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a b s t r a c t

Circular-arc graphs are the intersection graphs of open arcs on a circle. Circle graphs are
the intersection graphs of chords on a circle. These graph classes have been the subject
of much study for many years and numerous interesting results have been reported.
Many subclasses of both circular-arc graphs and circle graphs have been defined and
different characterizations formulated. In this survey, we summarize the most important
structural results related to circular-arc graphs and circle graphs and present themain open
problems.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The aim of this article is to summarize the most important known structural results on circular-arc graphs and circle
graphs. We hope this survey can be helpful to those researchers who work on subjects related to these graph classes. In this
introductory section, some remarkable structural results are briefly presented.

Circular-arc graphs are the intersection graphs of a set S of arcs on a circle; such a set S is called a circular-arc model. The
first works about this class of graphs were published by Hadwiger et al. in 1964 [36] and Klee in 1969 [44]. Nevertheless,
the first researcher who dealt with the problem of characterizing by forbidden subgraphs this family of graphs was Tucker
in his Ph.D. thesis in 1969 [66]. He introduced andmanaged to characterize by forbidden induced subgraphs two subclasses
of circular-arc graphs, namely unit circular-arc graphs and proper circular-arc graphs. The first subclass consists of those
circular-arc graphs having a circular-arc model with all its arcs having the same length and the second one consists of those
circular-arc graphs having a circular-arc model without any arc contained in another. The first polynomial-time recognition
algorithm for circular-arc graphs was devised by Tucker in 1980 [70]. In 1995, Hsu presented a O(mn)-time recognition
algorithm. A linear-time recognition algorithm was proposed by McConnell in 2003 [53].

Characterizing by forbidden induced subgraphs the whole class of circular-arc graphs is a long standing open
problem [44,65,69]. Nevertheless, several authors have presented some advances in this direction. Trotter and Moore gave
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a characterization by forbidden induced subgraphs within the class of co-bipartite graphs [65]; i.e., they found the complete
list of induced subgraphs that have to be forbidden in a co-bipartite graph in order to ensure that such a graph is circular-arc.
Bang-Jensen and Hell presented a structural theorem for proper circular-arc graphs within the class of chordal graphs [3]
that implies the characterization by forbidden induced subgraphs for proper circular-arc graphs within the class of chordal
graphs. In [4] characterizations by minimal forbidden induced subgraphs of circular-arc graphs were presented, in the case
where the graph belongs to any of the following four different classes: P4-free graphs, paw-free graphs, claw-free chordal
graphs and diamond-free graphs.

Circular-arc graphs are a generalization of the family of the intersection graphs of intervals in the real line, called interval
graphs. Interval graphs were characterized by Lekkerkerker and Boland in 1962 [47]. The whole list of forbidden induced
subgraphs that characterizes interval graphs was successfully found via a different characterization by means of asteroidal
triples presented by the same authors. Any set of intervals in the real line satisfies the Helly property; i.e., any set of pairwise
intersecting intervals in the real line have a common point. Consequently, a subclass of circular-arc graphs that naturally
generalizes interval graphs are the Helly circular-arc graphs; i.e., those circular-arc graphs having an intersection model of
arcs such that any subset of pairwise intersecting arcs has a common point. Lin and Szwarcfiter presented a characterization
by forbidden structures for this class within the class of circular-arc graphs [50]. Such a characterization yields a linear-
time recognition algorithm for the class of Helly circular-arc graphs. [18] introduced the class of proper Helly circular-arc
graphs, those graphs having a circular-arc model which is simultaneously proper and Helly. This class was characterized by
forbidden induced subgraphs in [49].

A circular-arc graph having a circular-arc model without two arcs covering the whole circle is called a normal circular-
arc graph. This terminology was introduced in [51]. Hell and Huang proved that the complements of interval bigraphs are
exactly those co-bipartite graphs having a normal circular-arc model [39]. A bipartite graph H , with a fixed partition (X, Y ),
is an interval bigraph if the vertices of H can be represented by a family of intervals Iv, v ∈ X ∪ Y , so that, for x ∈ X and
y ∈ Y , x and y are adjacent in H if and only if Ix and Iy intersect. Generalizing circular-arc graphs, Alcón et al. introduced the
class of loop graphs [1].

Fulkerson and Gross [25] characterized interval graphs in terms of their clique matrices. They were able to prove that
the clique matrix of interval graphs satisfies the consecutive 1s property for rows. Following this line of work, Roberts [60]
characterized proper interval graphs as those graphs whose augmented adjacency matrix has the consecutive 1s property
for columns; i.e., its rows can be permuted in such a way that in each column the 1s appear consecutively. Results in this
direction were obtained by Tucker and Gavril for circular-arc graphs and proper interval graphs in [68,30].

A graph is defined to be circle if it is the intersection graph of a setC of chords on a circle, such a set is called a circlemodel.
Circle graphs were introduced by Even and Itai in [21] to solve an ordering problem with the minimum number of parallel
stacks without the restriction of loading before unloading is completed, proving that the problem can be translated into the
problem of finding the chromatic number of a circle graph. Unfortunately, this problem turns out to be NP-complete [28].

Naji characterized circle graphs in terms of the solvability of a system of linear equations, yielding an O(n7)-time
recognition algorithm for this class [54]. The local complement of a graphGwith respect to a vertex u ∈ V (G) is the graphG∗u
that arises from G by replacing the induced subgraph G[NG(u)] by its complement. Two graphs G and H are locally equivalent
if and only if G arises from H by a finite sequence of local complementations. Bouchet proved that circle graphs are closed
under local complementation, as well as that a graph is circle if and only if every locally equivalent graph contains none of
three prescribed graphs as induced subgraphs [8]. Inspired by this result, Geelen and Oum [31] gave a new characterization
of circle graphs in terms of pivoting (see Section 4.2).

A circle graph with a circle model having all its chords of the same length is called a unit circle graph. It is well known
that the class of proper circular-arc graphs is properly contained in the class of circle graphs. Furthermore, the class of unit
circular-arc graphs and the class of unit circle graphs are the same [19].

Let G1 and G2 be two graphs such that |V (Gi)| ≥ 3, for each i = 1, 2, and assume that V (G1) ∩ V (G2) = ∅. Let vi be a
distinguished vertex of Gi, for each i = 1, 2. The split composition of G1 and G2 with respect to v1 and v2 is the graph G1 ◦ G2
whose vertex set isV (G1◦G2) = (V (G1)∪V (G2))\{v1, v2} andwhose edge set is E(G1◦G2) = E(G1−{v1})∪E(G2−{v2})∪{uv :

u ∈ NG1(v1) and v ∈ NG2(v2)}. The vertices v1 and v2 are called the marker vertices. We say that G has a split decomposition
if there exist two graphs G1 and G2 with |V (Gi)| ≥ 3, i = 1, 2, such that G = G1 ◦ G2 with respect to some pair of marker
vertices. If so, G1 and G2 are called the factors of the split decomposition. Those graphs that do not have a split decomposition
are called prime graphs. The concept of split decomposition is due to Cunningham [15]. Circle graphs turned out to be closed
under this decomposition [6] and in 1994 Spinrad presented a quadratic-time recognition algorithm for circle graphs that
exploits this peculiarity [63]. Also based on split decomposition, Paul [58] presented an O((n+m)α(n+m))-time algorithm
for recognizing circle graphs, where α is the inverse of the Ackermann function.

Circle graphs are a superclass of permutation graphs. Indeed, permutation graphs can be defined as those circle graphs
having a circle model such that a chord can be added in such a way that this chord meets all the chords belonging to the
circle model. On the other hand, permutation graphs are those comparability graphs whose complement graph is also a
comparability graph [22]. Since comparability graphs have been characterized by forbidden induced subgraphs [27], such a
characterization implies a forbidden induced subgraphs characterization for the class of permutation graphs.

Helly circle graphs are those graphs having a circlemodelwhose chords satisfy theHelly property; i.e., every set of pairwise
adjacent chords has a common point. This family of graphs was introduced in [18,19]. It was also conjectured there that a
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circle graph is Helly circle if and only if it contains no induced diamond. Recently, this conjecture was positively settled [16].
Nevertheless, Helly circle graphs have not been fully characterized by forbidden induced subgraphs yet.

The characterization of circle graphs by forbidden induced subgraphs is also an open problem. In [5], circle graphs
were characterized within linear domino graphs by profiting from the closure of the class of circle graphs under split
decomposition. Besides, in the same work, characterizations by forbidden induced subgraphs within two superclasses of
cographs (i.e., P4-free) namely, tree-cographs and P4-tidy graphs, are presented as an application of Gallai’s characterization
of comparability graphs [27]. Also in [5], the class of unit Helly circle graphs, which consists of those circle graphs having a
circle model which is simultaneously Helly and unit, is introduced and characterized.

An interesting earlier survey on circular-arc graphs and their subclasses with more emphasis on recognition algorithms
is presented in [52]. Instead, our focus is on the structural characterizations of this class and the class of circle graphs,
specially by forbidden induced subgraphs. Given the difficulty of these problems in general, many authors formulated partial
characterizations. In this survey, in addition to showing these structural characterizations, we present the main techniques
employed in the corresponding proofs.

The paper is organized as follows. In Section 2, we give some preliminary definitions. Sections 3 and 4 are devoted to
circular-arc graphs and circle graphs, respectively. Finally, in Section 5, we give a list of the main open problems which
could serve as a starting point for researchers interested in working on these topics.

2. Definitions

All graphs in this article are without loops and without multiple edges. Let G be a graph and denote by V (G) and E(G)
the vertex set and the edge set of G, respectively. We denote the complement of G by G. The set of vertices adjacent to a
vertex v ∈ V is called the neighborhood of v and denoted by NG(v). The closed neighborhood of v is NG[v] := NG(v)∪{v}. The
degree dG(v) of v is |NG(v)|. Vertices with degree 0 and |V | − 1 are called isolated vertex and universal vertex, respectively.
A pendant vertex is a vertex of degree one. A graph H = (V ′, E ′) is said to be a subgraph of G if V ′

⊆ V and E ′
⊆ E. If, in

addition, E ′
= {uv ∈ E : u, v ∈ V ′

},H is called an induced subgraph of G and we say that the vertex set V (H) induces the
graph H . Given a subset A ⊆ V (G),G[A] stands for the subgraph induced by A. Two vertices u, v ∈ V are said to be false twins
if N(v) = N(w) and they are said to be true twins if N[v] = N[w]. Let A, B ⊆ V (G). We say that A ⊆ V is complete to B ⊆ V
if every vertex of A is adjacent to every vertex of B.

A forbidden induced subgraph for a graph class G is a graph H such that no graph of G contains an induced H . A graph class
G is said to be hereditary if for each G ∈ G, each induced subgraph of G belongs to G. A graph H is aminimal forbidden induced
subgraph of a hereditary graph class G if and only if H is a forbidden induced subgraph of G but each induced subgraph of H
different from H belongs to G.

A path is a linear sequence of different vertices P = v1, . . . , vk such that vi is adjacent to vi+1 for i = 1, . . . , k − 1. The
internal vertices of the path are v2, . . . , vn−1. Sums in this paragraph should be understood modulo k. If there is no edge vivj
such that |i − j| ≥ 2 (i.e., all its internal vertices have degree two), P is said to be either a chordless path or induced path.
A cycle C is a linear sequence of vertices C = v1, . . . , vk, v1 such that vi is adjacent to vi+1 for i = 1, . . . , k. If there is no
edge vivj such that |i− j| ≥ 2, C is said to be either a chordless cycle or induced cycle. By Pn and Cn we denote a induced path
and an induced cycle on n vertices, respectively. A stable set is a subset of pairwise non-adjacent vertices. A complete set is a
set of pairwise adjacent vertices. A clique is an inclusion-wise maximal complete set in a graph. A complete graph is a graph
whose vertex set is a complete set. The complete graph on n vertices is denoted by Kn(n ≥ 1). The graph K3 is also called
a triangle. A diamond is the graph obtained from a complete K4 by removing exactly one edge. A paw is the graph obtained
from a triangle T by adding a pendant vertex to T . A graph G is bipartite if V (G) can be partitioned into two stable sets V1, V2;
if, in addition, V1 is complete to V2,G is complete bipartite. Denote by Kr,s the complete bipartite graph with |V1| = r and
|V2| = s. A claw is the complete bipartite graph K1,3. A graph G is defined to be chordal if G does not contain any induced
cycle with at least four vertices.

Let G1 and G2 be two graphs and assume that V (G1) ∩ V (G2) = ∅. The disjoint union of G1 and G2 is the graph G1 ∪ G2
such that V (G1 ∪ G2) = V (G1) ∪ V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2). We denote by G1 + G2 the join graph of G1 and G2,
where V (G1 + G2) = V (G1) ∪ V (G2) and E(G1 + G2) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1) and v ∈ V (G2)}.

Let G be a graph and let A be a vertex set that induces a P4 in G. A vertex v of G is said a partner of A if G[A∪ {v}] contains
at least two induced P4s. If each vertex set A that induces a P4 in G has at most one partner, G is called P4-tidy [32]. The class
of P4-tidy graphs is an extension of the class of cographs and it contains many other graph classes defined by bounding the
number of P4s according to different criteria; e.g., P4-sparse graphs [40], P4-lite graphs [41], and P4-extendible graphs [42].
A spider [40] is a graph whose vertex set can be partitioned into three sets S, C , and R, where S = {s1, . . . , sk} (k ≥ 2) is a
stable set; C = {c1, . . . , ck} is a complete set; si is adjacent to cj if and only if i = j (a thin spider), or si is adjacent to cj if and
only if i ≠ j (a thick spider); R is allowed to be empty and if it is not, then all the vertices in R are adjacent to all the vertices
in C and non-adjacent to all the vertices in S. The triple (S, C, R) is called the spider partition. Clearly, the complement of a
thin spider is a thick spider, and vice versa. A fat spider is obtained from a spider by adding a true or false twin of a vertex
v ∈ S ∪ C . Tree-cographs [64] are another generalization of cographs. They are defined recursively as follows: trees are tree-
cographs; the disjoint union of tree-cographs is a tree-cograph; and the complement of a tree-cograph is also a tree-cograph.
It is immediate from the definition that, if G is a tree-cograph, then G or G is disconnected, or G or G is a tree.
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Fig. 1. Some small graphs.

Fig. 2. Minimal forbidden induced subgraphs for the class of interval graphs.

For some small graphs to be referred to in what follows, see Fig. 1.

3. Circular-arc graphs

A graph G = (V , E) is a circular-arc graph if there exists a family M of open arcs on a circle; i.e., there exists a one-to-one
correspondence f : V → M such that uv ∈ E if and only if f (u) and f (v) intersect and u ≠ v. If so, M is called a circular-arc
model of G. Clearly, if the arcs of the family M do not cover the whole circle, then G is an interval graph. Conversely, if G is
an interval graph then G is a circular-arc graph having a model whose arcs do not cover the whole circle.

The structure of this section is as follows. In Section 3.1 we present some characterizations of an important subclass of
circular-arc graphs: the class of interval graphs. In Section 3.2 we survey characterizations of some subclasses of circular-
arc graphs obtained by imposing restrictions on the models. In Section 3.3 we revisit some characterizations of circular-arc
graphs within different graph classes.

3.1. Interval graphs

A graph G = (V , E) is an interval graph if it is the intersection graph of a set I of open intervals on the real line; i.e., there
exists a one-to-one correspondence f : V → I such that uv ∈ E if and only if f (u) and f (v) intersect and u ≠ v. Such a
family of intervals I is called an interval model of G.

Before stating the well-known forbidden induced subgraph characterization for interval graphs, we will introduce a tool
that plays a very important role in this characterization. Three vertices in a graph G form an asteroidal triple if every two
of them are connected by a path avoiding the third and its neighbors. Lekkerkerker and Boland [47] characterized interval
graph by forbidden induced subgraphs. They managed to do so by characterizing interval graphs as those chordal graphs
not containing asteroidal triples.

Theorem 1 ([47]). A graph is an interval graph if and only if it contains no induced bipartite-claw, umbrella, n-net for any
n ≥ 2, n-tent for any n ≥ 3, or Cn for any n ≥ 4 (see Fig. 2).

The proof due to Lekkerkerker and Boland consists in finding the minimally non-asteroidal-triple-free graphs within
chordal graphs. The complete list of minimally non-asteroidal-triple-free graphs was found by Köehler [46].

A proper interval graph is an interval graph having an interval model such that none of its intervals is properly contained
in any other; such an intervalmodel is called a proper interval model. Proper interval graphswere introduced by Roberts [60],
who also characterized which interval graphs are proper interval.

Theorem 2 ([60]). Let G be an interval graph. G is proper interval if and only if G does not contain an induced claw.

A unit interval graph is an interval graph having an interval model with all its intervals having the same length; such an
intervalmodel is called a unit interval model. Wegner [72] and Roberts [60] introduced unit interval graphs. Notice that every
unit interval graph is a proper interval graph. Roberts proved that the converse is also true; i.e., the classes of proper interval
graphs and unit interval graphs coincide. Consequently, by combining Theorems 1 and 2, the theorem below follows.

Theorem 3 ([60]). Let G be a graph. The following assertions are equivalent:

(i) G is a unit interval graph.
(ii) G is a proper interval graph.
(iii) G contains no induced claw, net, tent, or Cn for any n ≥ 4.



G. Durán et al. / Discrete Applied Mathematics 164 (2014) 427–443 431

Fig. 3. Some graphs whose complements are not proper circular-arc graphs.

In this direction, Proskurowski and Telle introduced the class of q-proper interval graphs where q is a non-negative
integer [59], defined as those interval graphs having an interval model such that any interval is contained in at most q
intervals. Since 0-proper interval graphs are exactly the proper interval graphs, these graph classes generalize the class of
proper interval graphs. For each positive integer k, let Tk be the graph obtained by adding k − 1 true twins to the vertex
of degree 3 of K1,3. For instance, the graph T1 is exactly the claw. It is easy to see that Tq+1 is not a q-proper interval graph
for any non-negative integer k. Moreover, Tq+1 is the only minimally non-(q-proper interval) graph, as follows from the
generalization of Theorem 2.

Theorem 4 ([59]). Let G be an interval graph and q a non-negative integer. G is a q-proper interval graph if and only if G contains
no induced Tq+1.

Let G be a graphwhose vertex set V (G) is {v1, . . . , vn} andwhose cliques are {Q1, . . . ,Qk}. A clique-matrix Q (G) of G is the
k × n such that Qij = 1 if and only if vj ∈ Qi and Qij = 0 otherwise. Fulkerson and Gross [25] characterized interval graphs
as those graphs whose clique-matrix has the consecutive 1s property for rows; i.e., there is a permutation of the columns
of Q (G) such that in each row the 1s appear consecutively. An adjacency matrix M(G) of G is defined as the n × n matrix
such that Mij = 1 if vertices vi and vj are adjacent and Mij = 0 otherwise. Note that M(G) is symmetric and has only 0s on
the main diagonal. The augmented adjacency matrix of G is defined as the matrix M∗(G) := I + M(G) where I is the n × n
identity matrix. Proper interval graphs were characterized by Roberts [60] as those graphs whose augmented adjacency
matrix has the consecutive 1s property for columns; i.e., its rows can be permuted in such a way that in each column the 1s
appear consecutively.

3.2. Circular-arc graphs having restricted models

Similarly to the case of interval graphs, a circular-arc graph G is called a proper circular-arc graph if and only if G admits a
circular-arc model where no arc is properly contained in any other. Tucker [69] characterized proper circular-arc graphs by
forbidden induced subgraphs as follows.

Theorem 5. Let G be a graph. Then, G is a proper circular-arc graph if and only if G contains no induced co-(bipartite-claw), net,
H2,H3,H4, tent ∪ K1, Cj ∪ K1 for any j ≥ 4, C2j for any j ≥ 3, and C2j+1 ∪ K1 for any j ≥ 1 (see Fig. 3).

A digraph D is an orientation of a graph G if for every u, v ∈ V (G) it holds that uv ∈ E(G) if and only if either (u, v) ∈ A(D)
or (v, u) ∈ A(D). A tournament is an orientation of a complete graph. A local tournament [2] is an oriented graph for which
the in-neighbors as well as the out-neighbors of any vertex induce a tournament. Skrien [61] proved that the class of graphs
orientable as local tournaments is exactly the class of proper circular-arc graphs.

Theorem 6 ([61]). A graph G is a proper circular-arc graphs if and only if G is orientable as a local tournament.

A (0, 1)-matrix M is said to have the circular 1s property for columns if the rows of M can be permuted so that the 1s in
each column are circular, that is, appear in a circularly consecutive fashion. The consecutive and circular 0s properties for
columns are similarly defined. Note that a (0, 1)-matrix has the circular 1s property for columns if and only if it has the
circular 0s property for columns. Let M be a symmetric (0, 1)-matrix with 1s on the main diagonal. Let Ui be the circular
ordered set of 1s in column i starting at the main diagonal and going down until a 0 is encountered. Let Vi be the analogous
set of 1-entries in row i starting at themain diagonal and going right until a 0 is encountered.M is said have the quasi-circular
1s property if the Ui and Fi contain all the 1s inM .

Tucker [68] characterized circular-arc graphs as those admitting an augmented adjacency matrix having the quasi-
circular 1s property.

Theorem 7 ([68]). Let G be a graph. G is a circular-arc graph if and only if the vertices of G can be indexed in such a way that
M∗(G) has the quasi-circular 1s property.

This result can be reformulated in terms of a special ordering of the vertices of the graph G as follows.

Theorem 8 ([67]). Let G be a graph. G is a circular-arc graph if and only if the vertices of G can be sorted in a circular ordering
v1, . . . , vn such that for i < j if vivj ∈ E(G) then either vj+1, . . . , vj ∈ N(vi) or vj+1, . . . , vi ∈ N(vj).
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Fig. 4. On the left, a circular-arc model of CI(4, 1). On the right, its intersection graph, the graph CI(4, 1).

Proper circular-arc graphs were also characterized by Tucker in [68] using (0, 1)-matrices. To state his result, we need
to define the (0, 1)-matrices having the circularly compatible 1s property. Let M be a symmetric (0, 1)-matrix. M is said to
have circularly compatible 1s if the 1s in each column are circular and if, after inverting and/or cyclically permuting the order
of the rows and (corresponding) columns, the last 1 (in cyclically descending order) of the circular set in the second column
is always at least as low as the last 1 of the circular set in the first column unless one of these columns is all 1s or all 0s.

Theorem 9 ([68]). Let G be a graph. G is a proper circular-arc graph if and only if there is an arrangement of M∗(G) having
circularly compatible 1s.

In [69] Tucker also introduced unit circular-arc graphs as those graphs G admitting a circular-arc model whose arcs all
have the same length. Clearly, unit circular-arc graphs are proper circular arc graphs. In the same work, he characterized
which proper circular-arc graphs are unit circular-arc graphs by forbidden induced subgraphs. In order to state his
characterization we need to introduce the following family of graphs. Let CI(j, k) (j > k) be the circular-arc graph admitting
the following circular-arc model on the unit circle: there are j arcs A0, A1, . . . , Aj−1 each of which is of length 2πk/j+ϵ such
that Ai starts at 2π i/j and ends at 2π(i + k)/j + ϵ and there are j arcs of length 2πk/j − ϵ such that Bi starts at (2π i + π)/j
and ends at (2π(i + k) + π)/j − ϵ, where ϵ > 0 is a sufficiently small positive quantity. See, for instance, the circular-arc
model of CI(4, 1) depicted in Fig. 4.

Theorem 10 ([69]). Let G be a graph. Then, G is a unit circular-arc graph if and only if G is a proper circular-arc graph and G
contains no induced CI(j, k) for relatively prime j and k and j > 2k.

The first polynomial-time algorithm for recognizing the class of unit circular-arc graphs was proposed in [20]. The time
complexity of that algorithm is O(n2), where n is the number of vertices of the input graph. The running time was improved
to linear-time by an algorithm due to Lin and Szwarcfiter by relating unit circular-arc graphs to a generalization of Eulerian
digraphs [51].

Define semicircular graphs [4] to be the intersection graphs of open semicircles on a circle. Notice that semicircular
graphs are unit circular-arc graphs, but the converse is clearly not true; for example, P4 is a unit circular-arc graph but
not a semicircular graph. The following theorem gives a complete characterization of this class of graphs.

Theorem 11 ([4]). Let G be a graph. Then, G is a semicircular-arc graph if and only if G is {P4, 3K1}-free.

A family of sets has the Helly property if every nonempty subfamily of pairwise intersecting members has nonempty
intersection. A circular-arc graph G is a Helly circular-arc graph if G admits a circular-arc model having the Helly property.
Equivalently, G is a Helly circular-arc graph if and only if G admits a circular-arc model where the arcs corresponding to
each clique of G have nonempty intersection. These graphs were introduced by Gavril [30] who proved that a graph is Helly
circular-arc if and only if its clique-matrix has the circular 1s property for rows. In the samework, anO(n3)-time recognition
algorithm is given. In [43], Lin and Szwarcfiter gave the following forbidden induced subgraph characterization of which
circular-arc graphs are Helly circular-arc graphs. A graph H is an obstacle if H contains a clique Q = {v1, v2, . . . , vt} where
t ≥ 3 and such that for each i = 1, . . . , t , at least one of the following assertions holds (where in both assertions, wt+1
means w1):

(O1) N(wi) ∩ Q = Q \ {vi, vi+1}, for some wi ∈ V (H) \ Q .
(O2) N(ui) ∩ Q = Q \ {vi} and N(zi) ∩ Q = Q \ {vi+1}, for some adjacent vertices ui, zi ∈ V (H) \ Q .

Two examples of obstacles are depicted in Fig. 5. With this definition, the characterization of those circular-arc graphs that
are Helly circular-arc graphs runs as follows.

Theorem 12 ([43]). Let G be a circular-arc graph. Then, G is a Helly circular-arc graph if and only if G contains no induced
obstacle.
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Fig. 5. Two obstacles.

Fig. 6. Minimally non-normal circular-arc graph that is CA, and its circular-arc model.

A graph G is a proper Helly circular-arc graph if G admits a circular-arc model which is simultaneously proper and Helly.
Motivated by an application in a periodic allocation problem [13], in [18] these graphs were first considered and it was
shown that they are a proper subclass of the intersection of the classes of proper and Helly circular-arc graphs. Moreover,
in [49], proper Helly circular-arc graphs were characterized by forbidden induced subgraphs.

Theorem 13 ([49]). A graph G is a proper Helly circular-arc graph if and only if G is a proper circular-arc graph and G contains
no induced 4-wheel and no induced tent.

Similarly, unit Helly circular-arc graphs were introduced in [49] as those graphs admitting a circular-arc model which is
simultaneously unit and Helly. The corresponding forbidden induced subgraph characterization is as follows.

Theorem 14 ([49]). A graph G is a unit Helly circular-arc graph if and only if G is a unit circular-arc graph and G contains no
induced 4-wheel.

A circular-arc graph is a normal circular-arc graph if it admits a circular-arc model such that no two arcs cover the whole
circle. For example, interval graphs and semicircular graphs are normal circular-arc graphs. An example of a circular-arc
graph which is not normal is given in Fig. 6. This concept was studied in [20,33,39], but the terminology ‘normal’ was
introduced in [51]. The characterization of normal circular-arc graphs byminimal forbidden induced subgraphs is still open.

3.3. Circular-arc graphs restricted to different graph classes

Recall that the class of interval graphs was characterized by forbidden induced subgraphs by Lekkerkerker and Boland
(cf. Theorem 1). As mentioned in the Introduction, the corresponding problem of characterizing circular-arc graphs by
forbidden induced subgraphs is a long-standing open problem [44,65,69]. Some known minimally non-circular-arc graphs
are depicted in Fig. 7. In this subsection, we survey some partial results in this direction obtained by restricting the problem
to different graph classes.

A graph is co-bipartite if its complement is bipartite or, equivalently, if its vertex set is the set union of two complete sets.
Co-bipartite circular-arc graphs arise as an interesting subclass of circular-arc graphs. In [70], Tucker was the first to observe
that in any circular-arc model of a co-bipartite circular-arc graph there exist two points p and p′ of the circle such that each
arc of the model contains at least one of them. This property was generalized by Hell and Huang [38] to the whole class of
circular-arc graphs.

Theorem 15 ([38]). Let G be a circular-arc graphwhose vertex set can be partitioned into k completes and let M be a circular-arc
model of G. Then, there are k points on the circle such that every arc of M contains at least one of these k points.

Based on Tucker’s observation, Spinrad [62] proved that for any partition into two cliques C1 and C2 of a co-bipartite
circular-arc graph, there exists a circular-arc model M and two points c1 and c2 on the circle such that each arc whose
corresponding vertex belongs to C1 meets c1 and not c2, and each arc whose corresponding vertex belongs to C2 meets c2
and not c1. Hell and Huang [38] observed that this fact can be used to color the edges of a co-bipartite circular-arc graph red
and blue in such a way that no two opposite edges of an induced four-cycle are colored with the same color. Let R and B be
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Fig. 7. Some minimally non-circular-arc graphs.

the two parts into which the points c1 and c2 divide the circle. In fact, if U and U ′ are two cliques covering the vertices of a
co-bipartite circular-arc graph G, the edges of G can be colored red and blue as follows: let the edges joining two vertices
in U be colored red, the edges joining two vertices in U ′ be colored blue, and each of the remaining edges be colored red or
blue depending on whether the arcs in M corresponding to its endpoints have some common point in R or B, respectively
(if the arcs contain common points in both R and B, the edges would be colored by red). Conversely, using a lexicographic
order technique developed in [37], Hell and Huang proved that the only co-bipartite graphs admitting such a bicoloring of
the edges are precisely those that are circular-arc.

Theorem 16 ([38]). If G is a co-bipartite graph, then G is a circular-arc graph if and only if its edges can be colored red and blue
so that no induced four-cycle has two opposite edges of the same color.

A forbidden induced subgraph characterization of circular-arc graphswithin co-bipartite graphswas given by Trotter and
Moore [65]. They employed the following notation to describe the complements of the corresponding families of forbidden
induced subgraphs. Let F = {Γj : 1 ≤ j ≤ k} be a family of subsets of {1, 2, . . . , l}. Define GF to be the bipartite graph
whose stable set partition is (X, Y ), X = {x1, . . . , xl} and Y = {y1, . . . , yk} such that xiyj ∈ E(GF ) if and only if i ∈ Γj. For
example, if n ≥ 3 and F is the family Cn of Table 1, then GF = C2n. Note that each of the families described in Table 1 is
infinite, with the only exception of {Gn}. Trotter and Moore used the theory of partially ordered sets to deduce the list of all
minimal forbidden induced subgraphs for the class of circular-arc graphs within the complements of bipartite graphs.

Theorem 17 ([65]). If G is a co-bipartite graph, G is a circular-arc graph if and only if G contains no induced complement of the
graph GF for any of the families F listed in Table 1.

List homomorphisms generalize list colorings in the following way: Given graphs G,H , and lists L(v) ⊆ V (H), v ∈ V (G),
a list homomorphism of G to H with respect to the lists L is a mapping f : V (G) → V (H), such that f (u)f (v) ∈ E(H) for
all uv ∈ E(G), and f (v) ∈ L(v) for all v ∈ V (G). The list homomorphism problem for a fixed graph H asks whether
or not an input graph G together with lists L(v) ⊆ V (H), v ∈ V (G), admits a list homomorphism with respect to L.
In [23], Feder et al. proved that the list homomorphism problem is polynomial-time solvable if the complement of H is a co-
bipartite circular-arc graph, and isNP-complete otherwise. For the purpose of the proof they provided a newcharacterization
of co-bipartite circular-arc graphs. To present such a result we need to introduce new concepts. An edge-asteroid in a
bipartite graph with a stable set partition (X, Y ) is a set of 2k + 1 edges (k ≥ 1)u0v0, u1v1, . . . , u2kv2k (ui ∈ X, vi ∈ Y )
and 2k + 1 paths P0,1, P1,2, . . . , P2k,0 where each Pi,i+1 joins ui to ui+1, such that there is no edge between {ui, vi} and
{vi+k, vi+k+1} ∪ V (Pi+k,i+k+1) (subscripts should be understood modulo 2k + 1). An edge-asteroid having no edge between
{u0, v0} and {v1, . . . , v2k} ∪ P1,2 ∪ P2,3 ∪ · · · ∪ P2k−1,2k is called a special edge-asteroid. A bipartite graph is said to be chordal
bipartite [34] if it does not contain any induced cycle of length at least six. Note that these graphs are not chordal, because
induced C4s are allowed. Feder, Hell, and Huang proved the characterization below by showing that each co-bipartite graph
containing any of the forbidden induced subgraphs for the class of circular-arc graphs in the statement of Theorem 17
contains an special edge-asteroid.

Theorem 18 ([23]). Let G be a bipartite graph. G is a circular-arc graph if and only if G is chordal bipartite and contains no
special edge-asteroids.

A graph G is amultiple of another graphH if G can be obtained fromH by replacing each vertex x ofH by a complete graph
Θx and joining all possible vertices of different complete graphs Θx, Θy if and only if x and y are adjacent in H . Bang-Jensen
and Hell [3] proved by induction the following structural result.

Theorem 19 ([3]). Let G be a connected graph containing no induced claw, net, C4, or C5. If G contains a tent as induced subgraph,
then G is a multiple of a tent.
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Table 1
List of the families that allow us to define the minimal forbidden induced subgraphs of circular-arc graphs within complements of bipartite graphs. Each
family F in this list determines a bipartite graph GF (as defined just before Theorem 17), whose complement is a minimally non-circular-arc graph.

C3 = {{1, 2}, {2, 3}, {3, 1}}
C4 = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}
C5 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}}
. . .
T1 = {{1, 2}, {2, 3}, {3, 4}, {2, 3, 5}, {5}}
T2 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {2, 3, 4, 6}, {6}}
T3 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {2, 3, 4, 5, 7}, {7}}
. . .
W1 = {{1, 2}, {2, 3}, {1, 2, 4}, {2, 3, 4}, {4}}
W2 = {{1, 2}, {2, 3}, {3, 4}, {1, 2, 3, 5}, {2, 3, 4, 5}, {5}}
W3 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 2, 3, 4, 6}, {2, 3, 4, 5, 6}, {6}}
. . .
D1 = {{1, 2, 5}, {2, 3, 5}, {3}, {4, 5}, {2, 3, 4, 5}}
D2 = {{1, 2, 6}, {2, 3, 6}, {3, 4, 6}, {4}, {5, 6}, {2, 3, 4, 5, 6}}
D3 = {{1, 2, 7}, {2, 3, 7}, {3, 4, 7}{4, 5, 7}, {5}, {6, 7}, {2, 3, 4, 5, 6, 7}}
. . .
M1 = {{1, 2, 3, 4, 5}, {1, 2, 3}, {1}, {1, 2, 4, 6}, {2, 4}, {2, 5}}
M2 = {{1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5}, {1, 2, 3}, {1}, {1, 2, 3, 4, 6, 8}, {1, 2, 4, 6}, {2, 4}, {2, 7}}
M3 = {{1, 2, 3, 4, 5, 6, 7, 8, 9}, {1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5}, {1, 2, 3}, {1}, {1, 2, 3, 4, 5, 6, 8, 10}, {1, 2, 3, 4, 6, 8}, {1, 2, 4, 6}, {2, 4}, {2, 9}}
. . .
N1 = {{1, 2, 3}, {1}, {1, 2, 4, 6}, {2, 4}, {2, 5}, {6}}
N2 = {{1, 2, 3, 4, 5}, {1, 2, 3}, {1}, {1, 2, 3, 4, 6, 8}, {1, 2, 4, 6}, {2, 4}, {2, 7}, {8}}
N3 = {{1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5}, {1, 2, 3}, {1}, {1, 2, 3, 4, 5, 6, 8, 10}, {1, 2, 3, 4, 6, 8}, {1, 2, 4, 6}, {2, 4}, {2, 9}, {10}}
. . .
G1 = {{1, 3, 5}, {1, 2}{3, 4}, {5, 6}}
G2 = {{1}, {1, 2, 3, 4}, {2, 4, 5}, {2, 3, 6}}
G3 = {{1, 2}, {3, 4}, {5}, {1, 2, 3}, {1, 3, 5}}

Since eachmultiple of a tent is a proper circular-arc graph, Theorem19 allowed them to provide the following description
of all the minimal forbidden induced subgraphs for proper circular-arc graphs within the class of connected chordal graphs.

Theorem 20 ([3]). Let G be a connected chordal graph. Then, G is a proper circular-arc graph if and only if it contains no induced
claw or net.

The characterization of Lekkerkerker and Boland of interval graphs by minimal forbidden induced subgraphs
(cf. Theorem 1) yields some minimal forbidden induced subgraphs for the class of circular-arc graphs as follows. Given a
minimal forbidden induced subgraph H for the class of interval graphs, if H is a non-circular-arc graph, then H is minimally
non-circular-arc. Otherwise, if H is a circular-arc graph, then H ∪ K1 is a minimally non-circular-arc graph, and furthermore
all disconnected minimally non-circular-arc graphs are obtained this way. Since the umbrella, net, n-tent for all n ≥ 3, and
Cn for all n ≥ 4 are circular-arc graphs, but the bipartite claw and n-net for all n ≥ 3 are not, this observation and Theorem 1
lead to the following result.

Corollary 21 ([65]). The following graphs are minimally non-circular-arc graphs: bipartite claw, net ∪ K1, n-net for all n ≥

3, umbrella∪K1, n-tent ∪K1 for all n ≥ 3, and Cn ∪K1 for every n ≥ 4. Any other minimally non-circular-arc graph is connected.

In [4], the graphs listed in Corollary 21 are called basic minimally non-circular-arc graphs. Any other minimally non-
circular-arc graph is called non-basic. The following result, which gives a structural property for all non-basic minimally
non-circular-arc graphs, can be deduced from Theorem 1 and Corollary 21.

Corollary 22 ([4]). If G is a non-basic minimally non-circular-arc graph, then G has an induced subgraph H that is isomorphic
to an umbrella, a net, a j-tent for some j ≥ 3, or Cj for some j ≥ 4. In addition, each vertex v of G − H is adjacent to at least one
vertex of H.

The theorem below gives necessary conditions for some minimally non-circular-arc graph having an induced cycle H of
length at least 4 regarding the neighborhoods of those vertices of the graph not belonging to H .

Theorem 23 ([4]). Let G be a minimally non-circular-arc graph. If G is not isomorphic to K2,3,G2,G3,G4, or Cj ∪ K1, for j ≥ 4,
then for every induced cycle H of length at least 4 of G and for each vertex v of G−H, either v is complete to H or NH(v) induces
a nonempty path in H.

The above results are used to characterize those cographs that are circular-arc graphs. Notice that the only basic
minimally non-circular-arc cograph is C4 ∪ K1. By Corollary 22, it follows that if H is a non-basic minimally non-circular-arc
cograph it contains an induced C4. In [4] it is proved that ifH is a cographwhose all proper induced subgraphs are circular-arc
and H is different from K2,3 and C4 ∪K1, then H is a {3K1.P4}-free graph. Since {3K1, P4}-free graphs have simple circular-arc
models using semicircular arcs, the following characterization is proved.
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Theorem 24 ([4]). Let G be a cograph. Then, G is a circular-arc graph if and only if G contains no induced K2,3 or C4 ∪ K1.

A paw-free graph is a graph with no induced paw. Paw-free graphs were studied in [55]. In order to characterize which
paw-free graphs are circular-arc graphs notice that the only basic minimally non-circular-arc paw-free graphs are the
bipartite claw and Cj ∪ K1 for each j ≥ 4. In addition, by Theorem 23, if H is a non-basic minimally non-circular-arc, then
H contains an induced Cj, for some j ≥ 4. In [4], it was proved that if H is a paw-free graph containing an induced Cj, for
some j ≥ 4, such that all proper induced subgraphs of H are circular-arc graphs and H is different from the bipartite claw,
K2,3,G2,G4,G7, and Cj ∪ K1, for each j ≥ 4, then either H is {3K1, P4}-free or a multiple of a graph that arises from Cj by
adding pendant vertices adjacent to the Cj. Since it is not hard to show that such graphs H have a circular-arc model, the
following holds.

Theorem 25 ([4]). Let G be a paw-free graph. Then, G is a circular-arc graph if and only if G contains no induced bipartite claw,
K2,3,G2,G4,G7, or Cj ∪ K1, for any j ≥ 4.

A graph is claw-free chordal if it contains no induced claw and it is chordal. Claw-free graphs are widely studied in the
literature, see for example [12] or [57]. Besides, as proper circular-arc graphs are claw-free, the study of claw-free chordal
graphs arises naturally from the characterization of proper circular-arc graphswithin the class of chordal graphs. Notice that
the only basic minimally non-circular-arc claw-free chordal graphs are net ∪ K1 and tent ∪ K1. In addition, by Corollary 22,
if H is a non-basic minimally non-circular-arc graph, then H contains an induced net or tent. On the one hand, Bang-Jensen
and Hell [3] proved that if a graph is claw-free chordal and contains no induced net but contains an induced tent, then G is
themultiple of a tent. On the other hand, it was proved in [4] that if G is a claw-free chordal graph containing an induced net,
G is different from net ∪ K1,G5, and G6, and each proper induced subgraph of G is a circular-arc graph, then G is a multiple
of the net or a multiple of the graph that arises from the tent by attaching a pendant vertex adjacent to one of the vertices
of degree 2 of the tent. Since the multiple of a circular-arc graph is clearly also a circular-arc graph, the following statement
holds.

Theorem 26 ([4]). Let G be a claw-free chordal graph. Then, G is a circular-arc graph if and only if G contains no induced
tent ∪ K1, net ∪ K1,G5 or G6.

A diamond-free graph is a graph with no induced diamond. Diamond-free graphs have been extensively studied. (See, for
example, [10,14,71].) By Theorem 1, if G is a diamond-free graph that is not an interval graph, it must contain an induced
bipartite claw or an induced cycle of length at least 4. Since the bipartite claw is not a circular-arc graph, this means that
each forbidden induced subgraph of the class of circular-arc graphs different from the bipartite claw contains an induced
net or a cycle of length at least 4. By analyzing the possible neighborhoods of the vertices not belonging to such a net or
cycle using Theorem 23, the following is proved in [4].

Theorem 27 ([4]). Let G be a diamond-free graph. Then, G is a circular-arc graph if and only if G contains no induced bipartite
claw, tent ∪ K1, K2,3,G2,G3,G4,G5,G6,G7, C6,G9, or Cj ∪ K1, for any j ≥ 4.

The proofs in [4] show that, for the classes analyzed there (cographs, paw-free graphs, claw-free chordal graph, and
diamond-free graphs), all circular-arc graphs involved are also normal. So, the characterizations obtained for circular-arc
graphs also hold for normal circular-arc graphs. Moreover, the following result can be deduced.

Corollary 28 ([4]). If H is a circular-arc graph but minimally non-normal, then H contains an induced diamond, an induced P4,
an induced paw, and either an induced claw or an induced cycle of length at least 4.

4. Circle graphs

A graph G is a circle graph if there exists a one-to-one function f : V → L (f (v) = Cv), where L = {Cv}v∈V (G) is a family of
chords on a circle, whose extremes are all different, such that uv ∈ E if and only if u ≠ v and Cu ∩ Cv ≠ ∅. L is called a circle
model of G.

In [21] Even and Itai studied the problem of realizing a given permutation through networks of queues in parallel and
through a network of stacks in parallel. In that work, circle graphs are defined for the first time. The problem of determining
the number of queues needed to realize the given permutation can be translated into that of determining the chromatic
number of a permutation graph (a subclass of circle graphs) and thus this problem is polynomial-time solvable [33].
Determining theminimum number of parallel stacks necessary to realize the given permutation depends on whether or not
unloading before a completion of the parallel stacks is accepted. If it is accepted, the problem is also modeled by means of
permutation graphs, translating the original problem into that of computing the chromatic number of a permutation graph.
If unloading is not accepted, the problem is translated into the problem of determining the chromatic number of a circle
graph. It is worth pointing out that determining the chromatic number of a circle graph is an NP-complete problem [28].

Naji presented in [54] an O(n7)-time recognition algorithm for circle graphs based on solving an associated system of
equations on GF(2) (the two-element field). An O(n5)-time recognition algorithm strongly based on split decomposition
was presented by Bouchet in [6]. Following this line of work Gabor et al. [26] and Spinrad [63] presented quadratic-time
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Fig. 8. Some minimal forbidden induced subgraphs for comparability graphs.

recognition algorithms improving Bouchet’s result. Recently, Paul [58] presented an O((n + m)α(n + m))-time algorithm
also based on split decomposition, where α is the inverse Ackermann function.

Circle graphs are equivalent to two classes of intersection graphs, namely alternance graphs and overlap graphs. A double
occurrence word is a finite string of symbols in which each symbol appears precisely twice. Let Γ = (π1, π2, . . . , π2n)
be a double occurrence word. The shift operation on Γ transforms Γ into (π2n, π1, π2, . . . , π2n−1). The reverse operation
transforms Γ into Γ = (π2n, π2n−1, . . . , π2, π1). With each double occurrence word Γ we associate a graph G[Γ ] whose
vertices are the symbols inΓ and inwhich twovertices are adjacent if andonly if the corresponding symbols appear precisely
once between the two occurrences of the other. Clearly, a graph is circle if and only if it is isomorphic toG[Γ ] for some double
occurrence word. Those graphs that are isomorphic to G[Γ ] for some double occurrence Γ are also called alternance graphs.
A graph G is overlap interval if there exists a bijective function f : V → I (f (v) = Iv) where I = {Iv}I∈V (G) is a family of
intervals on the real line, such that uv ∈ E if and only if Iu and Iv overlap; i.e., Iu ∩ Iv ≠ ∅, Iu ⊈ Iv and Iv ⊈ Iu. It is well known
that circle graphs and overlap interval graphs are the same class (see, for instance, [33, p. 244]).

If G is a circle graph isomorphic to G[Γ ] for some double occurrence word Γ , then G is said to be uniquely representable
if for any double occurrence word ∆ such that G is isomorphic to G[∆], ∆ arises from Γ by applying shift and reverse
operations. A circle graph G is a prime graph (under the split decomposition) if and only if it is uniquely representable [6].
For instance, all induced cycles are prime circle graphs.

In Section 4.1, we review the forbidden induced subgraph characterization of an important subclass of the class of circle
graphs: permutation graphs. In Section 4.2, we present Bouchet’s characterization of circle graphs in terms of forbidden
induced subgraphs via local complementation, andGeelen andOum’s characterization in terms of pivoting. In Section 4.3,we
revisit Fraysseix’s characterizations of circle graphs as cocyclic-path intersection graphs and fundamental graphs of planar
graphs. In Section 4.4, Naji’s characterization of circle graphs by means of a system of equations in GF(2) is presented. In
Section 4.5, we revisit different subclasses of circle graphs arising by restricting the circle model in different ways. Finally, in
Section 4.6,wepresent somepartial solutions to the problemof characterizing circle graphs via forbidden induced subgraphs
by restricting it to different graph classes.

4.1. Permutation graphs

Since comparability graphs are strongly related to permutation graphs wewill first introduce them. Recall that a digraph
D is an orientation of a graph G if for every u, v ∈ V (G) it holds that uv ∈ E(G) if and only if either (u, v) ∈ A(D) or
(v, u) ∈ A(D). An orientation is transitive if it is a transitive binary relation on A(D); i.e., if (u, v) ∈ A(D) and (v, w) ∈ A(D),
then (u, w) ∈ A(D). A graph is said to be comparability if it has a transitive orientation. Comparability graphs were
characterized by Gallai by means of a list of forbidden induced subgraphs [27].

Theorem 29 ([27]). A graph is a comparability graph if and only if it does not contain as an induced subgraph any graph in Fig. 8
and its complement does not contain as an induced subgraph any graph in Fig. 9.

Let π : {1, . . . , n} → {1, . . . , n} be a permutation of Vn = {1, . . . , n}; i.e., π is a one-to-one function. By G(π) we
denote the graph whose vertex set is Vn and whose edge set is formed by those unordered pairs ij satisfying i < j and
π−1(i) > π−1(j). A graph G is defined to be a permutation graph if there exists a permutation π such that the graph G(π) is
isomorphic to G. Notice that if you place {1, . . . , n} in two parallel vertical copies of the real line and join i of the line on the
left withπ(i) in the line on the right, the intersection graph of these segments is isomorphic toG(π). Therefore, permutation
graphs are a subclass of circle graphs. Even et al. in [22] presented a characterization of permutation graphs that shows the
relationship between this class and comparability graphs.

Theorem 30 ([22]). A graph G is a permutation graph if and only if G and G are comparability graphs.

Therefore, the characterization of comparability graphs in [27] leads immediately to a forbidden induced subgraph
characterization of permutation graphs.

Corollary 31 ([22,27]). A graph G is a permutation graph if and only if G and G do not contain as an induced subgraph any graph
in Figs. 8 and 9.
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Fig. 9. Some graphs whose complements are minimal forbidden induced subgraphs for comparability graphs.

Fig. 10. W5,W7 , and BW3 .

The following result characterizes permutation graphs as circle graphs having a special circle model.

Theorem 32 ([33, P. 252]). Permutation graphs are exactly those circle graphs that have a circle model admitting an equator,
i.e. an additional chord meeting all the chords of the model.

As an immediate consequence, we obtain the following corollary.

Corollary 33. G + K1 is a circle graph if and only if G is a permutation graph.

The following result is a consequence of the corollary above.

Corollary 34. The join G = G1 + G2 is a circle graph if and only if both G1 and G2 are permutation graphs.

4.2. Circle graphs characterizations via local complementation

Recall that alternance graphs and circle graphs are equivalent classes. Given a double alternance word Γ , we denote byΓ the word that arises by traversing Γ from right to left. For instance, if Γ = abcadcd, then Γ = dcdacba.
Given a graph G and a vertex v of G. The local complement of G at v, denoted by G ∗ v, is the graph that arises from G

by replacing N(v) by its complementary graph. This operation is strongly linked with circle graphs; namely, if G is a circle
graph, then G ∗ v is a circle graph. This is because, if a represents the vertex v in Γ and Γ = AaBaC where A, B and C are
subwords of Γ , then G[AaBaC] is a double alternance model for G ∗ v. Bouchet proved the following theorem.

Theorem 35 ([8]). Let G be a graph. G is a circle graph if and only if any graph locally equivalent to G has no induced subgraph
isomorphic to W5,W7, or BW3 (see Fig. 10).

It was also Bouchet who proved the following property of circle graphs. Let G = (V , E) and let A = {Avw : v, w ∈ V }

be an antisymmetric integral matrix [7]. For W ⊆ V , we denote A[W ] = {Avw : v, w ∈ V }. Matrix A satisfies property α
if the following property (related to unimodularity) holds: det(A[W ]) ∈ {−1, 0, 1} for all W ⊆ V . Graph G is unimodular
if there is an orientation of G such that the resulting digraph satisfies property α. Bouchet proved that every circle graph
admits such an orientation [7].
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Geelen and Oum [31] gave a new characterization of circle graphs in terms of pivoting. The result of pivoting a graph G
with respect to an edge uv is the graph G × uv = G ∗ u ∗ v ∗ u (where ∗ stands for local complementation). A graph G′ is
pivot equivalent to G if G′ arises from G by a sequence of pivoting operations. They proved, with the aid of a computer, that
G is a circle graph if and only if each graph that is pivot equivalent to G contains none of 15 prescribed induced subgraphs.

4.3. Circle graphs as cocyclic-path intersection graphs and fundamental graphs of planar graphs

In [17] Fraysseix presented a characterization of circle graphs, which leads to a novel interpretation of circle graphs as
the intersection graphs of induced paths of a given graph. A cocycle of a graph Gwith vertex set V is the set of edges joining
a vertex of V1 to a vertex of V2 for some bipartition (V1, V2) of V . A cocyclic-path is an induced path whose set of edges
constitutes a cocycle. A cocyclic-path intersection graph [17] is a simple graphwith vertex set being a family of cocyclic-paths
of a given graph, two vertices being adjacent if and only if the corresponding cocyclic-paths have an edge in common. Notice
that the definition is restricted to those graphs covered by cocyclic-paths any two of which have at most a common edge.
Fraysseix proved the following characterization of circle graphs as cocyclic-path intersection graphs.

Theorem 36 ([17]). Let G be a graph. G is a circle graph if and only if G is a cocyclic-path intersection graph.

The only if part of the proof is straightforward and will be sketched next. Let G be a circle graph and let C(G) be a circle
model of it. Assume, without loss of generality, that there are no three chords of C(G) having a point in common. It is easy
to prove by induction that the faces defined by the chords in C(G) can be bicolored, say black and white, in such a way that
faces with a segment in common receive different colors. Let us construct from G the cocyclic-path intersection graphG.
Let the vertices ofG be the faces colored black and each intersection between two chords in C(G) give rise to an edge inG
whose endpoints are the black faces having in their boundaries the intersection point of the two chords. The union of the
edges representing the intersections of a given chord with other chords is a cocyclic-path. Consequently, the union of these
cocyclic-paths is the graphG and the intersection graph of these cocyclic-paths ofG is isomorphic to G.

Let E be a set and A a collection of subsets of E. The minimal nonempty subsets of E that can be expressed as symmetric
differences of subsets in A define the circuits of a binary matroid. We refer to that matroid as thematroid generated by A. For
definitions and results onmatroids, the reader is referred to [56]. Given a graphG and a spanning tree T ofG, the fundamental
graph of G restricted to T is the bipartite graph whose vertex set is formed by the edges of G and two vertices e and e′ are
adjacent if and only if e ∈ E(T ), e ∉ E(T ) and T − e + e′ is a spanning tree of G. Fraysseix proved in [17] that the binary
matroid generated by the sets {N(x) : x ∈ X} and {N(y) : y ∈ Y } of a bipartite graph G whose classes are X and Y is graphic
if and only if G is a circle graph. This result is equivalent to the following theorem.

Theorem 37 ([17]). Let G be a bipartite graph. G is a circle graph if and only if G is a fundamental graph of a planar graph.

4.4. Circle graphs as solutions of systems of equations in GF(2)

We will present a result that follows from an application of Bouchet’s result already reviewed. Naji characterized circle
graphs by solving a system of linear equations in GF(2), obtaining the first polynomial time recognition algorithm for the
class [54]. The proof of this characterization is hard. However, Gasse [29] presented a shorter and elegant proof of this result
by using Bouchet’s characterization for circle graphs (see Theorem 35). Given a graph G we define a system S(G) whose
variable set is {α(x, y) : x, y ∈ V (G), x ≠ y} as follows:

S(G) =


α(x, y) + α(y, x) = 1 ∀xy ∈ E(G),
α(x, y) + α(x, z) = 0 ∀xy ∉ E(G), xz ∉ E(G), yz ∈ E(G),
α(x, y) + α(x, z) + α(y, z) + α(z, y) = 1 ∀xy ∈ E(G), xz ∈ E(G), yz ∉ E(G).

A graph G is said to be consistent if S(G) admits a solution in GF(2). Let G be a circle graph and C a circle model for G. We
orient each chord in C. The orientation of a chord γ of C allows us to define an initial point γi and an ending point γe. Let γ
be a chord of C and a point p of the circle. We say that p is on the left of γ if p is met when traversing the circle from γi to γe
in the clockwise direction; otherwise p is said to be on the right of γ . Let v be a vertex of G, we denote by γv the chord of C
corresponding to v. We can build up a solution of S(G) as follows:

• Given the edge xy ∈ E(G). Set α(x, y) = 1 if and only if the initial point of γy is on the left of γx.
• Given the edge xy ∉ E(G). Set α(x, y) = 1 if and only if both points of γy are on the left of γx.

Gasse proved the following two lemmas.

Lemma 38 ([29]).W5,W7 and BW3 are not consistent.

Lemma 39 ([29]). Let G be a consistent graph and v a vertex of G, then G ∗ v is consistent.

Naji’s theorem below follows immediately from Theorem 35 and Lemmas 38 and 39.

Theorem 40 ([54]). Let G be a graph. S(G) is consistent if and only if G is a circle graph.
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Notice that the above theorem togetherwith Theorem37 give a test to determine if a bipartite graphG is planar. Construct
a fundamental graph of G, then check if the system S(G) is consistent.

Consider the reduced system SR(G) formed only by the first type of equations of S(G). Note that if S(G) and SR(G) were
equivalent systems, then the complement graph of any circle graph would be a circle graph. Nevertheless, this assertion is
false, because, for example, C6 is a circle graph and C6 is not a circle graph. In [9], Bouchet was able to prove the following
refinement of Naji’s theorem for bipartite graphs.

Theorem 41 ([9]). Let G be a bipartite graph. If SR(G) has a solution then S(G) also has a solution.

As a corollary of Theorem 41, the result below is deduced.

Corollary 42 ([9]). Let G be a bipartite graph. If G is a circle graph, then G is a circle graph.

Naji’s theorem is hard to prove and Theorem 41 and Corollary 42 were deduced from it. Also in [9], Bouchet posed the
following problem: Is there a direct proof of Corollary 42?

4.5. Circle graphs having restricted circle models

A graph G is a unit circle graph if it admits a circle model in which all the chords have the same length. This class coincides
with the class of unit circular-arc graphs (i.e., the intersection graphs of a family of arcs on a circle, all of the same length) [19].
Tucker [69] gave a characterization byminimal forbidden induced subgraphs for this class (see Theorem 13). Recently, linear
and quadratic-time recognition algorithms for the recognition of this class have been proposed [51,20].

The concept of Helly circle graph is presented in [19]. A graph belongs to this class if it has a circle model whose chords
are pairwise different and satisfy the Helly property (i.e., every subset of pairwise intersecting chords has a common point).

In [19], it was conjectured that a circle graph is a Helly circle graph if and only if it is diamond-free. This conjecture was
recently settled affirmatively in [16], yielding a polynomial-time recognition algorithm for Helly circle graphs.

Let G be a circle graph isomorphic to G[ΓG] where ΓG is a double occurrence word. Let H be a subgraph G induced by
a subword ΓH of ΓG. H is said to be convex if, for every subword abccba of ΓG, if a and c are letters of ΓH then b is a letter
of ΓH . A clique is defined to be non-trivial if and only if it has at least two vertices. An induced subgraph H of G is clique
maximal if every non-trivial clique of H is a clique of G. An induced subgraph H of G is almost component maximal if at most
one connected component of H is not a maximal component of G. An induced subgraph H of G is said to be convenient if
it is convex, clique maximal, and almost component maximal. A mixed Helly model (G,H) is a circle model of G where the
induced circle model of H is Helly.

Given a diamond-free circle Helly graph, the proof of the conjecture follows from the fact that (G,G) admits a mixed
Helly model. To show that (G,G) admits such a model, the authors of [16] consider a maximum induced subgraph H of G
such that H is convenient and (G,H) admits a mixed circle model and assume, by way of contradiction, that H is different
from G. Finally, they prove that there exists a convenient induced subgraph H ′ containing H as a proper induced subgraph.
The result is based on the following technical lemma.

Lemma 43 ([16]). Let G be a graph andH a convenient proper induced subgraph of G. Then, there exists a vertex u ∈ V (G)−V (H)
such that G[V (H)∪{u}] remains convex. Furthermore, if H has a component that is a proper subgraph of a connected component
C of G, then there exists such a vertex u in C.

Finally the authors distinguish two cases: the case where every component of H is a component of G and the case where
one connected component of H is a proper subgraph of a component of G. Recall that G is a diamond-free circle graph. In
the first case, they consider a vertex u ∈ V (G) − V (H) such that H ′

= G[V (H) ∪ {u}] is convex. It is clear that H ′ is almost
component maximal. Since the non-trivial cliques of H ′ are exactly the non-trivial cliques of H,H ′ is clique maximal and
thus convenient. Then, since the non-trivial cliques of H ′ are exactly the non-trivial cliques of H , it is clear that the mixed
Helly model of (G,H) gives rise to a Helly model of (G,H ′).

Thus, it can be assumed that H has a connected component that is a proper subgraph of a connected component of G.
Lemma 43 ensures that there exists at least one vertex u ∈ V (G)−V (H) such that H ′

= G[V (H)∪{u}] is convex and almost
component maximal (i.e., u has neighbors in H). The proof ends when it is proved that (G,H ′) admits a mixed Helly model.
Therefore, the theorem below follows.

Theorem 44 ([16]). Let G be a circle graph. G is Helly circle if and only if G is diamond-free.

In connection with the class of Helly circle graphs, the class of unit Helly circle graphswas introduced in [5] as the class of
those circle graphs G admitting a circle model which are simultaneously unit and Helly. The theorem below characterizes
unit Helly circle graphs by minimal forbidden induced subgraphs.

Theorem 45 ([5]). Let G be a graph. Then, the following assertions are equivalent:
(i) G is a unit Helly circle graph.
(ii) G contains no induced claw, paw, diamond, or Cn ∪ K1 for any n ≥ 3.
(iii) G is a chordless cycle, a complete graph, or a disjoint union of chordless paths.

The proof is of a geometric nature and relies on properties of tangent lines to a circle.
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4.6. Partial characterizations by forbidden induced subgraphs

Recall that the problem of characterizing circle graphs by forbidden induced subgraphs remains open. In this section, we
present some partial characterization of this class within different graph classes.

As a consequence of Theorem 35, the following result can be proved.

Theorem 46 ([5]). Let G be a graph. If G is not a circle graph, then any graph H that arises from G by edge subdivisions is not a
circle graph.

A prism is a graph that consists of two disjoint triangles {a1, a2, a3} and {b1, b2, b3} linked by three vertex disjoint paths
P1, P2, P3 where Pi links ai and bi for i = 1, 2, 3, and such that all the internal vertices of P1, P2, and P3 have degree 2. The
graph C6 is a prismwhere each triangle is linked by induced path P1, P2 and P3 having just one edge each. This graph is locally
equivalent to W5, so by Theorem 35, C6 is not a circle graph. Besides, since every prism arises from C6 by edge subdivision,
Theorem 46 implies that prisms are not circle graphs.

A graph is a linear domino [45] if and only if it contains no induced diamond and no induced claw. The following theorem
characterizes those linear domino graphs that are circle graphs.

Theorem 47 ([5]). Let G be a linear domino graph. Then, G is a circle graph if and only if G contains no induced prisms.

The proof given in [5] is based on the fact that circle graphs are closed under split decomposition [6]. As a corollary of
the above theorem, the following partial characterization of Helly circle graphs is obtained.

Corollary 48 ([5]). Let G be a claw-free graph. Then, G is a Helly circle graph if and only if G contains no induced prism and no
induced diamond.

A theta is a graph arising from K2,3 by edge subdivision. Chudnovsky and Kapadia [11] gave a polynomial-time algorithm
that decides whether a graph contains a theta or a prism as induced subgraphs. Since linear domino graphs contain no
induced theta, the characterization above and the existence of polynomial-time algorithms for recognizing circle graphs
imply alternative polynomial-time algorithms to decide the existence of an induced theta or prism restricted to linear
domino graphs. Interestingly enough, the problem of deciding whether a graph contains an induced prism is NP-complete
in general [48].

The following two results characterize by forbidden induced subgraphs the class of circle graphs within two superclasses
of the class of cographs; namely, P4-tidy graphs and tree-cographs.

Theorem 49 ([5]). Let G be a P4-tidy graph. Then, G is a circle graph if and only if G contains no W5, net + K1, tent + K1, or
tent-with-center as induced subgraph.

Theorem 50 ([5]). Let G be a tree-cograph. Then, G is a circle graph if and only if G contains no induced (bipartite-claw) + K1
and no induced co-(bipartite-claw).

The proofs of the two above results rely on Gallai’s forbidden induced subgraph characterization of permutation graphs
(see Corollary 31).

5. Some open problems

The main structural open problem regarding the classes of circular-arc graphs and circle graphs is that of characterizing
them by forbidden induced subgraphs. We conclude this survey putting forward some other structural open problems
related to these classes.

Problem 1. Give a forbidden induced subgraph characterization for circular-arc graphs within the class of chordal graphs.
Thiswould extend the characterizations in [4,24] of circular-arc graphswithin claw-free chordal graphs and 5K1-free chordal
graphs, respectively.

Problem 2. Give a forbidden induced subgraph characterization for circular-arc graphs within the class of H-free graphs
where H is a four-vertex graph. This problem was solved in [4] when H is P4, the paw, or the diamond.

Problem 3. A particularly interesting case of the preceding problem is to characterize circular-arc graphswithin the class of
claw-free graphs by forbidden induced subgraphs. A good starting point could be to characterize circular-arc graphs within
the class of graphs with stability number at most two.

Problem 4. Find a characterization by forbidden induced subgraphs for normal circular-arc graphs. A starting point could
be the characterization of normal Helly circular-arc graphs in [35].
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Problem 5. Find a characterization by forbidden induced subgraphs for Helly circular-arc graphs. There is a characterization
of Helly circular-arc graphs by forbidden induced subgraphs in [50]within circular-arc graphs. That characterization is not in
terms of minimal forbidden induced subgraphs. Therefore, it remains to characterize Helly circular-arc graphs by minimal
forbidden induced subgraphs within the class of circular-arc graphs and also to characterize Helly circular-arc graphs by
forbidden induced subgraphs not assuming that the graph is circular-arc.

Problem 6. Find a characterization by forbidden induced subgraphs for q-proper circular-arc graphs (defined analogously
to q-proper interval graphs). The corresponding characterization for q-proper interval graphs was given in [59].

Problem 7. Characterize circle graphs by forbidden induced subgraphs within the class of chordal graphs. Block graphs are
a subclass of chordal graphs and are circle graphs. However, not every chordal graph is a circle graph.

Problem 8. Find a decomposition such that Helly circle graphs are closed under this decomposition. This would be
analogous to the split decomposition for circle graphs [8].

Problem 9. Characterize Helly circle graphs by forbidden induced subgraphs. The class of Helly circle graphs was
characterized by forbidden induced subgraphs within circle graphs in [16].
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