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Rapid magnitude determination from peak amplitudes at local stations
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The rapid determination of its magnitude soon after a great earthquake is necessary for the issuing of effective
tsunami warnings, as demonstrated in the great earthquake off Tohoku district in Japan on March 11, 2011. The
earthquake magnitude for the first tsunami warning was underestimated due to magnitude saturation. This paper
proposes a method to determine magnitude rapidly from peak velocity and displacement of long-period seismic
waves up to 100 seconds at local stations. When waveform data at local stations are available, the magnitude
from S-wave peaks is expected to be determined faster than that from only P-wave peaks. It takes about 140
seconds to estimate a magnitude of about 9 for the March 11, 2011, earthquake, which would enable us to issue
the first tsunami warning within three minutes after the same type of earthquake.
Key words: Magnitude determination, tsunami warning, long-period seismic wave, great earthquakes.

1. Introduction
The displacement magnitude determined by the Japan

Meteorological Agency (JMA) (Katsumata, 2004) indi-
cated saturation during the 2011 off the Pacific coast of
Tohoku Earthquake on March 11 of Mw 9.0 (Hirose et al.,
2011). Magnitude determination is a key to issuing an ef-
fective tsunami warning. The JMA displacement magni-
tude is determined from the logarithm of the maximum dis-
placement amplitude recorded with seismographs of natural
period 6 s and damping coefficient of 0.55. Displacement
records are currently obtained from acceleration records by
numerical integration and digital filtering. Using longer-
period seismic waves for magnitude determination should
overcome the problem of magnitude saturation (Aki, 1967).
Here, we use the peak velocity and displacement of a longer
period than that used for the JMA magnitude to rapidly de-
termine the magnitude.

Several magnitude determination methods have been pro-
posed for a tsunami warning based on P-wave before the
S-wave arrival (Tsuboi et al., 1995; Yoshida, 1995; Hara,
2007; Kanamori and Rivera, 2008; Lomax and Michelini,
2009). When the fault rupture lasts a long time, the epicen-
tral distance of data should be great enough to get a TS −TP

exceeding the rupture duration, where TP and TS are the
travel times of P and S waves.

The broken curve in Fig. 1 indicates the time when the
P-wave magnitude can be determined. The time is consid-
ered to be the sum of the P-wave travel time and the source
duration of the earthquake. The source duration of an earth-
quake is assumed to be sixty seconds in the figure. Since
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the S-wave amplitude often exceeds the P-wave amplitude,
the P-wave magnitude should be determined from the data
before the S-arrival. The TS − TP time should exceed the
source duration (D) for the P-wave magnitude. The range
of TS − TP < D is not shown in the figure. The solid curve
in the figure denotes TS + D, which is the time when the
S-wave magnitude can be determined. When data at lo-
cal stations are available, the magnitude can be determined
more quickly from the amplitude of S-waves than from that
of only P-waves.

Quick magnitude determination methods have been pro-
posed also for early earthquake warning (Wu et al., 1998;
Kamigaichi, 2004; Wu and Zhao, 2006; Zollo et al., 2006).
However, those methods are based on the amplitude mea-
sured on waveforms of intermediate period, or the ampli-
tude of the initial parts after the onsets, and do not fit magni-
tude determination for great and long source duration earth-
quakes.

For the P-wave magnitude determination, it is neces-
sary to restrict the amplitude search range within P- and
S-arrivals to avoid S-wave contamination. When any phase
type indicating the peak amplitude can be used, time win-
dows for the amplitude search are not needed. This makes
the process flow simple and robust. Here, we examine
the magnitude determined from the peak amplitude of any
phases including long-period S-waves and surface waves.

2. Method and Data
The peak velocity (m/s) or displacement (m) A and mag-

nitude M are assumed to be expressed as follows:

M = a log10 A + b log10 R + c. (1)

Here, a, b, and c are constants, and R (km) is the hypocen-
tral distance. A is measured over a seismic record on a ver-
tical component obtained at a local station. A dip slip along
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Fig. 1. Assumed time to determine earthquake magnitude from P-wave (the broken curve) and from S-wave (the solid curve). The curves indicate
relationships between the epicentral distance and the sums of travel times (TP , TS) and the assumed rupture duration (D). The rupture duration is
assumed to be sixty seconds.

Fig. 2. Examples of waveform data used in this study. Filters of various cutoff periods (Tc) are used to obtain the displacement records. The waveform
was obtained for the 2011 off the Pacific coast of Tohoku Earthquake on March 11 at an epicentral distance of 319 km.

a plate boundary may cause a large tsunami, and is expected
to generate large P-SV mode seismic waves, which appear
on the vertical component.

Velocity and displacement records are obtained from
strong-motion acceleration records with numerical integra-

tion and low-cut filters. Second- (for velocity) and Third-
(for displacement) order low-cut Bessel filters (Katsumata,
1993) are used in this study. The filters are recursive, and
can be applied in real-time processing.

Several cutoff periods are used to measure A. Cutoff
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Fig. 3. Station map of the data used in this study. Circles denote the locations of the stations.

Fig. 4. Epicenters of the earthquakes for which the seismic records were obtained in this study. (a)–(e) indicate events in Fig. 9.

periods of low-cut filters are set at 1, 2, 5, 10, 20, 50,
and 100 seconds. Various cutoff periods (Tc) are used to
accommodate a broard range of magnitudes. Examples of
waveforms are presented in Fig. 2. Constants a, b and c are
estimated so as to minimize the difference between M in
Eq. (1) and Mw of the Global CMT solutions. The constants
in Eq. (1) are estimated for velocity/displacement and each

cutoff period. We assume a common value of a for all Tc

in Eq. (1), since we expect to see magnitude saturation in
the result. The values of b and c are estimated for each Tc,
individually.

Parameter a is first estimated with data of earthquakes
Mw > 7, then b and c are estimated with data includ-
ing those of smaller events. When the constants a, b, and
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Table 1. Velocity magnitude determination coefficients in Eq. (1).

Tc (s) a b c

1 1.43 4.08 1.18

2 1.43 3.96 1.20

5 1.43 3.68 1.64

10 1.43 3.25 2.56

20 1.43 2.81 3.60

50 1.43 2.67 3.90

100 1.43 2.47 4.39

Table 2. Displacement magnitude determination coefficients in Eq. (1).

Tc (s) a b c

1 1.23 3.48 3.02

2 1.23 3.21 3.17

5 1.23 2.61 4.10

10 1.23 1.99 5.31

20 1.23 1.46 6.39

50 1.23 1.22 6.80

100 1.23 1.24 6.64

c are estimated simultaneously, M of great earthquakes
(Mw > 8) diverges further from Mw. We adopt the value
of a for a Tc which indicates the least dispersion for earth-
quakes including small ones, since such a value would be
applicable to great earthquakes as well as to moderate ones.

The acceleration records were obtained with a seismic
network installed by JMA. The station map is presented in
Fig. 3. The accelerometers record ground motion up to ±3
G with a resolution of 0.5 × 10−5 m/s2 (Japan Meteorolog-
ical Agency, 2011), which corresponds to a 22-bit resolu-
tion. We use only velocity and displacement amplitudes that
exceed 0.5 × 10−5/(2π/Tc) m/s and 0.5 × 10−5/(2π/Tc)

2

m.
Records of fifty-five earthquakes of Mw > 6.0 from 2001

to 2011 are used. The epicenter map of the earthquakes is
presented in Fig. 4.

3. Results
Tables 1 and 2 list the obtained values of coefficients a,

b and c for the magnitude determination. We adopted the
estimated a for the cutoff period of fifty seconds, since it
provided the smallest standard deviation for earthquakes,
including smaller ones than those used for estimating a
(Mw > 7). The coefficient for the amplitude a in Eq. (1)
is greater for velocity than for displacement. This relation-
ship has been seen previously for short-period amplitude
measurements (Watanabe, 1971; Katsumata, 2001).

Figures 5 and 6 present data plots with the fitted lines.
The relationship between hypocentral distance and ampli-
tude depends on the cutoff periods: the shorter the cutoff
period, the steeper the attenuation. The displacement am-
plitude attenuation depends more on the cutoff period than
does the velocity amplitude. The dependence on the pe-
riod would be related to inelastic attenuation and the seis-
mic wave type that exhibits a peak amplitude. Data deviates
from the fitted line at short epicentral distances. The disper-
sion of log10 A ranges from 0.222 to 0.332 for the velocity
magnitude, and from 0.212 to 0.342 for the displacement

magnitude. Amplitude data of velocity and displacement
have similar data dispersions.

Figures 7 and 8 illustrate the relationship between the
moment magnitude Mw and the difference of the estimated
magnitude M (Eq. (1)) from Mw. Since a common value
of a is used in Eq. (1), magnitude saturation is seen in
shorter cutoff periods (Figs. 7 and 8). Standard deviations
of M − Mw range from 0.18 (Tc = 100 s) to 0.32 (Tc = 1
s) for velocity magnitude and from 0.15 (Tc = 100 s) to
0.27 (Tc = 1 s) for displacement magnitude. Deviations
of velocity magnitudes are slightly larger than those of dis-
placement magnitudes.

4. Discussion
4.1 Velocity magnitude and displacement magnitude

In this section, we will briefly discuss the suitability for
tsunami warning of velocity and displacement magnitudes.
Dispersion of data (Figs. 5 and 6) and differences from Mw

(Figs. 7 and 8) do not clearly differ between velocity and
displacement magnitudes. Data from accelerometers are
used here with numerical integration, and data availability
is limited by aR/ω for velocity and aR/ω2 for displacement,
where aR is the sensor resolution of the accelerometer and
ω is the angular frequency. Velocity magnitude is available
for more events due to the limitation on the amplitude range.

For tsunami earthquakes such as the 1992 Nicaragua
earthquake (Kanamori and Kikuchi, 1993), the low-
frequency component is more dominant than in normal
earthquakes. The displacement magnitude is more sensitive
to the low-frequency component than is the velocity mag-
nitude. The displacement magnitude is thus preferable for
tsunami warnings. The displacement magnitude is mainly
examined in the following sections.

The integral of displacement is proportional to the seis-
mic moment, and this might be better for tsunami warning
than the displacement amplitude. However, accelerometers
do not have enough resolution for more integration. When
data of strong motion velocity meters are used for the same
purpose, a longer-period component could be used. Since
accelerometer networks are more dense than strong motion
velocity meter networks, we use accelerometer data in this
study.
4.2 Application to rapid magnitude determination

The proposed magnitude is considered to be used to ob-
serve the growth of magnitude value in real-time process-
ing. Since recursive filters are used to obtain the veloc-
ity/displacement records and the transmission and process-
ing delay could be no more than several seconds, it is
possible to see the magnitude value change soon after the
hypocenter determination. Because they are not used, in-
version analysis and phase identification do not introduce
additional delay.

The proposed magnitude determination method is ap-
plied to some large earthquakes, and the results are pre-
sented in Fig. 9. The horizontal axis in the figure represents
time from the earthquake occurrence. The magnitude is
determined from maximum amplitudes measured until the
time indicated on the horizontal axis at the closest three to
ten stations. The magnitude value changes with the arrivals
of larger seismic waves. It reaches a stable value when peak
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Fig. 5. Relationship between hypocentral distance and velocity amplitude. The line denotes the fitted relationship (Eq. (1)). The data plots are shifted
in peak amplitude by (7 − Mw)/a to adjust magnitude differences.

Fig. 6. Relationship between hypocentral distance and displacement amplitude. The line denotes the fitted relationship (Eq. (1)). The data plots are
shifted in peak amplitude by (7 − Mw)/a to adjust magnitude differences.

amplitudes are observed at all of the closest ten stations.
The epicenters of the events in Fig. 9 are labeled (a)–(e).
Event (f) is an earthquake off the coast of Chile in 2010.
Data obtained by the University of Chile are used for event
(f).

For the 2011 off the Pacific coast of Tohoku earthquake,
the magnitude reached the final value within 140 seconds.
The target time of the first tsunami warning in JMA is three
minutes, so 140 seconds is a satisfactory time for the first
tsunami warning. The final magnitude was 8.8 in the figure,
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Fig. 7. Difference between magnitude determined from the peak velocity of various cutoff periods (Tc) and the moment magnitude.

which is less than Mw 9.1.
The time to reach the final magnitude of other earth-

quakes is less than three minutes. The times are delayed
for events with epicenters far from the closest stations such
as earthquakes off the Kuril Islands. However, tsunami ar-
rivals at the nearest coasts would also be delayed for those
earthquakes.

As expected, magnitude saturation is observed in Fig. 9.
Magnitudes of shorter cutoff periods are generally smaller
than those of longer cutoff periods. Differences among M20,
M50 and M100 are not so large, but the difference between
M10 and M20 is relatively large (the subscript denotes the
cutoff period). Two large pulsed peaks with widths of about
twenty seconds are seen in the seismic records in Fig. 2.
The asperity size and its slip process would have defined
the pulse width which is related to the characteristics of
the magnitude saturation. The similarity of M20, M50 and

M100 might be related to fault-rupture characteristics of the
regions.

For the 2010 Chile event, short-period magnitudes are
greater than long-period magnitudes. This reversed magni-
tude relationship would be related to the concentrated dis-
tribution of the used stations in the northern region of the
source area, the relatively southern location of the epicen-
ter, and a large slip in the northern area (Lay et al., 2010).
Since the amplitude decay is steeper in short-period mag-
nitudes than in long-period magnitudes (Fig. 6), the uneven
station distribution and the improper assumption of the dis-
tance to the source affect the short-period magnitudes more.
Even in such a case, the long-period magnitude is consid-
ered to be more reliable than the short-period magnitude.

The time to reach the final value and the final magnitude
depend on the station distribution and the upper limit of sta-
tion numbers. Figure 10 presents variations of estimated
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Fig. 8. Difference between magnitude determined from the peak displacement of various cutoff periods (Tc) and the moment magnitude.

Table 3. Velocity structure model used to calculate synthetic records for Fig. 12.

Depth (Top) Velocity (P) Velocity (S) Density Q P QS

km km/s km/s g/cm3

0 3.0 1.44 2.3 150 75

1 5.0 2.90 2.55 300 150

4 6.3 3.60 2.75 400 200

12 7.1 3.95 2.95 400 200

25 7.8 4.30 3.15 400 200

magnitudes with the period from the event origin time for
various upper limits of station numbers for the 2011 off the
Pacific coast of Tohoku earthquake. As expected, the mag-
nitude reaches the final value earlier for fewer upper limit
stations. However, the time difference in reaching the final
value is not large in Fig. 10. The final magnitude increases
with more stations, and approaches Mw (9.1). No large dif-

ference in dispersion is seen. The upper limit station num-
ber can be set arbitrarily, and could be determined based
on the required time limit and the difference from the final
value.

The magnitudes obtained in this study are compared with
Mwp (Tsuboi et al., 1995; Whitmore et al., 2002) in Fig. 11
for the 2011 off the Pacific coast of Tohoku earthquake.
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Fig. 9. Variation of displacement magnitudes versus elapsed time from the event origin time. The magnitudes are calculated from data acquired at the
closest three to ten stations. The colors indicate the periods of the low-cut filters. Epicenters (a)–(e) are presented in Fig. 4. The origin times are local
times except for event (f).

Station magnitudes are shown in the figure with the time
when the peak amplitudes were measured on the horizontal
axis. A short peak-time generally means a short epicen-
tral distance. Both magnitudes are determined from data
of strong motion velocity meters installed by the National
Research Institute for Earth Science and Disaster Preven-
tion. The instrumental response is corrected with the recur-
sive deconvolution filter proposed by Kanamori and Rivera
(2008). Since the seismic wave for Mwp is restricted to the
period between P and S arrivals, and TS − TP at a station
of short epicentral distance is less than the source duration,
the resultant Mwp at a close station is much less than the
moment magnitude of the event (Mw 9.1). Mwp at stations
become stable after about four minutes from the event ori-
gin time. On the other hand, the magnitude of this study
scatter around the magnitude 9 even at close stations. How-
ever, the station magnitude scatter of this study seems to be
larger than that of Mwp.

4.3 Effect of fault type
Events of the same size with a different focal mechanism

radiate seismic waves of different amplitude. The amplitude
difference due to the fault type is investigated with synthetic
records, and the results for dip and strike slip events are
shown in Fig. 12. The synthetic records are calculated with
the method of Takeo (1985), assuming a velocity structure
in Table 3, a focal depth of 20 km, and a triangle source
time function of sixty second duration. A high-pass filter of
100-s cutoff is applied to the records.

The amplitude reduces considerably when the station is
located in the direction of the nodal planes. Since the
compression/tension axis is usually oriented normal to the
trench axis for events around a convergent plate boundary
and the stations are installed in inland areas, it is considered
that the observed amplitude would not become so small for
local events. When seismic waves from events near Kuril
Islands are observed on the Japan Islands, the stations are
distributed around the direction of the null axis of the events
and the magnitude would be underestimated. For the strike-
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Fig. 10. Variation of displacement magnitudes calculated for various upper limit station numbers (Nst) for the 2011 off the Pacific coast of Tohoku
earthquake. The low cutoff period is set at 100 (s). The horizontal axis denotes the elapsed time from the event origin time. The broken curves
indicate the ± standard deviation.

Fig. 11. Comparison between Mwp (Tsuboi et al., 1995; Whitmore et
al., 2002) (the open circles) and the magnitude of this study (the solid
circles, Tc = 100 s) for the 2011 off the Pacific coast of Tohoku
earthquake. Each point denotes a station magnitude, and the horizontal
axis shows the arrival time of the peak amplitude from the event origin
time. The amplitude search range for Mwp is restricted within P and S
arrivals.

slip event, the averaged amplitude is a little smaller (×0.8)
than that for the dip-slip event in Fig. 12.
4.4 Dependence on the epicenter location

The source region of the 2011 off the Pacific coast of
Tohoku earthquake extended about 450 km (Yoshida et al.,

Fig. 12. Normalized vertical amplitude of synthetic waves for different
fault types. The solid curve denotes amplitude for a dip slip event of
strike 0 (degree), dip 20 (degrees), rake 90 (degrees), and a depth of 20
km measured at 300 km of epicentral distance and an azimuth from 0 to
180 (degrees). The broken curve denotes the amplitude for a strike slip
event of strike 0 (degree), dip 90 (degrees), and rake 0 (degrees), and
the same focal depth at the same epicentral distance.

2011). An earthquake of a different epicenter might have
a similar size of source region. Different epicenters are as-
sumed for the magnitude determination. Figure 13 presents
magnitude differences for different epicenters for a 100-s
cutoff period. Data acquired at the closest ten stations are
used. The reference magnitude is that for the estimated
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Fig. 13. Differences of displacement magnitude for assumed epicenters from that for the estimated epicenter (the cross) of the 2011 off the Pacific coast
of Tohoku earthquake. The closest ten stations to the assumed epicenter are used to calculate the magnitude. Epicenters are assumed inside a contour
of the 5-meter slip estimated by Yoshida et al. (2011). The circles indicate the station locations.

hypocenter (the cross in the figure). The epicenters are as-
sumed to be within the 5-m-slip contour of Yoshida et al.
(2011). The magnitude difference is less than 0.25 of the
magnitude unit. The difference does not exceed 0.1 over
a large part of the area, so the magnitude difference is not
significant.

The difference is greater for magnitudes of shorter peri-
ods due to high amplitude decay rates of short-period mag-
nitudes (Fig. 5).

5. Conclusions
A rapid magnitude determination method for tsunami

warning based on the peak velocity and displacement of
long-period seismic waves is presented. Cutoff periods up
to 100 seconds were used to obtain the seismic wave data
from acceleration records. The magnitude did not saturate
up to magnitude 9 and could be determined within three
minutes for the great earthquake on March 11, 2011, off the
Tohoku District, Japan.
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