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Abstract—This paper presents the implementation of a particle-
filtering-based prognostic framework that allows estimating the
state of health (SOH) and predicting the remaining useful life
(RUL) of energy storage devices, and more specifically lithium-ion
batteries, while simultaneously detecting and isolating the ef-
fect of self-recharge phenomena within the life-cycle model. The
proposed scheme and the statistical characterization of capacity
regeneration phenomena are validated through experimental data
from an accelerated battery degradation test and a set of ad hoc
performance measures to quantify the precision and accuracy of
the RUL estimates. In addition, a simplified degradation model
is presented to analyze and compare the performance of the
proposed approach in the case where the optimal solution (in the
mean-square-error sense) can be found analytically.

Index Terms—Capacity regeneration, energy storage devices
(ESDs), particle filters (PFs), SOH prognosis, state-of-health
(SOH) monitoring.

I. INTRODUCTION

ENERGY STORAGE devices (ESDs), and particularly
lithium-ion batteries, have played a significant role in

the development of novel and more efficient communication,
transportation, and mobile systems. They do not only represent
the means to manage energy resources (securing the availability
of electric supply for time-varying power demand even when
the system is isolated), but they are also an important constraint
in terms of the maximum autonomy that any of those systems
may attain.

In recent years, the criticality of this role has increased
as a result of the exponential growth of the industry of cell
phones, laptop computers, autonomous ground and unmanned
aerial vehicles, and hybrid and electric vehicles, among other
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electronic systems. Regardless of the main purpose for which
these technologies are being developed, it is a fact that end users
expect at least three main features from the ESDs that enable
them: 1) ESDs should provide a reasonable level of autonomy
to the system (state of charge (SOC) [1]); 2) ESDs should
require a brief period of time to accumulate the necessary
amount of energy that guarantees autonomy; and 3) ESDs
should allow to be reused for a large number of operating cycles
(i.e., the end user expects ESDs with extended life cycle).

The problem lies in the fact that brief charging periods and
aggressive usage profiles generally affect the state of health
(SOH) [2], and thus the remaining useful life (RUL) [3] of the
ESD, in a negative way. This has motivated research not only in
novel configurations and optimal charging profiles but also in
the development of novel combinations of chemical elements
that may secure rechargeable ESDs with a greater life cycle,
e.g., lithium-ion (Li-ion) batteries [4].

Traditional approaches to battery health management have
mostly focused on addressing the SOC issue with limited atten-
tion to SOH [1]. In many simpler systems, like the battery of a
cell phone or a laptop computer, it is sufficient to approximate
the RUL of the battery with a precision in a scale of months of
operation since replacements are easy to obtain and affordable.
In more complex systems (such as that of hybrid and electric
vehicles) though, it is critical to determine when the ESD is
approaching its end of life (EOL) with a precision of just a
few cycles of operation. This task can only be accomplished
through the implementation of accurate prognostic algorithms
[3] to determine the number of remaining recharge cycles and
the incorporation of real-time measurements of process and
environmental variables (e.g., power consumption profile and
temperature).

Online prognostic algorithms—and more specifically those
based on sequential Monte Carlo (SMC) methods [a.k.a. par-
ticle filters (PFs)] [3]—are especially suitable to solve the
aforementioned problem, given their capability to combine
information available from system measurements and analytic/
empirical models [3], [5]. Some ESDs (e.g., Li-ion and lead/
acid batteries), however, suffer sudden regeneration (or self-
recharge) phenomena [1], [5] that directly affect the precision
and accuracy of that type of algorithms. This has only been
briefly mentioned and studied in the current state of the art [5].
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This paper presents a solution to the problem of simultaneous
SOH and RUL estimation in ESDs, particularly addressing
the detection of regeneration phenomena in Li-ion batteries
through the implementation of particle-filtering-based detection
and prognostic frameworks [3], [5]. This approach considers
the use of state-space stochastic models for the characteriza-
tion of battery degradation processes, mainly because of their
ability to effectively combine empirical and phenomenological
knowledge in the representation of nonlinear dynamic phenom-
ena as well as their enabling capability for the implementa-
tion of Bayesian algorithms for the estimation of unobserved
model parameters in the presence of non-Gaussian sources of
uncertainty (allowing, for example, statistical characterization
of self-recharge phenomena within the structure of the life-
cycle model). Among the main contributions of this paper,
the following can be mentioned: 1) It provides a framework
capable of estimating the SOH while simultaneously detecting
and isolating the effect of self-recharge phenomena on the
initial conditions of predictive models (thus improving the
performance of prognostic modules); 2) it presents guidelines
to define the number of particles and realizations to use in a
PF-based prognostic scheme to properly characterize the RUL
probability density function (pdf) on the basis of analytical
results for a simplified degradation model; and 3) it proposes
novel ad hoc prognostic performance measures that incorporate
the concept of “risk” within the analysis of prediction results.

This paper is organized as follows. Section II presents a
theoretical background on the problem of SOH estimation in
ESDs and failure prognosis based on PFs. Section III focuses on
modeling aspects that are required to incorporate self-recharge
phenomena in the prognostic framework. Section IV shows the
implementation of the proposed approach for a hypothetical
and simplified degradation system where the optimal solution
(in the mean-square sense) can be found analytically with the
purpose of comparing and analyzing the performance of the
proposed approach in a controlled scenario. Section V shows
the results achieved by the proposed SOH prognosis framework
when used to estimate the RUL of Li-ion batteries that exhibit
self-recharge phenomena in actual (accelerated) degradation
tests. A comprehensive analysis of the obtained results, based
on ad hoc performance measures, is presented in Section VI.
Finally, Section VII states the main conclusions of this paper.

II. THEORETICAL BACKGROUND

A. SOH Estimation in ESDs

One of the most important issues associated to the problem
of ESD monitoring is to determine what kind of degradation
processes is at work and how many more missions/operating
cycles can be supported by the energy accumulator. These
concepts are generally encapsulated in the terms SOH and state
of life (SOL) [1]. While SOH is predominantly a diagnostics
issue, SOL is primary a concern of prognostic algorithms (since
it implies to predict the evolution of SOH in time) [1]. Thus, a
good SOH prognostic algorithm should be able to predict the
remaining capacity for future cycles of operation with adequate
accuracy (i.e., a measure of the gap between the ground-truth

failure time and the expectation of the RUL) and precision
(i.e., a measure of the uncertainty associated to the prediction)
[3]–[5].

Degradation processes in energy accumulators are complex
and strongly influenced either by temperature or operating
conditions during charge/discharge cycles [6]–[8]. Whereas the
SOH of ESDs can be characterized using several condition
indicators (such as the internal resistance/impedance or con-
ductance, life cycle, capacity degradation rate, self-discharge
rate, and power quality features associated to charge/discharge
cycles [9], [10]), most of commercial solutions currently avail-
able are limited to voltage monitoring, Coulomb counters, and
internal impedance measurements [1], [2], [11]. On the one
hand, Coulomb counting (a method directed to measure the
charge flow of accumulators) aims to estimate the capacity of
a battery through the integration of electric current during each
charge/discharge cycle. However, this approach would require
absolute knowledge about the future usage profile to allow
predicting the evolution of the SOH in an accurate manner;
not to mention that all measurements must be calibrated with
respect to a reference point, which hinders the application
of this method to discharge profiles that include changes in
operation points. Alternatively, measurements of the ESD in-
ternal impedance can be used to characterize changes in the
internal resistance of the energy accumulator as a function of
the SOH degradation; However, since this internal impedance
depends directly on the temperature profile, it is difficult to
provide a dependable estimate of the SOH (and, therefore, to
predict its evolution in time) in the case of Li-ion batteries.
A good example of this type of monitoring approach is the
analysis of the electrochemical impedance spectroscopy (EIS),
a noninvasive method used massively in laboratory testing to
observe the capacity degradation of batteries [12], [13], which
is difficult to implement in commercial applications because it
implies additional instrumentation and a very specific testing
setup [14], [15].

Previous research efforts in the area of battery SOH es-
timation have explored the use of electrochemical models
for energy accumulators, either building equivalent circuits or
studying the relationship between battery degradation and very
specific features (SOC, depth of discharge, or accumulator age)
[16], [17]. The analysis of degradation processes, however,
also requires the incorporation of predictive models for the
implementation of a framework capable of simultaneous SOH
filtering (analysis of the current state) and prognosis (analysis
of future behavior). These predictive models should allow rapid
parameter adaptation to minimize the effect of measurement
inaccuracies and erroneous initial conditions as well as to
incorporate changes in environmental and operating conditions
within long-term predictions [1], [5], [10]. In this sense, Saha
et al. [1] present the implementation of regression models for
SOH prognosis using relevance vector machines (RVMs) to
generate a prediction curve that incorporates information from
EIS measurements for an accumulator. RVMs present a clear
advantage over other regression techniques, such as the support
vector machine [16], [18], since RVM allows implementing
a Bayesian framework and thus provides statistical informa-
tion of the algorithm output, the RUL of the battery. Other
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techniques use combinations of neural networks [8], fuzzy logic
[19], regressions [2], or distributed active learning to perform
regression in RUL prediction problems [20].

If Coulomb counting is used as a method to estimate the
capacity of ESDs (with the purpose of providing an adequate
initial condition in predictive models) and given that degrada-
tion processes in accumulators are nonlinear and subject to un-
certainties, it is natural to implement suboptimal Bayesian esti-
mation techniques such as the extended Kalman filter [21], [22].
This approach intends to approximate the error covariance ma-
trix associated to the state estimate, using a linearized version of
the dynamic system that represents the ESD degradation. The
problem arises when trying to propagate this estimate on time
in m-step-ahead predictions, and consequently, approximation
errors are too significant to be neglected [3].

SMC methods (a.k.a. PF) have also proved to be useful when
trying to represent uncertainty in the prognosis of degradation
processes [3], [5]. In [23], for example, the concept of Bayesian
estimation is applied to integrate diagnosis and prognosis of the
health status of the accumulator. The concept utilizes RVM to
identify the model, while the PF is used for model parameter
adaptation, noise estimation, and characterization of the oper-
ating conditions of the life cycle of the accumulator in the form
of pdfs. A similar approach is found in [24], where Bayesian
Monte Carlo is used to update the parameters of an empirical
model, thus representing the prediction of the degradation
process through pdfs. The shortcomings of these approaches are
related with the fact that pure empirical models cannot combine
the information that is provided by the knowledge about the
process phenomenology with real-time measured data, under
assumptions of non-Gaussian sources of uncertainty and con-
sidering the existence of nonlinear phenomena. However, these
objectives can be achieved if nonlinear state-space stochastic
models are used instead.

The regeneration or self-recharge phenomena in Li-ion bat-
teries has been briefly mentioned in the literature [1], [5].
Specifically in the case of lithium-ion batteries, this phe-
nomenon has been represented as a self-charging in the logger
where certain operating conditions facilitate a sudden (and
temporary) increment in the available capacity of the ESD
at the next cycle. This condition has been modeled as an
exponential process in [1] and [5], and although the authors in
[1] recognize the significance of the effect that this phenomena
has on the accuracy and precision of prognostic algorithms
based on Bayesian methods, only Orchard et al. [5] provide a
solution based on risk-sensitive PFs that shows some degree
of improvement. In this sense, particularly considering the
significant contribution of PF algorithms to the implementation
of prognosis frameworks, it is deemed necessary to present
a summary of the main aspects associated to the formulation
of particle-filtering-based predictive modules, which follows
next.

B. Particle-Filtering-Based Prognosis Framework for Faulty
Dynamic Nonlinear Systems

Consider a sequence of probability distributions
{πk(x0:k)}k≥1, where it is assumed that πk(x0:k) can be

evaluated pointwise up to a normalizing constant. SMC meth-
ods, also referred to as PFs, are a class of algorithms designed
to approximately obtain samples from {πk} sequentially, i.e.,
to generate a collection of N � 1 weighted random samples
{w(i)

k , x
(i)
0:k}i=1...N , w(i)

k ≥ 0, ∀k ≥ 1, satisfying [25], [26]

N∑
i=1

w
(i)
k ϕk

(
x
(i)
0:k

) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
N → ∞

∫
ϕk(x0:k)πk(x0:k)dx0:k (1)

in probability, where ϕk is any πk-integrable function.
In the particular case of the Bayesian filtering problem, the

target distribution πk(x0:k) = p(x0:k|y1:k) is the posterior pdf
of X0:k, given a realization of noisy observations Y1:k = y1:k.

Let a set of N paths {x(i)
0:k−1}i=1...N

be available at time
k − 1. Furthermore, let these paths distribute according to
qk−1(x0:k−1), also referred to as the importance density func-
tion at time k − 1. Then, the objective is to efficiently obtain
a set of N new paths (particles) {x̃(i)

0:k}i=1...N distributed
according to πk(x̃0:k) [25].

For this purpose, the current paths x
(i)
0:k−1 are extended

by using the kernel qk(x̃0:k|x0:k−1) = δ(x̃0:k−1 − x0:k−1) ·
qk(x̃k|x0:k−1), i.e., x̃0:k = (x0:k−1, x̃k). The importance sam-
pling procedure generates consistent estimates for the expecta-
tions for any function, by approximating (2) with the empirical
distribution [26]

π̃N
k (x0:k) =

N∑
i=1

w
(i)
0:kδ

(
x0:k − x̃

(i)
0:k

)
(2)

where w
(i)
0:k ∝ w0:k(x̃

(i)
0:k) and

∑N
i=1 w

(i)
0:k = 1.

The most basic SMC implementation—the sequential-
importance-sampling PF—computes the value of the parti-
cle weights w

(i)
0:k by setting the importance density function

equal to the a priori state transition pdf p(x̃k|xk−1), i.e.,
qk(x̃0:k|x0:k−1) = p(x̃k|xk−1). In that manner, the weights for
the newly generated particles are evaluated from the likelihood
of new observations. The efficiency of the procedure improves
as the variance of the importance weights is minimized. The
choice of the importance density function is critical for the per-
formance of the PF scheme, and hence, it should be considered
in the filter design.

Prognosis, and thus the generation of long-term prediction, is
a problem that goes beyond the scope of filtering applications
since it involves future time horizons. Hence, if PF-based
algorithms are to be used, it is necessary to propose a procedure
with the capability to project the current particle population in
time in the absence of new observations.

Any adaptive prognosis scheme requires the existence of
at least one feature providing a measure of the severity of
the fault condition under analysis (fault dimension). If many
features are available, they can always be combined to generate
a single signal. In this sense, it is always possible to describe the
evolution in time of the fault dimension through the nonlinear
state equation.

By using the aforementioned state equation to represent
the evolution of the fault dimension in time, it is possible
to generate m-step-ahead long-term predictions, using kernel
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functions to reconstruct the estimate of the state pdf in future
time instants, as it is shown in

p̃(xk+m|x̃1:k+m−1)

≈
N∑
i=1

w
(i)
k+m−1K

(
xk+m − E

[
x
(i)
k+m|x̃(i)

k+m−1

])
(3)

where E(·) represents the expectation of a random variable and
K(·) is a kernel density function, which may correspond to the
process noise pdf, a Gaussian kernel, or a rescaled version of
the Epanechnikov kernel [3]. The resulting predicted state pdf
contains critical information about the evolution of the fault
dimension over time. One way to represent that information
is through the computation of statistics (expectations, 95%
confidence intervals), either the EOL [1] or the RUL of the
faulty system [27].

The EOL pdf depends on both long-term predictions and em-
pirical knowledge about the critical conditions for the system.
This empirical knowledge is usually incorporated in the form of
thresholds for main fault indicators. Therefore, the probability
of failure at any future time instant k = eol (namely, the EOL
pdf) is given by

Pr{EOL = eol} =

N∑
i=1

Pr
(
Failure|X = x̂

(i)
eol

)
· w(i)

eol. (4)

The conditional probability of failure in (4) may be defined
through the determination of hazard zones [3], either using his-
torical data or knowledge from process operators. The simplest
case is where the concept of “failure” implies the instant when
the fault feature crosses a given threshold. In that case, the
probability of failure, conditional to the state, is equal to one
if the state is exactly on the manifold that defines the threshold
value.

III. MODELING OF SELF-RECHARGE PHENOMENA IN

BATTERY PROGNOSTIC MODULES

Several features are, directly or indirectly, associated to
the SOH of ESDs, among which are the usage profile and the
environmental conditions [28]. This research studies one of the
most critical features that affect the SOH, the life cycle, which
represents the number of times that a battery can be recharged
before its capacity falls below acceptable limits, typically con-
sidered around the 80%–70% of the nominal capacity.

Life cycle models usually consider a specific term that aims
to incorporate part of the phenomenology that is present in the
ESD degradation process. In the case of batteries, this term is
the Coulomb efficiency, ηc, which is a measure of how much
usable energy is expected for the discharge cycle in progress in
comparison with the capacity exhibited by the ESD during the
previous discharge cycle [4]. Equations (5) and (6), inspired by
the work presented in [1], show how this term can be included in
a nonlinear dynamic model that can be used for SOH estimation
purposes, hereafter denoted as “model #1”:
State transition model{

x1(k + 1) = ηcx1(k) + x2(k)x1(k) + ω1(k)
x2(k + 1) = x2(k) + ω2(k)

(5)

Fig. 1. Data set examples showing the results of accelerated degradation test
in Li-ion batteries (NASA Ames Prognostics Center of Excellence).

Measurement equation

y(k) = x1(k) + v(k) (6)

where k is the cycle index; x1 is a state representing the battery
SOH; x2 is a state associated with an unknown model parameter
that is required to explain minor differences with respect to the
expected behavior (which are specific to the monitored ESDs);
y(k) is the measured SOH; and ω1, ω2, and v are non-Gaussian
noises.

Although “model #1” enables the implementation of
Bayesian filtering techniques to monitor degradation processes
in ESDs, it is inadequate when trying to detect and isolate the
long-term effect of regeneration (self-recharge) phenomena in
batteries. Self-recharge phenomena are characterized by sud-
den, momentary, and occasionally considerable regeneration of
the battery capacity (see Fig. 1) that tends to fade in time faster
than the typical SOH degradation time constant. These changes,
related to physicochemical aspects and temperature/load con-
ditions during charge and discharge cycles, are particularly
important in the case of Li-Ion batteries because they often alter
the trend of the SOH prediction curve, thus affecting the per-
formance of prognostic modules based on Bayesian algorithms
to estimate the initial conditions of their predictive models;
see Fig. 1 showing the results of an accelerated degradation
test performed on Li-ion batteries at the National Aeronautics
and Space Administration (NASA) Ames Prognostic Center of
Excellence [29].

Considering the previous point, a second state-space model
is proposed in this work to solve the aforesaid issue and im-
prove the quality of prognostic modules for the supervision of
ESD degradation processes (see (7) and (8), hereafter denoted
as “model #2”). Instead of using models based on the ESD
physicochemical structure that may prove to be complex and
offer little adaptation in real-time applications, “model #2”
offers an empirical representation of regeneration phenomena
that is used to quantify the long-term effect that the added ESD
capacity has on the life cycle:

State transition model defined as in (7) and shown at the
bottom of the next page.
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Measurement equation

y(k) = x1(k) + (δ (1− U(k)) + δ (2− U(k))) · x3(k) + v(k)
(8)

where x3 is a state associated with the additional available SOH
due to regeneration phenomena; U is a external input associated
with the apparition of regeneration phenomena and is defined
as in (9); y(k) is the measured SOH; ω31 and ω32 are non-
Gaussian noises used to represent uncertainty sources within
the parameter estimation procedure; and δ(·) is the delta of the
Kronecker function.

The system external input U is defined as the output of an
online PF-based detection module [3], [30] that performs a
hypothesis test (1% false alarm rate) for the measurement y(k),
considering the a priori one-step-ahead prediction of the system
output as the pdf that characterizes the null hypothesis (self-
recharge phenomena either do not exist or are fading in time).
This PF-based detection module basically determines a time-
varying threshold for the hypothesis test that directly depends
on the position of the particles associated to the empirical
a priori state distribution. The threshold is then computed as
the largest scalar T (k) such that the sum of the weights w(i)

k of

all particles satisfying the inequality x
(i)
1 (k) ≥ T (k) is greater

than the desired false alarm rate α (more details can be found
in [3]). On the one hand, if the null hypothesis is accepted,
then U(k) = 0. Alternatively, if the null hypothesis is rejected
at cycle k (i.e., measurement y(k) is larger than the detection
threshold for the 99% statistical confidence of the one-step-
ahead prediction pdf [3]), then U(k) = 1. Once U(k) is set
to one, it can only be reset to 0 after the hypothesis “x3 = 0”
is accepted. The latter implies that, when U(k) = 1, either a
regeneration phenomenon has been detected or the latest that
was detected is currently fading. In addition, if the hypothesis
test for y(k) rejects the null hypothesis and U(k − 1) = 1, then
U(k) = 2. This is done to indicate that at least two regeneration
phenomena have occurred within a few cycles of operation

U(k)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if self-recharge does not exist
1 if either self-recharge is detected at cycle k

or self-recharge phenomenon is fading
2 if additional self-recharge phenomena are

detected before the latest one fades.

(9)

The procedure to adequately determine the most appropri-
ate noise kernels in “model #2” considered the isolation and
statistical analysis of 68 self-recharge phenomena that occurred
during Li-ion battery accelerated degradation tests at the NASA
Ames Prognostic Center of Excellence (tests were performed at

Fig. 2. PF-based detection framework for self-recharge phenomena for three
regeneration events. (a) Actual SOH degradation data. (b) Model external input
U(k), generated according to (9). (c) Output of the PF-based detection module.

23 ◦C, using a 2 A constant discharge current and assuming
degradation when battery capacity falls below 75% of the
nominal value of 2 Ah) [29]. The statistical analysis aimed at
determining the most suitable distributions ω31(k) and ω32(k)
that could be utilized to characterize uncertainty sources for the
magnitude and typical damping ratio of regeneration phenom-
ena, respectively, using the software STAT::FIT and considering
the Kolmogorov–Smirnov goodness-of-fit test [31] (see Fig. 1).
In this sense, it was found that the most appropriate distribution
for noise kernel ω31(k) (which characterizes the typical amount
of SOH that is added in the event of successive regeneration
phenomena) is log-normal. Analogously, for the case of the
positive random variable ω32(k) (which helps to characterize
the typical damping ratio of self-recharge phenomena), the
most appropriate distribution results to be uniform over the
range [0.75, 0.85]. Distribution parameters both for ω31(k) and
ω32(k) were also determined from this statistical study. Fig. 2
shows the performance of the resulting PF-based detector in
the event of three regeneration phenomena, two of which are
successive.

Equations (7)–(9) not only allow the implementation of
suboptimal Bayesian estimation techniques within real-time
prognostic modules but also allow a statistical characterization
of self-recharge phenomena both in terms of frequency of
occurrence and amplitude. Particle-filtering-based prognostic
algorithms are especially suitable to accomplish the aforesaid
task since they allow the inclusion of deterministic and prob-
abilistic load profiles in predictive models [32]. However, it is
first critical to determine how many realizations of the filter and
how many particles are required to achieve a determined perfor-
mance level for a specific prognostic application. In this sense,

⎧⎪⎨
⎪⎩

x1(k + 1)=ηcx1(k)+x2(k)x1(k)+ω1(k)
x2(k + 1)=x2(k)+ω2(k)
x3(k + 1)=δ (U(k))ω31(k)+δ (1− U(k)) (x3(k)ω32(k))

+. . . δ (2− U(k)) (x3(k)+ω31(k))

(7)
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the following section of this paper focuses on a hypothetical
and simplified degradation system where the optimal solution
(in the mean-square sense) can be found analytically.

IV. PF-BASED PROGNOSIS FOR ESDS WITH

STATISTICAL CHARACTERIZATION OF SOH
REGENERATION PHENOMENA

This section provides a comprehensive analysis of the main
aspects that should be considered in the implementation of a
particle-filtering-based framework for SOH prognosis in ESDs,
with statistical characterization of self-recharge phenomena in
batteries. In particular, the solution provided by the proposed
PF-based approach is compared—in terms of accuracy of EOL
expectation and just-in-time point (JITP [33])—with the op-
timal (in the mean-square-error sense) a priori solution of
the prediction problem for a hypothetical degradation process
represented by a linear dynamic system.

A. Simplified Degradation Model and Analytical Solution for
the SOH Prognosis in ESDs

The analytical solution for the problem of SOH degradation
in ESDs may prove to be complex to obtain due to the fact
that the process is nonlinear and non-Gaussian. In this regard,
the utilization of a simplified scenario, where the degradation
is described by a linear Gaussian dynamic system, offers the
opportunity to compare the performances of suboptimal ap-
proaches, as well as the most appropriate values for design
parameters. Regardless of what is stated earlier, the simplified
version of the degradation process still includes part of the
phenomenology of the process by incorporating the concept of
Coulomb efficiency ηc, as seen in (10) and (11):
State transition model{

x1(k + 1) = α1x1(k) + ω1(k)
x2(k + 1) = α2x2(k) + βU(k) + ω2(k)

(10)

Measurement equation

y(k) = x1(k) + x2(k) + v(k) (11)

where k is the cycle index; x1 is a state representing the
battery SOH; x2 is a state associated with additional available
SOH due to regeneration phenomena; α1, α2, and β are model
parameters; U is an external input (U(k) = 1 if a regeneration
phenomenon is detected at cycle k; else, U(k) = 0); y(k) is
the measured SOH; and ω1 and ω2 are independent zero-
mean Gaussian noise terms with variances Rww1 and Rww2,
respectively. In this particular case, α1 = ηc.

The statistical characterization of self-recharge phenomena
is implemented through a two-state first-order Markov chain
[34] (being the null state associated to the absence of capacity
regeneration, U(k) = 0) and transition probabilities estimated
from the analysis of the 68 capacity regeneration events that
were detected on actual accelerated degradation data (collected
at the NASA Ames Prognostic Center of Excellence [29]). The
resulting simplified model captures two key elements that can
be identified in battery degradation processes: 1) Effectively,

Fig. 3. Data generated by simplified model of SOH degradation in Li-ion
batteries.

the long-term trend of the degradation curve can be coarsely
approximated by a decreasing exponential function (see Fig. 1),
and 2) indeed, the appearance of regeneration phenomena has
a random component, being more frequent when operating
the battery at high temperatures. There are, however, costs
associated to the utilization of a simplified linearized model:
1) The structure assumes that the magnitude of regeneration
effects is constant (β, a fixed model parameter) and independent
of the number of previously detected events, and 2) the damping
rates for both the long-term degradation term and self-recharge
phenomena are fixed and temperature independent.

Fig. 3 shows a realization of the model defined by (10) and
(11). These data will be used to compare the performance of
the proposed PF-based SOH prognosis framework for ESDs
versus the optimal solution, which can be obtained analytically
using the a priori prediction equations of the Kalman filter.
In this sense, it is important to mention that simulated data
have considered a faster degradation constant (compared to the
actual degradation test) to provide the means of comparing the
performance of the aforementioned algorithms for a prediction
window of 60–80 cycles of operation, which is considered
reasonable for prognosis purposes [5].

Kalman filter equations formulate that the optimal one-step-
ahead prediction for the state in a linear dynamic system is
given by a Gaussian random variable with expectation given
by (12) and covariance matrix defined by (13)

x̂(k + 1) =Ax̂(k) +Bu(k) (12)

P (k + 1) =AP (k)AT +Rww (13)

where x̂(k) represents the state expectation; A and B are ma-
trices that define the state equations of the linear system; P (k)
is the state covariance matrix at the kth discharge cycle; and
Rww is the process noise covariance matrix. In the particular
case of model (10) and (11), it is possible to obtain closed-form
expressions for the state predictions at the kth discharge cycle,
for given initial conditions at the zeroth cycle of operation, by
iterating (12) and (13). This information is sufficient to compute
the EOL pdf for the simulated system.
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Fig. 4. Binary tree depicting the probability of self-recharging phenomena.

Particularly, for state x1, it follows that

x1(k) ∼N
(
μx1

(k), σ2
x1
(k)

)
(14)

μx1
(k) =α1μx1

(k − 1) = αk
1μx1

(0) (15)
σ2
x1
(k) =α2

1σ
2
x1
(k − 1) +Rww1

=α2k
1 σ2

x1
(0) +Rww1

k−1∑
i=0

α2i
1 (16)

where the initial conditions of the state x1 are assumed to be
constant and defined by

μx1
(0) = μx1 0;σ

2
x1
(0) = σ2

x1 0. (17)

In the case of the second state of the simplified degradation
system (x2), the occurrence of future self-recharge phenomena
must consider the stationary probability of the Markov chain
that characterizes the transitions from the null state (absence of
SOH regeneration) to the other state of the chain that represents
the appearance of a regeneration phenomenon. Indeed, for each
state transition in time, two possible scenarios may take place,
and thus, the future evolution of state x2 may be described using
a binary decision tree. Fig. 4 shows this situation explained
earlier, indicating possible paths that the state x2 may follow
when analyzing three-step-ahead predictions, conditional to the
appearance of future self-recharge phenomena. In this case, the
distribution for the predicted state x2 results in the Gaussian
mixture of the form

x2(k) ∼
2k∑
j=1

ωj,kN
(
μ(j)
x2

(k), σ2
x2
(k)

)
(18)

where k is the prediction time and the weights ωj,k are com-
puted recursively as follows:

ωj,k �
{
ωj/2,k−1 · π1 if j is even
ω(j+1)/2,k−1 · π0 if j is odd . (19)

In (19), π0 and π1 represent the stationary probability for the
Markov chain states associated to either the absence of SOH
regeneration and the occurrence of the aforesaid phenomenon,
respectively (their values were computed empirically from the
accelerated degradation test in [29]). As a result, weights asso-
ciated to even values of the j index in (18) intend to incorporate
the probability of an additional regeneration phenomenon oc-

curring at the prediction time of interest. The initial condition
for the weights in the recursion is given by ω1,0 = 1.

The corresponding expectations and state variances are
given by

μ(j)
x2

(k) �
{
μ
(j)
x2 (k − 1) · α2 + β if j is even

μ
(j+1)/2
x2 (k − 1) · α2 if j is odd

(20)

σ2
x2
(k) =α2

2σ
2
x2
(k − 1) +Rww2

=α2k
2 σ2

x2
(0) +Rww2

k−1∑
i=0

α2i
2 (21)

where the state initial condition distributes as a Gaussian pdf
with expectation μ

(1)
x2 (0) = 0 and variance σ2

x2
(0) = σ2

x2 0.
Given that SOH prognosis depends on the instant where

the predicted value of the measured variable y(k) reaches a
determined threshold for the ESD capacity, it is also necessary
to determine the analytic solution for the optimal a priori
prediction of the system output y(k). The latter can be obtained
using

fY (k) (y(k)) = fX1(k) (x1(k)) ∗ fX2(k) (x2(k)) (22)

fY (k) (y(k)) =N
(
μx1(k), σ

2
x1
(k)

)
∗

2k∑
j=1

ωj,kN
(
μ(j)
x2

(k), σ2
x2
(k)

)
. (23)

As a consequence, the output variable y(k) also distributes
as a Gaussian mixture characterized by

y(k) ∼
2k∑
j=1

ωj,kN
(
μ(j)
y (k), σ2

y(k)
)

(24)

μ(j)
y (k) =μx1

(k) + μ(j)
x2

(k) (25)

σ2
y(k) =σ2

x1
(k) + σ2

x2
(k). (26)

At this point, it is important to notice that the first two
moments of the Gaussian mixture (24) can be approximated
respectively by [35]

μeq
y (k) =

2k∑
j=1

ωj,kμ
(j)
y (k), and (27)

σ2 eq
y (k) =

2k∑
j=1

ωj,k

(
σ2
y(k) +

(
μ(j)
y (k)

)2
)

−
(
μeq
y (k)

)2
. (28)

This fact eases the computation of the first two moments of
the failure time pdf (for this case, equivalent to the EOL). Also,
if the failure SOH threshold (a.k.a. the hazard zone [3]) is fixed
as a constant value at the 75% of the rated capacity, then the
entire EOL pdf (for given specific initial conditions) may be
computed by differentiating the cumulative density (29). Fig. 5
shows the resulting EOL pdf for given initial conditions at
k = 0

Pr{EOL = eol} =

SOH threshold∫
−∞

fY (eol) (y(eol)) d (y(eol)) .

(29)
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Fig. 5. EOL pdf (simplified degradation model).

Although the expected EOL, as in (30), is one the most
common performance measures that are used to evaluate the
accuracy of prognostic algorithms [5], it must be noted that a
decision based on that value does not consider the fact that the
probability of failing before the expected EOL cycle could be
even close to 50% (obviously undesirable). In this regard, the
JITP value (31) incorporates the concept of “risk,” specifying
the cycle of operation where the probability of failure reaches
a specified threshold, given a probabilistic model for the degra-
dation process

ˆEOL �E {k|E {y(k)} = SOH threshold} (30)
JITPα% = argmin

k
(Pr{EOL ≤ eol} ≥ α%) . (31)

Both measures will be used to compare the performance
of the proposed PF-based approach for SOH prognostics with
respect to the distribution that is computed from (29), as follows
next.

B. PF-Based SOH Prognosis Framework in ESDs:
Implementation Issues and Performance Analysis

The formulation of PF-based prognostic approaches has been
widely covered in the literature [3], [5], [36]–[38]. However,
there are specific issues associated to the implementation of
these schemes that depend strongly on the number of states of
the dynamic system and the type of nonlinearities exhibited by
them. For this reason, it is important to determine the best algo-
rithm parameters that should be used in prognostic applications
oriented to SOH monitoring in ESDs. More specifically, focus
is on the following: 1) the number of particles that need to be
considered to represent the state pdf in each realization of the
stochastic predictive model and 2) the number of realizations
of the filtering algorithm that are required to ensure given
standards in terms of accuracy of the predicted EOL pdf.

For this purpose, several experiments were conducted for a
PF-based SOH prognostic algorithm using the simplified degra-
dation model (10) and (11) in MATLAB R2009b simulation en-
vironment. Each experiment considered a different combination
between the number of particles used in the implementation of
the PF-based prognostic algorithm (minimum of 10 particles
and maximum of 70 particles) and the number of realizations

TABLE I
EFFECT OF THE NUMBER OF PARTICLES ON JITPα% VALUE

TABLE II
EFFECT OF THE NUMBER OF PF REALIZATIONS ON EOL EXPECTATION

of the filter (1 to 70). The obtained results are compared to the
analytic solution in terms of the JITPα% value and the EOL
expectation. From one point of view, the JITPα% value is criti-
cal to define the number of particles that are needed to represent
the uncertainty of the system since it provides information
about the tail of the distribution. On the other hand, the accuracy
on the EOL expectation (that is conditional to the occurrence
of a SOH regeneration phenomenon) greatly depends on the
number of realizations of the stochastic predictive model that
are used to statistically characterize the degradation process.

The obtained results showed that, for more than 50 particles
in the PF-based SOH prognosis routine, the difference in terms
of the JITP value is almost negligible (one cycle). Table I
shows the specific results obtained for two different α%, using
50 particles.

Analogously, after an exhaustive analysis of empirical re-
sults, it was determined that a PF-based SOH prognosis frame-
work that uses 40 realizations of the particle-filtering algorithm,
to characterize the initial condition of the predictive model,
differs by only one cycle with respect to the analytic solution;
see Table II.

These parameters have empirically proved to be adequate
to implement a PF-based SOH prognostic module if a sim-
plified degradation model is assumed, providing an impor-
tant reference point for the implementation of the proposed
prognostic scheme in the study of accelerated degradation test
data, particularly when considering that nonlinearities in actual
degradation processes make it impossible to replicate a similar
study. This reference point not only helps to bound the effect of
suboptimal estimation techniques in terms of accuracy and pre-
cision of the prognostic result but also helps to dimension the
computational requirements associated to the implementation
of the proposed prognostic solution.

V. VALIDATION OF A PF-BASED SOH PROGNOSIS

FRAMEWORK IN EXPERIMENTAL DEGRADATION TEST

In this paper, the implementation of a PF-based SOH prog-
nosis algorithm using (7)–(9) (“model #2”) as state dynamic
equations to describe the degradation process and a PF-based
detection module [32] to detect and incorporate the effect of
self-regeneration phenomena in long-term predictions is pro-
posed. The proposed approach will be compared with the re-
sults available in the literature [1], [5], which are mainly based
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on (5) and (6) (“model #1”). The most appropriate amount of
particles (50 particles) and required realizations of the non-
linear filter (40 realizations) have been determined based on
what was presented in Section IV. Validation data consider
the results of the actual accelerated degradation test performed
on Li-ion batteries at the NASA Ames Prognostic Center of
Excellence [29]. Specifically, eight data sets were considered
in this analysis for the determination of a priori knowledge,
and one was considered for validation purposes. Each data set
contained information for two different operating profiles, one
for battery charge and the other for battery discharge, both at
ambient temperature (23 ◦C). The battery nominal capacity is
reported to be 2 Ah. Battery charging is performed using 1.5 A
constant current (CC) until the battery voltage reaches 4.2 V;
then, the rest of the charging procedure continues with constant
voltage until the current drops below 20 mA. Battery discharge
is performed using 2 A CC until the voltage drops below 2.5 V.
The EOL criterion considers in this case the moment where
the battery capacity drops below 75% of its nominal value.
Although the figures presented in this section show validation
results using one particular data set, similar results (in terms
of accuracy and precision of the estimated EOL pdf) can be ob-
tained independently of the data set that is used for that purpose.

Particle filtering can be used as in (2) and (3) to provide
a sampled version of both filtered and predicted state pdfs.
Furthermore, by finding the time instants where each particle
trajectory reaches a given failure threshold, it is possible to
compute a probabilistic characterization for the EOL of the
system undergoing degradation, as shown in (4) and (29).
Given that each particle trajectory strongly depends on the inner
model that describes the degradation process, it is understand-
able that capacity regeneration phenomena could have a greater
effect on prognostic frameworks based on “model #1” than on
those based on the proposed “model #2.” This is shown in
Figs. 6 and 7, which respectively present the obtained results
for PF-based SOH prognostic frameworks using “model #1”
and “model #2” to describe degradation processes. Figs. 6(a)
and 7(a) show the SOH measurement data (fine solid line)
for an actual degradation test, the PF-based estimate (coarse
solid line), and the PF-based prediction starting at the 60th
discharge cycle (coarse dashed line). This prediction includes
the expectation, as well as the lower and upper bounds of the
95% confidence interval for the predicted SOH, as a function
of time. Figs. 6(b) and 7(b) show the computed EOL pdf, as
well as 95% confidence intervals (dashed vertical lines) and the
expectation of the EOL pdf (dark vertical line).

It is worth noting that Fig. 6(a) shows the effect of self-
recharge phenomena (20th, 31th, and 48th cycles of operation)
both on the filtering and the prognostic phases of the algorithm.
In fact, it is extremely difficult to incorporate these events
within the state estimates, greatly affecting their accuracy and
also the initial condition for the prediction of SOH degradation.
As a consequence, the EOL pdf [see Fig. 6(b)] evidences greater
dispersion and variance than in the case of an approach based
on “model #2” and, therefore, larger confidence intervals for the
EOL of the ESD.

On the other hand, Fig. 7(a) shows the results of the progno-
sis scheme based on “model #2” and the PF-based diagnosis

Fig. 6. EOL prediction based on model #1 [see (5) and (6)]. (Fine solid line)
Measurement data. (Coarse solid line) PF-based estimate. (Coarse dashed line)
PF-based prediction.

Fig. 7. EOL prediction based on model #2, which explicitly incorporates a
detection module for regeneration phenomena. (Fine solid line) Measurement
data. (Coarse solid line) PF-based estimate. (Coarse dashed line) PF-based
prediction.

module for the detection of regeneration phenomena [that is
used to determine the value of the external input signal U(k)
in (7)–(9)]. It is important to note that the detection module
does not suffer from false positives (original design proposed
1% false alarm rate). Additionally, by observing the computed
EOL pdf in Fig. 7(b), it can be noted that the prediction variance
in the EOL pdf is smaller than in the case of the classic approach
shown in Fig. 6(b). Furthermore, the accuracy of the prediction
result improves when using “model #2.”

From an implementation standpoint, it is important to men-
tion that the algorithm complexity allows the computation of
an EOL pdf estimate in approximately 2.84 s, using MATLAB
R2009b environment and Advanced Micro Devices Athlon
II P320 Dual-Core Processor 2.10 GHz (installed memory
(RAM): 4 GB). According to this information, this algorithm
could be easily embedded as part of a more integral solution for
battery management systems (BMSs), providing more accurate
and precise estimates of the ESD RUL. In this sense, it must be
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noted that the avoidance of battery RUL overestimation has a
direct impact in logistics (since it is possible to know exactly
when to change the battery), recycling-oriented businesses, and
battery certification procedures for used electrical vehicles.

Although visual evidence could be a good indicator of the
improvements that can be obtained by using the proposed
model within the PF-based SOH prognosis module, it is nec-
essary to define appropriate performance measures to quantify
and evaluate that improvement in a more rigorous manner.
The following section focuses on this specific topic, which
is of paramount importance for a correct interpretation of the
obtained results.

VI. PROGNOSTIC PERFORMANCE MEASURES AND

EVALUATION OF THE PROPOSED SOH DEGRADATION

MONITORING APPROACH

It is widely accepted within the prognostic and health man-
agement community that the quality of forecasts and prognostic
approaches is directly related to the accuracy and precision
of the EOL/RUL estimates [32], [36]–[38]. Although some
authors have proposed prognostic performance measures in
the past [5], [39], not necessarily those indicators represent
the most important aspects to be considered in a specific
application such as SOH prognosis for ESDs. Typical accu-
racy and precision metrics assume that the risk associated to
accuracy problems is equivalent for the case where the EOL
is either overestimated or underestimated. This is clearly not
true in the case of failure prognosis problems. In addition,
metrics such as RMS error assume that the system is time
invariant (which is not necessarily true) and cannot capture
the fact that the risk associated to accuracy problems increases
as the RUL diminishes. Although it is possible to consider
a weighted version of those metrics, it is not straightforward
to define the weights as a function of the risk function. This
section aims at filling this gap, proposing ad hoc performance
measures that could help to analyze the results obtained for the
case of accelerated degradation tests and identifying the main
improvements associated to the use of “model #2” within the
implementation of a PF-based prognostic framework for SOH
degradation monitoring.

A. Prognostic Accuracy Measure

Accuracy is a bias measure of the prognostic algorithm,
which basically can be computed as the difference between the
expected EOL of the system and its ground-truth value

Accuracy = ϕ
(
EOL− E

{
EOL|y1:kpred

})
∀kpred∈[1,EOL]

(32)

where EOL is the ground-truth EOL, kpred is the cycle where
the prognostic algorithm is executed, E{EOL|y1:kpred

} is the
conditional expectation given the observed data, and ϕ is a lo-
gistic function that aims to scale the results in the range [−1, 1].
For this measure, the better the accuracy is, the smaller the
measure’s absolute value is (ϕ = 0 indicates perfect accuracy).
It is important to note that this measure only allows quantifying
the average quality of the prediction and is not for a particular

Fig. 8. Evaluation of PF-based SOH prognostic module using the proposed
accuracy performance measure and (a) model #1 or (b) model #2.

experiment (that could easily be part of the tail of the probabil-
ity distribution).

Fig. 8 shows the evaluation of the PF-based SOH prognostic
algorithm using “model #1” [see Fig. 8(a)] and “model #2” [see
Fig. 8(b)], considering the long-term predictions that were gen-
erated (emulating real-time operation) at each discharge cycle
kpred. Given that the prediction algorithm is based on Bayesian
estimators, it would be expected that the accuracy should im-
prove as the amount of information increases; however, it can
be observed that there are instants where the proposed accuracy
measure shows overestimation of the EOL (accuracy measure
takes a negative value).

The aforesaid behavior is absolutely undesirable in any prog-
nostic module since it implies that the ESD could fail before
it was prognosticated. To this effect, a PF-based prognostic
algorithm based on the proposed “model #2” exhibits better
performance [see Fig. 8(b)] than its counterpart based on model
#1, which tends to overestimate the RUL of the system during
discharge cycles 49–57 [see Fig. 7(a)].

B. DSTD

Another important aspect to be considered in the evaluation
of performance measures is the volatility of generated predic-
tions, which could be measured by computing the standard
deviation of the expected EOL over a sliding window

DSTD

=ϕ
(√

V ar (E{EOL|y1:j})j=kpred−Δ:kpred

)
∀kpred∈[1,EOL]

(33)

where kpred is the cycle where the prognostic algorithm is
executed, Δ is the number of samples considered in the sliding
window, and ϕ is the logistic function that aims to scale
the results in the range [0,1]. For this measure, the better
the dynamic standard deviation (DSTD), the closer to zero is the
measure (DSTD = 0 indicates perfect null volatility and the
fact that new measurements do not alter the output of the prog-
nostic algorithm). Fig. 9 shows the evaluation of the PF-based
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Fig. 9. Evaluation of PF-based SOH prognostic module using the proposed
DSTD performance measure and (a) model #1 or (b) model #2.

SOH prognostic algorithm using “model #1” [see Fig. 9(a)]
and “model #2” [see Fig. 9(b)], considering the long-term
predictions that were generated (emulating real-time operation)
at each discharge cycle k.

Fig. 9(a) shows that self-recharge phenomena affect the
volatility of long-term predictions based on “model #1” in a
greater manner than in the case of “model #2” [see Fig. 9(b)]. In
fact, the DSTD index is always greater in the former case than
in the latter after the capacity regeneration phenomena (20th,
31th, and 48th cycles of operation). This is mainly caused by
the better adaptation properties offered by “model #2,” which
allow improved estimation results and, therefore, better initial
conditions for long-term predictions. This element is critical
in terms of the assessment of prognostic algorithms since it is
directly related to the precision of the forecast and the capability
to absorb external perturbations.

C. Prognostic Accuracy Measure (Penalized)

This performance measure incorporates the fact that accuracy
problems should be penalized if the system is close to the failure
time (as any mistake could be costly)

Accuracy_penalized

= ϕ

(
EOL− E

{
EOL|y1:kpred

}
E
{
RUL|y1:kpred

}
)

∀kpred∈[1,EOL]

(34)

where

E
{
RUL|y1:kpred

}
= E

{
EOL|y1:kpred

}
− kpred. (35)

Fig. 10 shows the effects of the penalty factor on the accuracy
measure. The analysis of this figure provides information that
is consistent with the result shown in Fig. 8.

D. Critical-α Performance Measure

Decision-making support systems cannot depend solely on
information about the expectation of random variables since
the tail of pdfs contains critical information about the risk that
is associated to process operation. Ergo, a novel performance

Fig. 10. Evaluation of PF-based SOH prognostic module using the proposed
penalized accuracy performance measure and (a) model #1 or (b) model #2.

measure based on the concept of the JITP moment is hereby
presented: the critical-α index.

The critical-α index is a measure of risk aversion (a sig-
nificant factor to be considered when using implementations
that overestimate the RUL of a system) and is defined as the
maximum α ∈ [0, 100] that guarantees that the JITPα%(kpred)
value is smaller than the ground-truth value of the ESD EOL
time instant, for all kpred ∈ [1,EOL]

αcrit = argmax
α

{JITPα%(kpred) ≤ EOL}∀kpred∈[1,EOL] .

(36)

Decision-making support systems that consider prognostic
algorithms with larger critical-α values in their design are
capable of implementing more aggressive strategies. This is
based on the fact that these prognostic routines are conservative,
and then, it is possible to accept the risk of accumulating larger
failure probability mass before recommending a corrective
action. However, a large critical-α value is also an indicator that
the variance of the predicted EOL pdf is large (i.e., less precise
estimates of the EOL). For this reason, a good design should
try to lessen this problem by selecting prognostic algorithms
that allow not only to use large critical-α values but also to
minimize—over time—the difference between the ground-truth
EOL and the JITP values computed for the corresponding
αcrit%. This difference is computed using the performance
measure

Error_αcrit =

EOL∑
kpred=1

(
EOL− JITPαcrit%

(kpred)
)
. (37)

In this particular case of study, the implementation of the
proposed SOH prognosis framework using “model #1” allows
αcrit = 7.8, compared to αcrit = 35.92 that is obtained if the
proposed “model #2” is used instead. In principle, this shows
that the proposed model would allow the implementation of
more aggressive decision-making support systems. Further-
more, the evaluation of the measure Error_αcrit

shows that
the latter model also offers (for a given critical-α value) a more
steady solution and less dispersion in the EOL pdf, making it
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Fig. 11. PF-based SOH prognostic module performance. EOL estimate using
JITP(kpred), the critical-α value, and (a) model #1 or (b) model #2.

more suitable for the implementation of real-time decision sys-
tems; see Fig. 11, which compares the performance of the PF-
based SOH prognosis module using model #1 [see Fig. 11(a)]
and that using the proposed model #2 [see Fig. 11(b)] in terms
of the difference between the ground-truth EOL (126th cycle,
in this case) and the corresponding JITPαcrit%

computed over
time. In this sense, the proposed approach [see Fig. 11(b)]
minimizes Error_αcrit

, thus being selected as the best method
among the two.

VII. CONCLUSION

This work has presented, evaluated, and validated a novel
degradation model that enables the implementation of particle-
filtering-based prognostic frameworks for SOH estimation and
RUL prognosis in ESDs, and more specifically on Li-ion batter-
ies. This model includes a statistical characterization of the self-
recharge phenomena and an online PF-based detection module
that performs a hypothesis test (1% false alarm rate) for SOH
measurements to detect regeneration events in the battery life
cycle, thus improving the initial condition that the scheme uses
to generate long-term predictions.

The effectiveness of the proposed prognostic approach has
been tested using a simplified degradation scenario where the
optimal analytical solution of the prediction problem (in the
mean-square sense) can be computed. As a result, optimal
parameters for the implementation of the proposed approach
were found, maximizing the accuracy of long-term predictions
and the capability to represent the tail of the EOL pdf—the
latter being represented by the JITP value of the aforementioned
distribution. Additionally, the proposed PF-based framework
has been validated using experimental data from accelerated
degradation tests and a set of ad hoc performance measures to
quantify the precision and accuracy of the estimates. Results
show that the capability of detecting regeneration phenomena
that is provided by the proposed model is a key element within
the prognostic approach since it allows to improve the accuracy
of the long-term prediction and to minimize the effect of pertur-
bations in the variance of the predicted EOL pdf (thus helping to

generate more reliable life cycle prognostics). A novel perfor-
mance measure—the critical-α index—also indicates that the
proposed approach is more appropriate to manage the risk that
is associated to EOL predictions (a critical element in the design
of decision-making support systems), when compared to other
implementations available in the literature.

Regarding the impact of the proposed algorithm on BMSs, it
must be noted that BMS performance increases as the quality
of the information grows (since BMS needs to take decisions
based on that information). In this sense, from the analysis
of Figs. 8, 9, and 11, it is possible to infer that the proposed
algorithm improves significantly the accuracy and precision
of EOL and RUL estimates. Avoiding overestimation of the
battery RUL will have a direct positive impact in logistics
(it is possible to know exactly when to change the battery),
recycling-oriented businesses, and battery certification proce-
dures for used electrical vehicles. Future work will consider
more specific phenomenology aspects within the modeling of
battery degradation processes, such as the effect of temperature
and outline usage in the physicochemical structure of ESDs.
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