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1. Introduction

Records are quite ubiquitous and interesting objects per se. They are naturally encountered in sports but also in clima-
tology, seismology, finance, insurance, etc. Their mathematical theory has been under development for several decades and
reached maturity, as can be seen in Ahsanullah (1995); Arnold et al. (1998) and Nevzorov (2001). In parallel but somewhat
later, the theory of statistical inference based on record-breaking data began to develop and rapidly attained a good level of
sophistication; see Gulati and Padgett (2003). A good reason for exploring record-based inference procedures is that record-
breaking data are readily available in many situations. Consider, for example, the standard experimental setup of destructive
stress-testing, where the data consists of (lower) records only; see Glick (1978) for an account of this issue. This strategy
provides valuable information for estimating population quantiles, say, at a fraction of the measurement costs of classical
sampling.

The concept of §-record was introduced in Gouet et al. (2007) as a natural generalization of classical records, simple
enough to allow for rigorous analysis of mathematical properties, such as the asymptotic behaviour of their counting process;
see also Gouet et al. (2012). Loosely speaking, a 6-record is an observation which is either a record or falls short of being
one (see below for definitions) and, as such, it is not surprising that we consider them as candidates for upgrading the
so-called inference from record-breaking data. In fact, the destructive stress-testing setup mentioned above needs only a
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minor adjustment to allow for the measurement of §-record data. Of course, the total cost will increase as more items are
destroyed but the type of additional data obtained, close to records, is likely to enhance the performance of procedures
originally designed to accept only records as input.

A first example showing the usefulness of §-records can be found in Gouet et al. (2012). Preliminary results are encour-
aging but much remains to be done, both in terms of theory and applications. This paper is meant to contribute in that
direction, in the context of an important discrete model such as the geometric distribution.

Let (Xn)n>1 be a random sequence, M, = max{Xy, ..., Xy}, forn > 1, and My, = —oo. Observation X, is a record if it is
greater than all previous observations, that is, if X, > M,_;. On the other hand, X,, is a §-record if X;, > M,_;+§, where§ isa
fixed real parameter. If § > 0 every §-record is a record but obviously not all records are §-records. So, in this case, §-records
are even scarcer than ordinary records and clearly not adequate to replace records in inference procedures. The opposite sit-
uation is observed if § < 0 because every record is a §-record and additionally, non-record observations within distance —§
of the current record are also §-records. In this case §-records correspond to records together with near-records, as defined
in Balakrishnan et al. (2005). For discrete distributions, §-records with § = —1 correspond to weak records, which have
been largely analysed in the literature; see Castafio Martinez et al. (2013), Gouet et al. (2008) and Hashorva and Stepanov
(2012) for recent developments in the study of weak records. Since we observe more §-records than records we can ex-
pect better performance of §-record-based inference than inference based only on records. Accordingly, Gouet et al. (2012)
consider maximum likelihood estimation for continuous distributions, in particular exponential and Weibull distributions,
showing that §-records-based estimators outperform those based only on records. Also, Lopez-Blazquez and Salamanca-
Mifio (2013) analyse, in Section 7, properties of maximum likelihood (ML) estimation based on §-records in the exponential
distribution.

The literature on record-based statistical inference for discrete models is rather scarce, when compared to that for
continuous ones. Interesting references are Stepanov et al. (2003), dealing with the Fisher information contained in records,
and Doostparast and Ahmadi (2006), on the statistical analysis of the geometric distribution, both from Bayesian and non-
Bayesian viewpoints.

The aim of this paper is to assess the usefulness of §-records by following a path similar to that of Doostparast and Ahmadi
(2006), namely developing new (§-record-based) point and interval estimators of the parameter and predictors of future
records, for the geometric distribution, in both frequentist and Bayesian inferential frameworks. Monte Carlo simulations
clearly show superior performance of procedures using é-records, in all instances considered.

The paper is organized as follows. In Section 2 we introduce the probabilistic framework, define §-records and related
random variables and then focus on the estimation of parameter p. We consider maximum likelihood (in Section 2.2), Bayes
and empirical Bayes estimation (in Section 2.3). The prediction of future records is addressed in Section 3, with maximum
likelihood framework in Section 3.1 and Bayesian in Section 3.2. Conclusions and some ideas for future work are presented
in Section 4.

2. Parameter estimation

2.1. Probabilistic framework and definitions

We consider a sequence (X;)n>1 of independent, geometrically distributed random variables, with parameter p € (0, 1).
Thatis, P(k) := P[X; = k] = pg*~',fork = 1,2, ..., withq := 1 —p. Let (Mp)n>1 denote the sequence of partial maxima,
with M, = max{Xy, ..., Xy}, forn > 1, My = —oo and let (R,),>1 be the sequence of record values, obtained from partial
maxima by discarding repetitions. Record times L,, n > 1, are defined as Ly = 1and L, = min{m > L,_; Xpn > X}, _,},n >
2.Then, clearly R, = X, forn > 1.

For §-records we consider a fixed, negative-integer-valued parameter §, because the random variables X;, are integer
valued. However, it is convenient to include O as possible value of § in order to see records as particular case of §-records.
Observe that in this context weak records, satisfying X, > M,,_1, are §-records with § = —1.

Recall that X; is a §-record by convention and that X, is a §-record if X,, > M,,_ + &, n > 2. We say that X,, is a §-record
associated to the mth record R, if X, > M1 +8 = Ry + 8 and L, < n < Ly11. The number of §-records associated to
R, not counting R, itself, is denoted by S;, and the vector of §-records associated to Ry, (excluding R;;) by (Ynﬁ, e, er(").

Observe that 0 < S, < Lpy1 — Ly and also that Ry, 4+ 8§ < Y{n <Rp,forj=1,...,5,.

Proposition 2.1. Let n > 1and § < —1, then,

(i) conditional on R; =_r;, S; has geometric distribution (starting at 0) with success parameter p; = I:"(ri)/ﬁ(ri + §), for
i=1,...,n whereF(x) .= 1— F(x) is the survival function of X;.
(ii) Conditional on R; = 13, S; = s;, the random variables Yil, e Yis" are independent, with common (conditional) probability

mass function
P(k)

P = E o) —Fmy

k:r,-+8+1,...,r,-.
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Proof. (i) Suppose R; = r;, then S; counts the number of independent observations Xj, with j > L;, such thatX; > r; + 6 until
one observation is greater than r; (success). Clearly, the probability of success is P[X; > ri|X; > r; 4+ ] = p; (given R; = r;).

(i) Given that among Xj, 1, ..., Xi,., 1 there are s; observations X; with value in (r; + §, r;], each one takes the value k
with probability P[X; = k|X; € (; + §, r;]] = Pi(k). O

Corollary 2.2. Let n > —§ > 1, then

(i) therandomvariablesS;, i = —§, . .., n, areindependent and geometrically distributed (starting at 0), with success parameter
-5
q~°and _ _
(ii) conditional on Sy, ..., S,, the random variables Zf = R — Y{,i = —4,...,n;j = 1,...,S, are independent with
i i s
probability-mass function P[Z] = k] = = q %" for 0 < k < —8, and expectation E[Z)] = — (% + %) .

Proof. (i)Ifi > —¢ then R; > —& because the random variables are integer valued, with Ry = X; > 1. So F(ri +8) = q'it?
and p; = F(ry) /F(ri+8) = q°.
(ii) Same argument as in part (i). O

We present below the likelihood function of the sample T := (R, S, Y), whereR = (Ry,...,R,),S = (51,...,S,) and

S
=Y}, .. Y YY),

s Ino

Proposition 2.3. The likelihood function of T is given by

°C(t’p):£(p):n(q(r+a) (s+1)l_[qj/ p)q ' ()

i=1

witht = (r,s,y),0 <1y < --- <T1,,5 > 0andr;+$§ <y{- <rforj=1,...,s,i=1,...,nand (r;+8)" = max{r;+34, 0}.

Proof. From Proposition 2.1 and knowing that, conditional on R;, the number and values of its associated §-records are in-
dependent of the values of R;, j > i, and of the number and values of their associated §-records, the likelihood function can
be written as

P (ri)

£ep) =Fo [ [ s o HP(yf),

1 i+ 8yt 4]

and (1) follows. O

Observe that the sample corresponding to the likelihood function (1) consists of the n first record values Ry, . . ., R, and, for
eachrecord value R;, the number S; and the values Yﬂ R Yl-s‘ of §-records associated to R;. Note that Ry, Y} e Yfl ..., Rn,
Yn1, e, Y;f" are (all) the §-records observed before but not including record Ry, 1.

Throughout the paper, random variables are denoted by uppercase letters and random vectors, by uppercase boldfaced
letters. We introduce below two frequently used random variables. Let

A= ZS—i—n and B_ZR +ZZY1 Z(S—I—l)(R +8)" + Ry —A. 2)

i=1 j=1
Let us also define the corresponding lowercase versions of A and B, to be used as arguments in probability functions.

a_Zs,+n and b_Zr,—i—ZZy’ Z(S,+l)(rl+5)++rn_a (3)

i=1 j=

2.2. Maximum likelihood estimation

In order to derive the maximum likelihood estimator (MLE) of p from the sample (R, S, Y), we take logarithms in (4) and
differentiate with respect to p, yielding the MLE of p
B =1 4)
p, = A+B
with A, B defined in (2).
Observe that, for § = 0, formula (4) simplifies to ’ﬁo = n/R,, which is the well-known estimator of p based on records

only. On the other hand, for § = —1 (weak records), we have (R; + 8)T = R; — 1 since the observations take positive integer
values. Also, Yl-’ = R;,forj=1,...,S;and so, the denominator in (4) simplifies to n+ Z};l Si+R, = A+R;. Finally we have
—~ A
P, = (5)
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Table 1

EMSE of the MLE of parameter p in the geometric distribution from 10*
simulation runs, with p = 0.5 and 0.7.

p n EMSE(p, )
§=0 §=-1 §=-3
05 5 3.14E—02 1.10E—-02 4.07E—-03
) 10 1.36E—02 5.81E—03 1.82E—03
07 5 2.81E—-02 8.79E—03 1.66E—03
: 10 1.48E—02 458E—03 5.40E—04

Note that in this case A coincides with the number of weak-records. It is interesting to see that '130 only uses the last piece
of information contained in (R, ..., Ry) butfi_1 relies on extra information provided by the number of ties for the current
maximum (Z?:l S;), although ignoring the actual values of Ry, ..., R,_1.

In order to assess the performance of the MLE of p, we carried out 10 simulation runs for several values of p, n and
8 and the respective estimated mean square errors (EMSE) of’p\,S were computed. Results are presented in Table 1. A quick
inspection of Table 1 shows a steep decrease of the EMSE as || increases. In particular, it can be seen that, for p = 0.5 and the
three values of n, the EMSE decreases by more than 50% when passing from records (6 = 0) to weak records (§ = —1). The
situation is even better for p = 0.7, with a 70% decrease of the EMSE. It is interesting to observe that the extra information
contained in 2?21 S; has a significant impact on the EMSE. Also note that the EMSE, forn = 10,p = 0.5and § = 0is 0.0136
while, forn =5, p = 0.5and § = —1, we have 0.011. This means that we make slightly better inferences about p with just
5 records and their weak-records than with 10 records alone. This is interesting in terms of cost because in order to have
twice as many records, from 5 to 10, we must increase the number of observations by a factor of roughly 150.

We now study some analytical properties of ﬁ;- It is known that the set of record values {R,; n > 1} from the geometric
distribution behaves as a Bernoulli point process, with constant success probability p. This implies that R, is distributed as
the sum of n independent and identically distributed (iid) geometric random variables, with parameter p; see Arnold et al.
(1998) and Nevzorov (2001). So, we immediately obtain from the strong law of large numbers that n/R, — p a.s., showing
the well-known fact thatf?0 is strongly consistent. In the context of §-records we show that'ﬁs with § < —1 is also strongly
consistent.

Proposition 2.4. Let § < —1 and 55 be defined by (4). Then ﬁs — pas., asn — oo. Moreover, 55 is asymptotically unbiased.
Proof. Observe that since R; > —§ fori > —§, and so (R; + 8)* = R; + §, consistency ofﬁ5 is equivalent to that of

A A
= , (6)

n S . n n Si .
SY -GS+ DR+8)+R =Y. >7Z —5A+R,
=1j=1 i=1 i=1j=1

n
Ri +
=1 i

1

where Z/ = R; — Y/. From Corollary 2.2 and the law of large numbers, we have A ~ n(1 + ¢’ (1 — ¢~*)) = nq’ (the notation
a, ~ b, stands for a, /b, — 1 a.s). Also, from the representation of R, as sum of iid geometric random variables, we have
R, ~ np~!. Finally, from Corollary 2.2, Wald’s identity and the law of large numbers, we obtain

n S 5 3
; 1 8q g -1
» §Z{~—n(q5—1)(+8):—n( +8q5>.
p q¢-1 p

i=1 j=1

Collecting partial results we have that the r.h.s. of (6) converges a.s. to

8

q
v =D, (7)
("T + Sq‘s) -3¢’ +1/p

which proves the first assertion. The second assertion follows from (7) and the dominated convergence theorem, since
P, <1 O

A non-asymptotic general result for the expectation of 755 seems intractable. However, for illustrative purposes, in the
case § = —1 (weak records) we derive an “almost closed-form” expression.

Proposition 2.5. Let fi] be defined by (5). Then

B L& (k=1 (=1 k.,
e(p)'_E[ﬁ‘]_k,l_n<n—1>(n—l)k—l—lpq' (8)
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Proof. From (5) we have

36+
/p\—l = n = °
;@+U+&
On the other hand, from Corollary 2.2, A = Z;‘zl(si + 1) is distributed as the sum of iid geometric random variables, with
parameter g, starting at 1. Hence, A has a Pascal (negative binomial) distribution with P[A = k] = (,’:1) q'p* ", k> n.
Moreover, R, is independent of A and distributed as the sum of iid geometric random variables, with parameter p, starting

at 1. Hence, P[R, = 1] = (rlf_ll) p"g~", 1> nand formula (8) follows. O

Proposition 2.5 tells that p_, is biased. It can be shown that e(p) increases with p and has a fixed point atp = 1/2. A
numerical analysis reveals also that e(p) > p, for p € (0, 1/2), and therefore, e(p) < p, forp € (1/2, 1), because of the
identity e(p) +e(1 —p) = 1.

Other properties ofﬁ;, such as admissibility, could be considered. This is done in Bagrezaei et al. (2012) in the context
of record-based methods. It would be interesting to carry out a similar analysis here but this may be arduous, due to the
complex form of ;.

2.3. Bayesian framework

Bayesian inference is a convenient method to be used with record-breaking data. Indeed, given that records are so scarce,
prior information is welcome. There are a number of papers on Bayesian inference using records, mostly for continuous
distributions; see chapter 5 of Arnold et al. (1998) and, more recently, the works by Jaheen (2003); Raqab et al. (2007);
Soliman et al. (2006) for continuous distributions and Doostparast and Ahmadi (2006) for the geometric distribution.

In the following we develop a Bayesian estimation procedure for p, based on §-records. As in Doostparast and Ahmadi
(2006), we take the beta distribution, with parameters «, 8, as prior of p. From the likelihood function (1), we readily obtain
the posterior distribution 7 (p|t), which is also beta, with parameters « 4+ a and 8 + b.

Under the squared error loss function, the Bayes estimator of p, sayﬁm 5» 1S given by the posterior mean, namely

—~ A+«
Pes =77 % (9)
A+B+a+p
Of course, for § = 0 we recover the estimator given in Doostparast and Ahmadi (2006), while for § = —1 (weak records)
we obtain
~ _ A+a
P T A R tat B

where A coincides with the number of weak records.
As in the previous section we evaluate the performance ofﬁm ; foré =0, —1, —3. We proceed as follows: for fixed («, 8)

we simulate 10 values of p from the prior Beta(x, 8); for each value of p we simulate a random sample of n records and their
associated §-records, for different values of §, and computeﬁ”v s- The EMSE is obtained as the average of @ﬂy s p)? along the

10* simulation runs. The results, displayed in columns 1-3 of Table 2, reveal a pattern similar to the one observed for the
MLE in Table 1. That is, §-records also bring about a significant reduction of the quadratic error in the Bayesian framework.
Furthermore, using the same data we compute ﬁa (MLE) and its EMSE, which are displayed in columns 4-6 of Table 2. This
can serve as a basis for the comparison of non-Bayesian and Bayesian estimates, similar to what is done in Soliman et al.
(2006) for the Weibull distribution, using record values. As seen in Table 2, the EMSE of p; is greater than that of p_ ;, for all
values of o and  considered, showing that the use of correct prior information is beneficial in the estimation of p.

Credible intervals for p are obtained from the posterior distribution. The extremes [, u of a 100(1 — «)% credible interval
are such that f,“ m(p|t)dp = 1 — o. We numerically compute shortest (HPD) intervals for p. We use the interval width
as a measure of performance and rely again on simulations to compute the average widths of intervals, for several values
of §, «, B and n. Results are displayed in Table 3 and, as for point estimation, a clear improvement is observed when the
information of §-records is incorporated in the construction of the intervals.

We also consider empirical Bayes (EB) estimation of p, which uses the Bayesian paradigm but does not have an explicit
form of the prior. Instead, a number of previous (past) samples are available and used to estimate the prior. When the prior
is known up to a k-dimensional (hyper)parameter, the procedure is termed parametric empirical Bayes; see Maritz and Lwin
(1995).

Doostparast and Ahmadi (2006) use a beta prior, with unknown hyperparameters « and 8, which they estimate by the
method of moments, given m past samples of the first n records. We also use the beta prior here, for the sake of comparability,
but our m past samples are made of §-records. Furthermore, another important difference is that we adopt restricted
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Table 2
EMSE of p, , and p, for different values of §, «, 8 and n, from 10000 simulation runs.
(@,) n EMSE(D, ,) EMSE(p,)
§=0 §=-1 §=-3 §=0 §=-1 §=-3
(3.3) 5 1.34E—-02 7.68E—03 2.89E—03 2.57E—02 8.92E—03 3.19E-03
’ 10 8.16E—03 4.29E—03 1.34E—03 1.16E—02 4.58E—03 1.47E—03
(4,5) 5 1.15E-02 7.36E—03 3.30E-03 2.57E—-02 9.36E—03 3.71E-03
’ 10 7.28E—03 4.23E-03 1.62E-03 1.14E—02 4.96E—-03 1.70E—-03
1) 5 1.03E—02 4.71E—03 8.71E—04 1.75E—02 5.26E—03 9.62E—04

10 7.26E—03 2.73E-03 4.06E—04 8.91E-03 2.46E—03 3.61E-03

5 6.14E—03 4.18E—-03 2.29E-03 1.16E—02 5.04E—03 2.49E—-03
10 3.32E-03 2.22E-03 1.12E-03 4.85E—03 2.56E—-03 1.14E—-03

Table 3
Average width of Bayesian credible intervals for parameter p.
(o, B) n Average width 95% CI
§=0 §=-1 §=-3
(3.3) 5 0.438 0.335 0.197
! 10 0.344 0.250 0.136
4,5) 5 0.402 0.328 0.214
’ 10 0.322 0.251 0.151
(4 1) 5 0.363 0.217 0.079
’ 10 0.294 0.158 0.049
(1,4) 5 0.251 0.217 0.167
’ 10 0.188 0.158 0.117

maximum likelihood estimation instead of the method of moments; see pp. 40-41 of Maritz and Lwin (1995). This strategy,
also known as Type Il maximum likelihood, is a well-established empirical Bayes methodology.
We first compute the marginal probability function of a sample t (see Section 2.1 for definitions) as

Ba+a,b+ )
B(a, B)

1 1
1
mitie §) = [ £ pmop = o [PV p ,
0 B(x, B) Jo
where B («, ) denotes the beta function.
Next, suppose we have m past samples t(', ..., t(™. Then, assuming independence, the joint marginal likelihood of the
past samples is given by

m B(a® +a, b® + B
ma®, .. e, p) =[] ( )
il B(a. )

where a®, b® are as defined in (3), for the kth past sample. Finally, &, f are defined as solutions of the problem max, -o
mt®, ..., t™|«, B). However, depending on the data, unrestricted maximization is not always possible, as (10) may in-
crease indefinitely with « and 8. For illustration, suppose m = 2, a'V = 1, bV = 1,a® = 2 and b® = 1, then (10) takes
the form

) (10)

o?(a + 1)B?
(@+ B2+ +1*a+p+2)
Letting « 4+ 8 = t above, we obtain
2 D(t — 2
G(Ol,f) = M’ O<ua <t.
t2(t + 1)2(t + 2)
It is easy to show that, for fixed t > 0, G reaches its maximum at «*(t) = (3t — 4 + /(3t — 4)? + 40t)/10. That s,

H(t) .= G(a*(t), t) = maxG(a, t), t > 0.

Fla, B) =

o, B8 >0. (11)

Finally, it can be shown that H is increasing and converges to H(co) = 108/3125 = sup,, 4 F(a, B). So, the function in (11)
tends to its supremum when «, 8 — oc.

Situations such as the one depicted above have been known for a long time in maximum likelihood estimation. In order
to reduce this drawback it is often convenient to maximize over a constrained parameter space. Here we propose to restrict
the set of hyperparameters «, 8 by imposing a constraint related to the method of moments. Observe that the expected

value of the nth record is given by E[R,] = n (Lf;]) see (2.20) in Doostparast and Ahmadi (2006). Then, we replace the

o
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Table 4
EMSE of p, , using the empirical Bayes method.

(@,B) n EMSE(D, ,)
§=0 §=0 §=-1 §=-3
5 2.44E—02 1.93E—02 9.75E—03 3.20E—-03

3.3) 10 1.34E—02 1.12E—-02 4.82E—03 1.51E-03
(4,5) 5 2.09E—02 1.56E—02 9.04E—-03 4.15E—-03
! 10 1.08E—02 9.37E—03 5.26E—03 1.78E—03
1) 5 2.02E—02 1.58E—02 5.39E-03 8.73E—04
’ 10 1.17E—02 9.61E—03 2.67E—03 3.69E—04
(1,4) 5 2.50E—-02 9.05E—03 5.00E—03 2.52E-03
’ 10 1.52E—02 4.23E—03 2.74E-03 1.20E—03
Table 5
Observed data in Section 2.4 (read from left to right).
1,511132,432311131316,41926,2,1,3,1,3,1,1,10,2,7,1,8,1,1,2,1,1,6, 1, 2, 1, 4,
1,1135111,1,52,/45,12,2,131,11312111111,5,2,2,46,1,3,1,1,1, 1

Table 6
§-record values for data set of Table 5.
8 §-record values
0 1,5,6,9,10
-1 1,5,6,9,10
-3 1,5,3,4,3,3,3,3,9,10,8

expectation by the average of the m past nth records; set

-1 - 1 &

k=1

and maximize (10) subject to (12), where Rﬁk) denotes the nth record of the kth past sample. It is not clear if constraint (12)
guarantees that a maximum always exists, although this has been the case in all of our simulations.

Once « and g are estimated from the past samples tV, ... t™ p_ is computed from (9) using the (m + 1)th sample
t™+tD For m = 10 and several combinations of values of «, B and n, we performed 10? simulation runs and results are
shown in Table 4. The first column from the left (under the heading § = 0) displays the EMSE for estimations based on
the method of moments and relying only on records, as in Doostparast and Ahmadi (2006). In the second one, estimations
depend only on records as well, but we apply the maximum likelihood approach described above. The remaining columns
are all related to §-record data and the maximum likelihood estimation of & and 8.

It is interesting to compare the first two columns of Table 4 and see that our restricted ML strategy, for estimating the
hyperparameters, beats the method of moments used in Doostparast and Ahmadi (2006). This is presumably related to the
lack of efficiency of the latter method. In the remaining columns we find further evidence supporting the use of §-records.

2.4. Real data

We apply our methods to a real data set. The data shown in Table 5 are taken from Table III of Xie and Goh (1993). They
correspond to the number of items observed until a defective item is detected and are modelled in Xie and Goh (1993) by
the geometric distribution. There are 5 records in the sample and the values of §-records observed, for § = 0, —1, —3, are
shown in Table 6.

We estimate p using records and §-records, and compare the estimations with those obtained using the whole sample
of 87 observations. When dealing with real data, the sample may possibly not include all §-records associated to the last
observed record. In such case the expression of the likelihood has to be corrected by replacing P[S, = s,] with P[S,, > s,].
This is finally tantamount to replacing the rightmost term g™ in (1) with q(r"+3)+. Of course, the estimators must be modified
accordingly.

Table 7 shows the MLE and Bayes estimates of p using §-records and using the complete data. For Bayesian estimation we
take the uniform prior Beta(1, 1), as we have no previous information of p. We observe that the estimations with § = —3 are
close to those obtained with the whole sample, a fact which is interesting since the former are based only on 11 §-records
instead of the 87 observations of the latter.
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Table 7
Estimations of p in Section 2.4.
5=0 §=-1 §=-3 All data
D, 0.500 0.357 0.448 0.420
D.s 0.500 0.375 0.452 0.423

3. Prediction

Avery important question when analysing extreme data is to predict future high values. The problem of predicting future
records has been investigated by many authors. For continuous distributions see Arnold et al. (1998) and references therein,
Soliman et al. (2006) and Sultan et al. (2008). In the case of the geometric distribution, Doostparast and Ahmadi (2006)
present both Bayesian and non-Bayesian prediction of future records. We follow their scheme and show how §-records can
be successfully incorporated to improve performance.

3.1. Maximum likelihood prediction

The technique of maximum likelihood prediction of future records was introduced by Basak and Balakrishnan (2003).
It consists in defining the so-called predictive likelihood function, as the joint likelihood of the observed sample of records
and the unobserved future records. Then this function is maximized, both in the parameter and in the future record values.

Our aim is to predict the mth record R, assuming that §-records have been observed up to the nth record, (m > n). For
this, we use the likelihood function (1) and the probability function of the mth record, conditional on the data T, given by

PRy = 2|T = ¢, p] = (;‘_r;; - }) (1 = py (13)

forz>r,+m—n.
Then the predictive likelihood function is defined by

/

zZ —1 ’ e~
L(z,p) == L(z,p,t) =P[Ry =2|T =t, p] L(t, p) = (m/ _ 1) P =)t (14)

forz > r, + m — n, where a, b are defined in (3) and z’ = z — r,,, M’ = m — n. So, we obtain the log predictive likelihood as

/ Z/ - 1

For fixed z’ we maximize [ with respect to p by solving dl/dp = 0, thus obtaining p = % Then we replace p by p in |

and maximize I(z’, p) with respect to z’, which takes integer values. So, maximizing (14) is equivalent to maximizing

(Z —m 4 bF "+ (7 — 1)
(' +a+by7+eth (2 —m)!

Itis easy to see that, forz’ > m’, ®(z') < (z’+a+b)~ @V hence & (z’) < ®(m'),foreveryz’ > t :== ®(m’)~ V@D _(a+b).
Thus we simply evaluate @ atz’ = m/, ..., [t], where [.] denotes the ceiling function.
In the particular case of m = n + 1 we have m’ = 1 and so (15) takes the simple form

(Z, — 14+ b)z’—1+b

@ +a+ b)z’+a+b ’

which is easily shown to be decreasing in z’. So @ attains its maximum value at z’ = 1 or, equivalently at z = r, + 1. Thus,
in the case m = n + 1, the predicted (n 4+ 1)th record, denoted by R, 1, and the corresponding estimation of p are given by

- - A+1
Ri+1 =R 1 and = —.
n+1 n+ p A+B+1

Note however that, for m > 1, R, + m needs not be the maximum likelihood predictor of R,,.

We performed a simulation study to investigate the behaviour of the maximum likelihood predictor of future records,
for several combinations of §, n, m and p. Table 8 displays the EMSE of the predicted record Rm and of p. Observe that no
improvement in the prediction of the next record value (m = n 4 1) results from using §-records, because I~2n+1 =R, +1,
regardless of the value of §. However up to a 40% reduction of the EMSE is achieved when predicting records further into
the future. This suggests that the more distant the record (to be predicted) is, the more is gained by using §-records.

From Table 8 we also see that, while the EMSE of p seems to decrease to 0, as |§| grows, this is not the case for Rm. The
reason for this apparently strange behaviour is that the EMSE of any predictor based on the available information, say R},

®(Z) =

(15)

d(Z) =
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Table 8
EMSE of the maximum likelihood predictor of future records and the associated estimator of p, from 10 000 simulation runs.
p n m EMSE(Ry) EMSE(p)
§=0 §=-—1 §=-3 §=0 §=-1 §=-3
5 6 3.047 3.024 2.986 3.36E—02 1.05E—02 3.67E—03
5 8 11.026 10.026 8.532 426E—02 1.14E—02 3.51E—03
05 5 10 21.223 16.659 12.897 4.61E—02 1.33E—02 3.49E—03
10 11 3.032 2.987 2.998 1.55E—02 5.65E—03 1.71E-03
10 13 9.979 8.965 8.528 1.46E—02 6.11E—-03 1.71E-03
10 15 17.140 14.824 12.567 1.90E—02 6.41E—03 1.69E—03
5 6 0.805 0.802 0.803 2.67E—02 7.47E—03 1.51E—03
5 8 3.218 3.189 3.157 3.01E—-02 7.29E—03 1.66E—03
07 5 10 6.344 4.822 4121 3.34E—02 7.29E—03 1.65E—03
10 11 0.806 0.804 0.794 1.44E—02 4,09E—03 5.36E—04
10 13 3.578 3.499 3.356 9.32E-03 4.10E—03 5.96E—04
10 15 5.589 4.356 4.243 1.79E—02 3.88E—03 5.99E—04

has a positive lower bound. Indeed, let ¥ be the o -algebra generated by {X;; k < L1 — 1} and suppose R, is # -measurable.
That is, R}, may depend on all observations, with index less than the (n + 1)th record time, and not only on T. Then

E[(Rn = Ry)* | #.p] = minE [(Ry —1)* | 7. ]

v

minE [(Rm — 1)* | Ry, p]
r

= E[(Rn — E[Rm | Ru, P))* | Ru, P]

=E|[|{Rn——— ) [Rnp|=m—n)=,
p p

where the last line of the display above follows from the fact that R,;, conditional on R, is distributed as sum of m — n
independent geometric random variables, with parameter p, starting at 1. Finally, taking expectation on both sides above,
we have

EMSE(RS,) := E [(Rm — R5)?] > (m — n)l%_

So, for instance, letting p = 0.5, n = 5 and m = 8 (second line in Table 8), we see that the EMSE of Ry, cannot be lower than
6, even if we knew the actual p.

3.2. Bayesian approach

In this section we consider point and interval prediction of future records, from the Bayesian viewpoint. As in Section 2.3,
we use quadratic errors and a beta prior for p, with hyperparameters «, .

A Bayesian prediction of a future record R, is obtained from the Bayes predictive density function. We use, as above,
the expression for the conditional probability of R, = r,, given T, shown in (13). Recall, from Section 2.3, that the posterior
distribution 7 (p|t) is beta, with parameters o +a, 8+ b, where a, b are defined in (3). Then, using the notation of Section 3.1,
the Bayes predictive density function of R, given T is calculated as

1
PRy, =z|T=1t] = / P[Ry = z|T = t, p]z (p|t)dp.
0

:fl 21 g B A DT

o U —1 B(ox+a,B+b)
Z-1\B(mM+a+az —m+pB+Db)

—\m -1 B(ax +a, B+ b)

for z/ > m’. Thus, conditional on T = t, R, — r,, has a beta-Pascal distribution BP(m', « + a, 8 + b).

We can first consider the Bayes point predictor f%ﬁq of r, (m > n), calculated as the posterior mean E[R,,|T] = R, +
E[Ry, — R,|T]. That is,

)

. A+B+a+p—1
RE =R m-—n . 16
'm = Rn +( ) Ata_1 (16)
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Table 9
EMSE of Bayes, MAP and ML predictors of future records, with a Beta(«, ) prior, from 10 000 simulation runs.
(,p) n m EMSE(RE ) EMSE(R\"") EMSE(Rm)
§=0 §=-1 §=-3 §=0 §=-1 §=-3 §=0 §=-1 §=-3
5 6 7.341 7.252 6.505 11.050 11.973 10.661 11.050 11.973 10.661
5 8 31.230 29.621 28.406 44,987 44.416 40.560 43.463 43.251 39.225
(3,3) 5 10 62.452 58.862 52.689 85.895 84.712 71.497 105.894 99.041 86.210
' 10 11 8.206 8.157 6.963 13.171 13.405 12.270 13.171 13.405 12.270
10 13 27.453 27.132 25.051 39.250 39.023 35.030 44.853 42.059 36.654
10 15 52.832 51.864 47.213 71.302 70.791 62.625 96.478 92.335 85.467
5 6 0.693 0.671 0.656 0.906 0.921 0.914 0.906 0.921 0914
5 8 2.858 2.469 2.241 5.008 3.841 3.257 3.885 3.153 2.831
@1 5 10 5575 4.566 3.873 9.120 6.724 5.120 7.352 5.522 5.894
' 10 11 0.714 0.625 0.612 0.988 0.925 0.919 0.988 0.925 0.919
10 13 2.502 2.370 2.106 4.014 3.426 3.383 3415 3.243 3.193
10 15 4.837 4.083 3.676 7.187 5.762 5.125 6.501 5.868 6.486
Table 10
Average width (AW) and coverage probability (CP) of Bayesian prediction bounds based on 10 000 simulation runs.
n m Beta(3, 3) Beta(4, 1)
§=0 §=-1 §=-3 §=0 §=-1 §=-3
AW CcP AW CP AW CP AW CcP AW cP AW cP
5 6 5.821 0.961 5.533 0.965 5.479 0.960 1.638 0.972 1.601 0.977 1.538 0.977
5 8 12.675 0.956 12.125 0.960 11.767 0.965 3.646 0.969 3.343 0.972 3.176 0.974
5 10 18.859 0.952 17.636 0.960 16.507 0.957 5.620 0.969 4.830 0.967 4.392 0.976
10 11 5.563 0.959 5.499 0.963 5.431 0.967 1.714 0.976 1.597 0.978 1.531 0.975
10 13 12.005 0.961 11.489 0.961 11.245 0.962 3.348 0.961 3.237 0.970 3.175 0.974

10 15 17.441 0.959 16.591 0.958 16.016 0.962 5.062 0.967 4.503 0.969 4.339 0.974

We may also consider the MAP (maximum a posteriori) predictor, which is simply the posterior mode. An inspection

of the beta-Pascal probability mass function, with parameters I, s, t, reveals that the mode is located at 1 if | = 1 or at
’7("3#—‘ if| > 1. Therefore, if m = n + 1, then m’ = 1 and the MAP predictor is given by RxAP = R, + 1. Otherwise, if

m > n+ 1,thenm’ > 1 and so, the MAP predictor is
m—n—-1)A+B+a+p)
At+a+1 '

~MAP

Rm :Rn‘f"V

Table 9 shows the EMSE of R’;, R',:AP and R, (ML predictor) for several combinations of values of «, 8, n, m and §. Observe

that,form = n+1, RZAP depends only on R, and so, there is no gain by using §-records. However, I?‘; does take advantage of
8-records and some reduction of the EMSE is seen as |§| grows. On the other hand, for m > n + 1, the decrease of the EMSE
of both predictors, as |§| grows, is even more notorious. As in Table 2 we also include the EMSE of the predictions when ML
prediction is used.

Observe that several entries of Table 9 are quite large. This phenomenon can be explained in terms of a lower bound for the
EMSE, as we did in Section 3.1. Recall that the EMSE of any # -measurable predictor is bounded (below) by (n —m)(1—p)/p?
which, after integration with respect to the beta prior, yields

/1(m Pt memB@ =241 m-mp@t -1 a7
0 B(a, B) B(a, B) (@—D@-2)

for « > 2.In the particular caseo = 8 = 3,n = 5,m = 8and § = —3, (17) yields 45/2, a value not too far off from the
corresponding entry (28.406) of Table 9. A closer agreement can be seeninthecasee = 4,8 = 1,n =5,m =8and§ = —3.

Now we establish prediction intervals for future records. From the Bayes predictive density function of R, given T, we
compute the shortest interval of values with probability at least 1 — «. In Table 10 we show the average width of credible
intervals for Ry, for several values of o, 8, n, m and §. We also include empirical coverage probabilities. As it can be expected,
they are above 0.95 since the endpoints of the intervals take integer values.

3.3. Real data

We consider the data presented in Section 2.4 that we use now for predicting future record values. In Table 11 we give
the predictions based on records and §-records and on the whole sample.

As in Section 2.4 we observe an overall good agreement of predictions based on §-records (6 = —3) with those based on
the whole sample.
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Table 11
ML and Bayes prediction of future records for data set in Section 2.4 using records, §-records and all data (AD).
m R R R
§=0 §=-1 §=-3 AD §=0 §=-1 §=-3 AD §=0 =-1 =-3 AD
6 11 11 11 11 12.2 13 12.31 12.39 11 11 11 11
8 14 15 15 15 16.6 19 16.92 17.17 14 15 15 15
10 17 20 19 20 21 25 21.54 21.95 17 20 19 20

4. Conclusions and future work

In this paper we attempt to evaluate the impact of §-records on various inferential procedures for the geometric dis-
tribution. For that purpose we consider the record dependent methods in Doostparast and Ahmadi (2006) as the baseline
scenario. These methods are easily “upgraded” to accept §-records as input and their performance is evaluated, mainly in
terms of mean-square error, from simulated as well as real data.

Results show, in various degrees, better performance of methods incorporating §-records, either under Bayesian or non-
Bayesian frameworks, but this comparison has to be taken with caution because we are actually using more information.
However, a promising fact is that a few records (and their §-records) can outperform a larger number of records; see
comments following Table 1. So, under particular experimental conditions, such as those in destructive stress testing, it
may be more efficient to reduce the number of records to be observed in exchange for some §-records.

The importance of the geometric distribution justifies a detailed study such as ours but the loss-of-memory property
may tend to mask the impact of §-records. It is therefore necessary to evaluate their usefulness in other popular discrete
models but then, we cannot expect to have explicit formulas for estimators such as (4) or (16). Finally, there is also a need
for theoretical results to complement the empirical knowledge obtained from simulations. In that direction, we believe that
Proposition 2.4, on the consistency of p,, is important. However, as the reader may notice, the simplicity of its proof is tied
to the loss-of-memory and so, departures from the geometric model will bring about a more complex analysis.

Another important aspect to consider when using §-records, is the sampling scheme. For instance, in this paper we fix the
number n of records and observe all their associated §-records (see Section 2.1 for definitions). However, it may be natural to
observe some but not all 5-records associated to R,,, in which case the likelihood function must be adjusted. In both schemes
above, the sample size is random but this can be easily changed by fixing the total number of §-records. Of course, in this
case, the number of records in the sample is random.

Last, we mention the problem of finding an “optimal” §: i.e., if we fix § before the experiment, how should we proceed?
We have shown throughout the paper that, as |§| gets larger, we obtain better estimations and predictions, since increasing
|§] increases the number of observations available for inference. However, in many cases, such as destructive testing, each
observation has a cost and therefore a compromise between accuracy and cost must be found. The expected number of
8-records associated to the first n records is given by

—5—1 i —8—1 i—1 k
p k—1 —5—1 p\ 1 5
SC) (o) 2T ) (B) 1)+ aesene

i=1 k=i k=0

expression which can be approximated by nq®. Although the value of g is unknown, previous knowledge may serve as a
guide to infer the number of §-records to be observed. Another possibility is to consider different values of § along the
experiment, adapted to the successive record values. The likelihood in (1) can be modified consequently to yield estimations
and predictions in this situation. Thus, when a small (big) number of §-records are observed for the first records, a change
in § for the remaining records can be useful to increase accuracy (decrease cost).
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