lumpy investment

of investment models with lumpy capital adjustment, we find that only models that 
allow for a nontrivial role for adjustment cost smoothing can match the time series 
evidence on history dependent impulse responses.

More precisely, we find that calibrating a standard lumpy investment model to 
match the volatilities of aggregate and sectoral investment delivers a parameter con-
figuration, implying a strongly procyclical impulse response function that captures 

Figure 8. Ergodic Cross Section: Zero and Baseline Maintenance

Notes: See notes to Figure 4. It compares the average cross-sectional distribution of man-
dated investment for our baseline model (χ = 0.50, solid line) and for the model with χ = 0 
(dashed-dotted line).
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Figure 9. Time Paths of the Responsiveness Index—Lower Maintenance

Notes: See notes to Figure 3. This figure plots the evolution of the quarterly responsiveness 
index for the 1960–2005 period (in log deviations from its average value). The solid and 
dashed lines represent the index for the lumpy (χ = 0.50) and frictionless models, while the 
dashed-dotted line represents the index for the χ = 0.25 case, and the dotted line represents 
the index for the χ = 0 case.
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more than 60 percent of the time variation of this response implied by the time series 
evidence. The resulting model has adjustment costs that are much larger, and more 
in line with previous estimates, than those from papers that find no aggregate impli-
cations for lumpy investment. We also find that introducing an additional parameter 
that captures maintenance investment necessary to continue operation leads to a 
parameter configuration with an impulse response function that accounts for the 
entire time-variation of this response suggested by an ARCH time-series model.

Finally, we show that the reason why models that add realistic lumpy capital 
adjustment to an otherwise standard RBC model generate procyclical impulse 
responses is that, relative to the standard RBC model, in the lumpy models invest-
ment booms feed into themselves and lead to significantly larger capital accumu-
lation following a string of positive shocks. During busts, on the other hand, the 
economy is largely unresponsive to positive shocks. These are exactly the patterns 
we observe in US aggregate data.

Appendix

In addition to the Appendices A and B here, there are Appendices C, D, and E 
available online.

Appendix A 

A. Parameters

Table A1 summarizes the common parameters of the models explored in the paper 
(γ = 1.0040 for the quarterly calibration and γ = 1.0160 for the yearly calibration):

Persistence parameters have the following relation between quarterly and annu-
ally: ​ρ​q​ = ​ρ​ y​ 0.25​ (the same holds true for β  ). For standard deviations the follow-

ing relationship holds: ​σ​q​ = (​σ​y​)/(​√ 
__

  1 + ​ρ​q​ + ​ρ​ q​ 2​ + ​ρ​ q​ 3​ ​). For ​ρ​S​ and ​σ​S​ the yearly 

parameters are primitive because of the merely annual availability of sectoral data. 

Notice that for the yearly specification ​√ 
_

 ​σ​ S​ 2​ + ​σ​ I​ 2​ ​ = 0.1. Finally, the production 
function for quarterly output is one-fourth of the one for yearly output.

The calibration of the other parameters, ​σ​A​, χ, ​
_
 ξ ​ and A is explained in Section III. 

When we refer in the main text to a quarterly calibration (our benchmark models), 
then we use, given the quarterly parameters in the table above, ​σ​A​ and ​

_
 ξ ​ to match 

jointly the standard deviation of the quarterly aggregate investment rate and the 
standard deviation of the yearly sectoral investment rate, which is aggregated up 

Table A1—Common Parameters

Calibration ​ρ​A​ ​ρ​S​ = ​ρ​I​ ​σ​S​ ​σ​I​ δ β θ ν

Quarterly 0.9500 0.8612 0.0273 0.0472 0.0220 0.9942 0.1800 0.6400
Yearly 0.8145 0.5500 0.0501 0.0865 0.0880 0.9770 0.1800 0.6400
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over four quarters in the sectoral simulations (we do not have quarterly sectoral 
data). This amounts to ​σ​A​ = 0.0080 for the baseline lumpy model and ​σ​A​ = 0.0051 
for its frictionless counterpart. When we refer to a yearly calibration, then we use, 
given the yearly parameters in the table above, ​σ​A​ and ​

_
 ξ ​ to match jointly the stan-

dard deviation of the yearly aggregate investment rate and the standard deviation of 
the yearly sectoral investment rate. This amounts to ​σ​A​ = 0.0186 for the baseline 
lumpy model and ​σ​A​ = 0.0120 for its frictionless counterpart. The parameter that 
governs conditional heteroscedasticity, χ, is calibrated only for the quarterly speci-
fications, because we estimate conditional heteroscedasticity on quarterly aggregate 
data to have enough data points to detect possible nonlinearities.

B. Aggregate Data

Since they are not readily available from standard sources, we construct quar-
terly series of the aggregate investment rate using investment and capital data from 
the national account and fixed asset tables, available from the Bureau of Economic 
Analysis (BEA). The time horizon is 1960:I–2005:IV. The quarterly aggregate invest-
ment rate in period t is defined as ​I​ t​ Q, real​/​K​ t−1​ Q, real​, where the denominator is the real 
capital stock at the end of period t − 1 and the numerator is real investment in period t.

The information we used is (i) nominal annual private fixed nonresidential invest-
ment, ​I​ Y​, from Table 1.1.5 Gross Domestic Product line 9; (ii) the annual private 
nonresidential capital stock at year-end prices, ​​   K​​ Y​, from Table 1.1 Fixed Assets 
and Consumer Durable Goods line 4; (iii) nominal annual private nonresidential 
depreciation, ​D​Y​, from Table 1.3 Fixed Assets and Consumer Durable Goods line 4; 
(iv) quarterly nominal fixed nonresidential investment seasonally adjusted at annual 
rates, ​​ I​​ Q​, from Table 1.1.5 Gross Domestic Product line 9; and (v) the quarterly 
implicit price deflator of nonresidential investment, ​P​ Q​, from Table 1.1.9 Gross 
Domestic Product line 9.

Quarterly figures for investment are obtained as follows. Since seasonally adjusted 
quarterly nominal investment does not add up to annual nominal investment, we 
impose this adding up constraint by calculating nominal investment in quarter t of 
year y as ​I​ t​ Q​ = (​I​ y​ Y​/​∑​ t∈y​ 

 
  ​  ​​ I​​ t​ Q​  )​​ I​​ t​ Q​, where y denotes both the year and all quarters in that 

year. Real investment is then calculated as, ​I​ t​ Q, real​ = ​I​ t​ Q​/​P​ t​ Q​.
To calculate the quarterly real capital stock, we proceed as follows. Let ​π​t​ denote 

quarterly investment price inflation between period t − 1 and t, which is obtained 
from the implicit price deflator data by 1 + ​π​t​ = ​P​ t​ Q​/​P​ t−1​ Q

  ​. We assume that annual 
depreciation figures reported by the BEA are at average prices of the year. Quarterly 
depreciation series are constructed using nominal annual depreciation and quarterly 
investment inflation, under the assumptions that quarterly nominal depreciation 
numbers add up to annual figures and that real depreciation is the same for every 
quarter of a given year. That is, nominal depreciation in the four quarters of a year, 
denoted ​D​1​, ​D​2​, ​D​3​, ​D​4​, are given by

 	​ D​4​  = ​ D​3​ (1 + ​π​4​)  = ​ D​2​ (1 + ​π​3​)(1 + ​π​4​)  = ​ D​1​ (1 + ​π​2​)(1 + ​π​3​)(1 + ​π​4​),

 	​  D​Y​  = ​ D​1​ + ​D​2​ + ​D​3​ + ​D​4​,
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where ​D​Y​ denotes total depreciation during that year. To compute quarterly nominal 
capital stocks, ​K​ t​ Q​, during the first three quarters, we use the following identity:

 	​  K​ t​ Q​  = ​ K​ t−1​ Q
  ​ (1  + ​ π​t​)  + ​ I​ t​ Q​  − ​ D​ t​ Q​,

where all variables are nominal. For fourth quarter capital stocks we use the 
annual end-of-year data. Year-end prices reported by the BEA are the average of 
fourth-quarter prices in the current year and first-quarter prices in the following 
year, thus, nominal end-of-year capital, ​K​ 4​ Q​, for any given year is obtained from ​K​ 4​ Q​  
= 2​P​ 4​ 

Q​ ​​   K​​ Y​/(​P​ 4​ 
Q​ + ​P​ ​1​ ′​​ 

Q
 ​  ), where ​P​ ​1​ ′​​ 

Q
 ​   corresponds to the nominal price of investment 

in the first-quarter of next year. Real capital is then calculated as ​K​ t​ Q, real​ = ​K​ t​ Q​/​P​ t​ Q​.
As Figure A1 shows (the vertical lines denote NBER business cycle dates), the 

aggregate investment rate does not appear to exhibit any trend, which is why we do 
not filter any statistics related to it (both for real and simulated data).

Table A2 summarizes statistics of the aggregate investment rate.30

30 The maximum is achieved in 2000:II, the minimum in 1961:I.

Figure A1. The Quarterly US Aggregate Investment Rate
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Table A2—Aggregate Investment Rate

Mean STD Persistence Max Min

Quarterly 0.026 0.0023 0.96 0.031 0.022
Yearly 0.104 0.0098 0.73 0.125 0.086
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C. Sectoral Data

For sectoral data the best available source is the NBER manufacturing dataset, 
publicly available on the NBER website. It contains yearly four-digit industry data 
for the manufacturing sector, according to the SIC-87 classification. We look at the 
years 1960–1996. We take out industry 3,292, the asbestos products, because this 
sector essentially dies out in the nineties. This leaves us with 458 four-digit indus-
tries altogether.

Since the sectoral model analysis has to (i) be isolated from general equilibrium 
effects, and (ii) contain a large number of production units, we take the three-digit 
level as the best compromise aggregation level. This leaves us with 140 industries.31 
Hence, we sum employment levels, real capital, nominal investment, and nominal 
value added onto the three-digit level. The deflator for investment is aggregated by a 
weighted sum (weighted by investment). Value added is deflated by the GDP defla-
tor instead of the sectoral deflators for shipments (the data do not contain separate 
deflators for value added). We do this, because our model does not allow for rela-
tive price movements between sectors, so by deflating sectoral value added with the 
GDP deflator the resulting Solow residual is essentially a composite of true changes 
in sectoral technology and relative price movements. Since value added and defla-
tors are negatively correlated, we would otherwise overestimate the volatility of 
sectoral innovations and thus overcalibrate adjustment costs.32

TFP-Calculation.—Since our model is about value added production as opposed 
to output production—we do not model utilization of materials and energy—we do 
not use the TFP-series in the dataset, which are based on a production function for 
output. Rather, we use a production function for real value added in employment 
and real capital with payroll as a fraction of value added as the employment share, 
and the residual as capital share, and perform a standard Solow residual calculation 
for each industry separately.

Next, in order to extract the residual industry-specific and 
uncorrelated-with-the-aggregate component for each industry, we regress each 
industry time series of logged Solow residuals on the time series of the value 
added-weighted cross-sectional average of logged Solow residuals and a con-
stant. Since the residuals of this regression still contain sector-specific effects, 
but our model features ex ante homogenous sectors, we take out a deterministic 
quadratic trend on these residuals for each sector. We use a deterministic qua-
dratic trend because it makes persistence and volatility of the estimated residuals 
smaller than with a linear trend or no detrending. This is a conservative approach 
for our purposes, as this will make, ceteris paribus, the calibrated adjustment 
costs and therefore aggregate nonlinearities smaller. Not detrending the sectoral 
Solow residuals would increase both annual persistence and the annual standard 

31 Aggregating to the two-digit levels leaves us with 20 industries.
32 Indeed, using a weighted sum of three-digit level value added deflators instead of the GDP deflator would 

increase the standard deviation of the sectoral shock innovation from the 0.0501 we are using to 0.0564 and the 
persistence of sectoral technology from 0.55 to 0.61, other things being equal. We thank Julia Thomas for this 
suggestion.
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deviation of the sectoral shock innovation from 0.55 to 0.65, and from 0.0501 to 
0.0518, respectively. The residuals of this trend regression are then taken as the 
pure sectoral Solow residual series. By construction, they are uncorrelated with 
the cross-sectional average series. We then estimate an AR(1)-specification for 
each of these series, and, to come up with a single value for ​σ​S​ and ​ρ​S​ , set ​σ​S​ equal 
to the value-added-weighted average of the estimated standard deviations of the 
corresponding innovations, which results in ​σ​S​ = 0.0501 (annual), and ​ρ​S​ equal 
to the value-added-weighted average of the estimated first-order autocorrelation, 
which leads to ​ρ​S​ = 0.55 (annual).

Since this computation is subject to substantial measurement error and somewhat 
arbitrary choices, we perform a number of robustness checks: 

•	 We fix the employment share and capital share to ν = 0.64 and θ = 0.18, as in 
our model parametrization for all industries; 

•	 Instead of using an OLS projection onto the cross-sectional mean, we simply 
subtract the latter; 

•	 We look at unweighted means; 
•	 We look at medians instead of means, again weighted and unweighted. 

The resulting numbers remain in the ballpark of the parameters we use (see Table 11 
in online Appendix C for a robustness analysis with some of these alternative 
choices).

Calculation of I/K-Moments.—To extract a pure sectoral component of the 
time series of the industry investment rate, which like the aggregate data includes 
equipment and structures, we perform the same regressions that were used for 
TFP-calculation, except that we use a deterministic linear trend to extract sector 
specific effects. A quadratic detrending of the driving force and a linear detrend-
ing for the outcome variable is a conservative approach, as it will make calibrated 
adjustment costs and aggregate nonlinearities smaller. We do not log or filter the 
investment rate series. The common component we regress the sectoral invest-
ment rate series on is now a capital-weighted average of the industry investment 
rates. Again, we perform robustness checks with fairly stable results. The result-
ing standard deviation of sectoral investment rates—our target of calibration— 
is 0.0163.33

Data for Different Digit Levels.—Finally, Table A3 provides information on the 
number of establishments per sector and the size of each sector within the US econ-
omy for the two-digit, three-digit, and four-digit levels.34 It justifies our choice to 
use three-digit data in the baseline calibration.

The mean and median (across industries) number of establishments in the three-
digit industries are 2,671 and 1,147, respectively. While at the four-digit level indus-
tries still contain a fairly large number of establishments on average, the continuum 

33 Their persistence is 0.55.
34 We use the County Business Pattern data from 1996 to generate the numbers in this table.
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assumption is certainly more justifiable for the three-digit level. Conversely, the 
across industries average fraction of industry establishments over the number of 
total establishments in the United States is 0.04 percent at the three-digit level, the 
median 0.02 percent and the maximum 0.51 percent. In other words, the manu-
facturing industry with the largest number of establishments has a share of half a 
percent in the total number of US establishments.35 The table thus shows that the 
choice of the three-digit level is a good compromise between our two assumptions: 
small enough to not have general equilibrium impacts and large enough to justify 
the assumption of a large number of units. Nevertheless, in online Appendix C we 
report calibration results also for the two-digit and four-digit levels and show that 
our results do not hinge on this choice.

Appendix B. Conditional Heteroscedasticity

Here, we elaborate further on the nonlinearity measure introduced in Section I.

A. GDP and TFP

The first row in Table B1 shows the t-statistic we obtain when applying the meth-
odology described in Section I to the cyclical component of log-GDP. We consider 
three commonly used filters to detrend GDP: the HP-1600 filter, the Baxter-King’s 
bandpass filter, and a deterministic filter.36 The second and third rows consider two 
measures for TFP, a standard Solow-type measure, and the utilization-adjusted 
Fernald (2012) measure. The following three rows report results for filtered versions 
of the investment-to-capital ratio.

Various conclusions can be drawn from examining Table B1. First, there is no 
evidence of heteroscedasticity in the GDP series and (almost) no evidence of het-
eroscedasticity for TFP (only 1 out of 12 t-statistics is significant at the 5 percent 
level). As mentioned in Section I, this suggests that the evidence of nonlinearities 
obtained in Table 3 does not come from the shocks but from the transmission mech-
anism from the shocks to aggregate investment.

We did not detrend the investment-to-capital series when computing the statis-
tics in Table 3 in Section I because, by contrast with the GDP and TFP series, the 

35 These numbers would be, respectively, 0.07 percent, 0.03 percent, and 9 percent, had we used the aver-
age fraction of industry establishments over the number of total establishments in the manufacturing sector. Had 
we used share in total US employment as our metric, the numbers for the three-digit sector would have been 
0.12 percent, 0.07 percent, and 0.76 percent.

36 To allow for changes in trend growth rates, we work with a cubic trend. With the bandpass filter, we isolate 
frequencies from 6 to 32 quarters, and use a moving average of 12 quarters.

Table A3—Summary Statistics for Manufacturing Establishments

Mean# est. Median# est. Mean frac. est. Median frac. est. Max. frac. est.

Two-digit 19,041 14,455 0.28% 0.21% 0.94%
Three-digit 2,671 1,147 0.04% 0.02% 0.51%
Four-digit 780 333 0.01% 0.00% 0.38%
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investment-to-capital ratio series is stationary. We explore the extent to which our 
heteroscedasticity findings remain valid when we work with a detrended investment 
series in the last three rows of Table B1. The t-statistics we report for the nonlinear-
ity parameter η show that our results are robust to deterministic detrending and, in 
the case of structures, to stochastic detrending as well. As we show in the following 
subsection, the weaker evidence we find for nonlinearities when working with sto-
chastically detrended investment series is due to a loss of statistical power associ-
ated with stochastic detrending.

B. Statistical Power

Tables B2 and B3 show the statistical power of various tests for detecting 
nonlinearities in aggregate investment rate series. The null hypothesis, ​H​0​, is that 
the true model is the frictionless RBC-type model, the alternative model, ​H​1​, is the 
model calibrated in Section III (χ = 0.50). The statistics considered are skewness 
and kurtosis of the investment series, as well as the conditional heteroscedasticity 
parameter η and the fifth-to-ninety-fifth percentile range for conditional heterosce-
dasticity. Table B2 considers tests of size 0.10 while Table B3 reports the power of 
tests of size 0.05.

Given a statistic, X, we determine the threshold ​x​α​ that defines the size-α  
test, by solving Pr {X > ​x​α​ | ​H​0​} = α. The statistical power for the test X > ​x​α​ , 
reported in both tables, is calculated as Pr {X > ​x​α​ | ​H​1​}. We simulated 500 series of 
length 172 for the frictionless model to calculate the ​x​α​ and then used 500 simulated 
series for our calibrated lumpy model, also each of length 172, to compute the 
statistical power.

The first row in Tables B2 and B3 show that, when working with the unfil-
tered investment rate series, the statistical power of kurtosis is extremely low, 
only slightly above the size of the test. Even though somewhat higher, the statisti-
cal power of skewness is considerably lower than that of both tests based on the 
conditional heteroscedasticity measures introduced in Section I. For example, the 
probability of rejecting the null when the alternative model is true, with a test of 
size 0.10, takes values between 0.47 and 0.51 for the tests based on the nonlinear-
ity measures introduced in this paper, while their values are 0.27 for skewness and 
0.11 for kurtosis.

The second row shows that the large advantage of the tests considered in this paper 
is robust to deterministic detrending. Even though somewhat smaller, statistical 

Table B1—t-Statistic for η. US GDP, TFP, and Filtered Investment Rate Series

Detrending HP HP BK BK Determ. Determ.
Model 1 2 1 2 1 2

GDP 1.3937 1.4729 1.7997 1.0623 −1.0709 −1.2266 
TFP-Solow −0.5558 0.5310 1.8628 2.2088 −0.7714 0.5420
TFP-Fernald 0.9677 1.0346 −1.455 −1.0658 −1.5468 −1.1086 
I/K-nonresidential 1.6172 1.5443 1.0452 3.3073 2.9889 2.2564
I/K-equipment 1.6353 1.8223 1.3536 1.3640 2.2832 2.1366
I/K-structures 2.4503 2.9450 2.1058 1.6605 3.4165 2.9534
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power continues being much larger for tests based on the conditional heteroscedas-
ticity of the aggregate investment rate series.37

The third and fourth rows in Tables B2 and B3 show that the power advantage of 
tests based on conditional heteroscedasticity measures essentially disappears, when 
compared with the skewness statistic, once we work with a stochastic detrended 
investment-to-capital series, both when using the HP filter, and when using the 
Baxter-King (BK) filter. A test based on kurtosis continues having lower power.

Summing up, combining the insights from Appendix B, Section A and 
Appendix B, Section B, we conclude that tests to detect nonlinearities based on the 
conditional heteroscedasticity measure highlighted in this paper have considerably 
more statistical power than tests based on statistics used earlier in this literature, 
such as skewness and kurtosis. The reason for this finding is that these tests are tai-
lored to capture the particular nonlinearity present in Ss-type models. Furthermore, 
since the nonlinearities introduced by nonconvex adjustment costs are unlikely 
to be limited to business cycle frequencies, this power advantage is significantly 
reduced when working with stochastically detrended investment series. This justi-
fies using the actual investment-to-capital series, which is stationary, to establish 
our heteroscedasticity findings in Section I.

C. Using Conditional Heteroscedasticity in the Calibration

To choose parameter values that match the heteroscedasticity present in aggre-
gate US investment, it is useful to summarize the estimated conditional heterosce-
dasticity schedules (3) and (4) by one statistic. We do this via the signed log-ratio of 

37 We assume a cubic trend, as in Table B1. For a linear trend there is no loss of power at all.

Table B2—Statistical Power of Tests Detecting Nonlinearities—Size of test: 0.10

Statistic

± log(​σ​95​/​σ​5​) η
Detrending method Skewness Kurtosis Model 1 Model 2 Model 1 Model 2

None 0.2667 0.1148 0.4926 0.5111 0.4741 0.5074
Deterministic 0.2259 0.1296 0.4000 0.4074 0.4167 0.4241
HP 0.2759 0.1704 0.2648 0.2852 0.2796 0.2593
BK 0.1944 0.1352 0.2259 0.2111 0.2037 0.1870

Table B3—Statistical Power of Tests Detecting Nonlinearities—Size of Test: 0.05

Statistic

± log(​σ​95​/​σ​5​)  η
Detrending method Skewness Kurtosis Model 1 Model 2 Model 1 Model 2

None 0.1278 0.0630 0.3463 0.3407 0.3630 0.3648
Deterministic 0.1593 0.0519 0.2981 0.2778 0.2907 0.2870
HP 0.1963 0.0889 0.1556 0.1704 0.1741 0.1926
BK 0.1333 0.0796 0.1074 0.1259 0.1148 0.1093
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the ninety-fifth and fifth percentile of the fitted values for σ. Our calibration strategy 
is akin to the indirect inference approach proposed by Smith (1993), since we match 
a time-series moment informed by our DSGE model. We work with model 2 and 
consider p = 1, because the shocks in the DSGE model are AR(1), and k = 1. This 
is the time series model in Figures 2 and 3.

Table B4 reports estimates of the heteroscedasticity statistic for the frictionless 
model and models with various values for the maintenance parameter χ. In each 
case the simulated model matches the volatility of sectoral and aggregate invest-
ment. The first column reports the value for the range statistic in the actual US 
investment series. The second column reports the value for a model where capital 
can be adjusted at no cost (“frictionless model”). Columns 3–9 consider various 
values for the maintenance parameter. For each value of χ we generated a large 
number of time series of aggregate investment to capital ratios of the same length as 
the US investment series in our data. We then estimated the range statistic for these 
series—Table B4 reports the average values.

It follows from the first row of Table B4 that our models with lumpy adjust-
ment match the conditional heteroscedasticity in the actual data much better than a 
frictionless model. It also follows from the first row that a maintenance parameter 
of 0.50 generates a value of 0.3021 for the range statistic, which is closest to the 
estimated value of 0.2901. We therefore choose χ = 0.50 for our DSGE model with 
lumpy capital adjustment (the value for χ = 0.60 would be 0.3207).
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