
7

Join Point Interfaces for Safe and Flexible Decoupling of Aspects

ERIC BODDEN, Technische Universität Darmstadt
ÉRIC TANTER and MILTON INOSTROZA, University of Chile

In current aspect-oriented systems, aspects usually carry, through their pointcuts, explicit references to
the base code. Those references are fragile and hinder important software engineering properties such as
modular reasoning and independent evolution of aspects and base code. In this work, we introduce a novel
abstraction called Join Point Interface, which, by design, aids modular reasoning and independent evolution
by decoupling aspects from base code and by providing a modular type-checking algorithm. Join point
interfaces can be used both with implicit announcement through pointcuts, and with explicit announcement,
using closure join points. Join point interfaces further offer polymorphic dispatch on join points, with an
advice-dispatch semantics akin to multimethods. To support flexible join point matching, we incorporate
into our language an earlier proposal for generic advice, and introduce a mechanism for controlled global
quantification. We motivate each language feature in detail, showing that it is necessary to obtain a language
design that is both type safe and flexible enough to support typical aspect-oriented programming idioms.
We have implemented join point interfaces as an open-source extension to AspectJ. A case study on existing
aspect-oriented programs supports our design, and in particular shows the necessity of both generic interfaces
and some mechanism for global quantification.

Categories and Subject Descriptors: D.2.3 [Software Engineering]: Coding Tools and Techniques; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms: Design, Languages

Additional Key Words and Phrases: Aspect-oriented programming, modularity, typing, interfaces, implicit
announcement, explicit announcement, join point polymorphism, advice dispatch

ACM Reference Format:
Eric Bodden, Éric Tanter, and Milton Inostroza. 2014. Join point interfaces for safe and flexible decoupling
of aspects. ACM Trans. Softw. Eng. Methodol. 23, 1, Article 7 (February 2014), 41 pages.
DOI: http://dx.doi.org/10.1145/2559933

1. INTRODUCTION

Aspect-Oriented Programming (AOP) [Kiczales et al. 1997] is a paradigm that aims
at enhancing modularity of software by locally handling crosscutting concerns that
would otherwise be scattered in different parts of a given system. The emblematic
language mechanism of aspect-oriented programming languages is pointcuts and
advice, where pointcuts are predicates that denote join points in the execution of a
program where advice is executed. The AspectJ programming language [Kiczales et al.

E. Bodden is supported by the German Research Foundation (DFG) within the Emmy Noether Group
RUNSECURE, by the German Federal Ministry of Education and Research (BMBF) within EC SPRIDE and
by the Hessian LOEWE excellence initiative within CASED. É. Tanter is partially funded by FONDECYT
Project 1110051.
Authors’ addresses: E. Bodden (corresponding author), Secure Software Engineering Group, EC SPRIDE,
Mornewegstr. 30, 64293 Darmstadt, Germany; email: eric.bodden@gmail.com; É. Tanter and M. Inostroza,
Computer Science Department, University of Chile, Blanco Encalada 2120, Santiago, Chile.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1049-331X/2014/02-ART7 $15.00

DOI: http://dx.doi.org/10.1145/2559933

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:2 E. Bodden et al.

Fig. 1. Dependencies with traditional pointcut/advice AOP (a) and with join point interfaces (b).

2001] is the most widely used language for this style of AOP. Aspects allow crosscutting
concerns to be better localized, easing understanding. However, the implicit invocation
mechanism introduces subtle implicit dependencies between base code and aspects
that compromise a number of properties usually associated with modularity, such as
separate development. In fact, it is usually not possible to reason about an aspect or
an advised module in isolation.

As we show in Figure 1(a), aspects with pointcuts and advice as in AspectJ cause
implicit dependencies between aspects and base code. This is because an aspect
contains direct textual references to the base code via its pointcuts. These implicit
dependencies, denoted by the dashed arrows in the figure, make programs fragile,
hinder aspect evolution and reuse, and compromise separate development. Changes
in the base code can unwittingly render aspects ineffective or cause spurious advice
applications. Conversely, a change in a pointcut definition may cause parts of the
base program to be advised without notice, breaking some implicit assumptions. This
problem is known as the fragile pointcut problem [Gybels and Brichau 2003; Stoerzer
and Graf 2005]. Effectively this means that both developers that maintain aspects
and developers that maintain base code must usually have some global knowledge
about the software system, for example, knowing the aspects that are defined in order
to determine if they affect a given module. The fact that independent development
is compromised this way is particularly worrying considering that programming
aspects requires a high level of expertise, and is hence likely to be done by specialized
programmers, leading to different development roles. Therefore, to be widely adopted,
AOP is in need of mechanisms to support separate development in a well-defined
manner.

The preceding issues have been identified early on [Gudmundson and Kiczales 2001]
and have triggered a rich discussion in the community [Kiczales and Mezini 2005;
Steimann 2006]. In particular, several proposals have been developed to enhance the
potential for modular reasoning by introducing a notion of interface between aspects
and advised code (e.g., [Gudmundson and Kiczales 2001; Aldrich 2005; Sullivan et al.
2010; Steimann et al. 2010]). Notably, crosscutting programming interfaces (XPIs)
provide programmers with a design regimen to structure aspect-oriented programs
such that they can be more easily maintained [Sullivan et al. 2010]. XPIs aid reasoning
and maintainability by refactoring elements such as pointcuts, which link aspects to
base code, into a common interface. Programmers can then enrich this interface with
semantic information about the advising relationship at will. Steimann et al. [2010]
built on this idea by introducing a language mechanism for denoting such interfaces
through a novel notion of Join Point Types (JPTs). Join points are denoted through
nominal types, allowing aspects to be decoupled from base code syntactically. Further,
it allows join point subtyping, which increases the potential for reusing advice over
multiple related join point types.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:3

However, we show that none of the existing approaches supports safe modular type
checking of aspects and base code. Modular type checking is an important precursor
for modular reasoning. Without the ability to soundly type-check aspects and base code
modularly, one can obtain subtle runtime errors after composing aspects with other
modules, although each part taken separately is considered type-correct. XPIs, as a
design regimen, use the syntax and type-checking semantics of plain AspectJ, which,
as pointed out earlier [Jagadeesan et al. 2006; De Fraine et al. 2008; Bodden 2011], has
an unsound type system; we give several examples later in the article. Join point types
by Steimann et al. do make an important step towards modular type checking. As we
show in this work, however, the syntax and static semantics of JPTs is insufficient to
ensure safe modular type checking, and the dynamic semantics can lead to peculiarities
such as a single advice executing several times at the same join point.

In this work, we combine important ideas of existing earlier work with novel insights
obtained through our own research, to arrive at a language design that enables safe
modular type checking for aspects. Our solution, called Join Point Interfaces (JPIs),
consists of type-based contracts that decouple aspects from advised code (Figure 1(b)).
Similar to JPTs, JPIs support a programming methodology where aspects only specify
the types of join points they advise, but do not comprise any pointcuts. It is the respon-
sibility of the programmer maintaining the advised code to specify which join points
are exposed, and of which type. Quantification is now local, restricted to a given class.
In addition to implicit announcement through pointcuts that quantify over join points,
JPIs are integrated with Closure Join Points [Bodden 2011], a mechanism for explicit
event announcement. With closure join points the dependencies become explicit, and
therefore simplify reasoning.

Figure 1(b) gives an overview of our design. The figure only contains solid arrows:
both aspects and base code explicitly refer to JPIs, without implicit dependencies be-
tween them. This supports a form of modular reasoning: since JPIs serve as a type-safe
contract, at least as far as the type system is concerned, the base-code developer can
reason about base code by just inspecting base code and the JPIs that it explicitly
references; similarly, the aspect programmer can reason locally about aspects and the
referenced JPIs, without having to worry about base code. The static semantics of JPIs
gives the strong guarantee that programmers can safely compose aspects and advised
modules, even when they were developed separately.

Like JPTs, join point interfaces support a notion of subtyping, which helps in struc-
turing and managing the complexity of the space of events-of-interest to aspects.
Subtyping of JPIs supports join point polymorphism and advice overriding. We in-
troduce a novel semantics of advice dispatch that avoids the join point duplication
semantics of JPTs, which can surprisingly yield to one advice being applied several
times at the same program execution point.

As we will explain in more detail later, safe modular type checking is at odds with
the flexible quantification mechanism that AspectJ offers. Wide quantification over join
points hinders both modular reasoning and type checking: if pointcuts may match many
types of join points1 then a type system must be able to soundly but flexibly abstract
from those types. To address this issue, we introduce into our design the idea of generic
JPIs, which use type parameters as originally proposed by Jagadeesan et al. [2006].
To allow a controlled way of wide join point quantification, we introduce a mechanism
called global JPIs, which use a refinement mechanism to balance the design trade-off
between unrestricted quantification as in AspectJ and class-local quantification as in
JPTs. As we will discuss further, global JPIs are a pragmatic solution, which gives up

1Such as join points returning a value or not, or throwing an exception or not, or exposing different numbers
of arguments. . .

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:4 E. Bodden et al.

some of the explicitness depicted in Figure 1(b), but restores the flexible quantification
mechanism from AspectJ in a controlled manner.

We have implemented join point interfaces as an extension to the AspectBench Com-
piler [Avgustinov et al. 2005], and have evaluated our approach on a number of existing
AspectJ software systems. The evaluation shows that the language design is practical
for those systems, but also that each language feature is indeed necessary to obtain
both type safety and flexibility. In particular, any type-safe language design that wishes
to support flexible global quantification must support generic types. The JPI project
Web page contains a detailed documentation of the language extension, download links
to the open-source implementation, as well as all subject programs used in the case
study: http://bodden.de/jpi/

Compared to existing work, to the best of our knowledge, this work presents the
following original contributions:

—an interface mechanism for safe modular type checking in presence of both implicit
and explicit announcement,

—a type-safe static semantics for generic type variables in place of checked exceptions,
—a novel runtime semantics for advice dispatch based on join point polymorphism,
—a mechanism to support highly crosscutting aspects in a controlled manner,
—a full open-source implementation of the preceding as an AspectJ extension, and
—an extensive case study of existing aspect-oriented projects, used to assess the pro-

posed design.

The notion of JPIs was first presented in the New Ideas track of ESEC/FSE [Inostroza
et al. 2011]. This work is the result of the development and maturation of that idea;
syntax and semantics have evolved, and both implementation and evaluation are com-
pletely new; generic JPIs and global JPIs are also both new, since their introduction
was motivated by the case study.

Outline. The remainder of this article is structured as follows. In the next section
we use a range of examples to show why type checking AspectJ is hard, and why
it is generally at odds with the flexibility that AspectJ offers. We further show why
existing approaches do not support safe and flexible decoupling of aspects. In Section 3,
we illustrate how join point interfaces build upon previous work to address these
shortcomings. Section 4 explains our type system and the dynamic semantics in full
generality. We discuss our implementation in Section 5, and present the results of a
case study in Section 6. Section 7 discusses related work and Section 8 concludes.

2. EXISTING APPROACHES

In this section we motivate our approach by first reviewing the benefits and pitfalls
of the state-of-the-practice in pointcut-advice AOP, namely AspectJ. We then explain
different proposals to achieve a better decoupling of aspects and base code, and focus
especially on the proposal of Steimann et al. [2010], which serves as a starting point to
this work. We explain why these different approaches fall short of achieving both safe
and flexible decoupling of aspects.

2.1. AspectJ

To illustrate the benefits and pitfalls of AspectJ, we use a running example based on
an e-commerce system, directly inspired from related work [Steimann et al. 2010].
Consider the class ShoppingSession in Listing 1. For now, the business logic of this class
is not important.

2.1.1. Global Quantification through Wildcards. Let us assume that the programmer wishes
to create a performance profile of the e-commerce system. She can easily do so by writing

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:5

Listing 1. Shopping session with profiling aspect.

the simple Profile aspect shown in the bottom half of the listing. AspectJ here proves
really convenient: the pointcut mechanism provides an easy way to globally quantify
over all method executions outside the aspect.

Many programmers may not realize that in this example global quantification only
works due to the following two reasons.

—The around advice does not explicitly access any context information from the join
points its advises—all context information is accessed through reflection, using
thisJoinPointStaticPart. Because of this, the advice is largely independent of its
application context, that is, it can be applied anywhere.

—The around advice uses the return type Object, which has a special meaning in
AspectJ: it serves as a wildcard, informing the compiler that the advice should apply
to join points with just any return type, basically ignoring type checks on the return
type. In the example, the profiling aspect therefore applies to executions of checkOut,
even though it has return type void, not Object.

It is important to highlight that the flexibility provided by the Object wildcard return
type implies that an advice can return incompatible values that will result in runtime
type errors. We come back to typing issues in Section 2.1.3.

2.1.2. Selective Quantification and Fragile Pointcuts. As a matter of fact, not all aspects
require such unbounded global quantification. Rather, some aspects are applied to
specific program points, closely interacting with the execution context that they advise.
In our example, assume a business rule that states that, on his/her birthday, a user of
the e-commerce system is given a 5% discount when checking out a product.

Listing 2 shows an implementation of the example where the business rule is defined
as an AspectJ aspect Discount. The around advice in lines 5–9 applies the discount by
reducing the item price to 95% of the original price when proceeding on the user’s
birthday.

Note how such selective quantification can easily become very brittle with respect
to changes in the advised code. Most changes to the signature of the checkOut method,
such as renaming the method or modifying its parameter declarations, will cause the
Discount aspect to lose its effect. The root cause of this problem is that the aspect,
through its pointcut definition in lines 2–3, references named entities of the base

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:6 E. Bodden et al.

Listing 2. Shopping session with discount aspect.

code—here to the checkOut method. Of course, after a change to the method signa-
ture, regular method calls to the checkOut method would also break, but the Java
type checker would identify the problem and report errors. On the other hand, im-
plicit invocation through pointcuts will fail silently. The only observable consequence
is that the advice does not apply anymore. Some approaches, like pointcut rejuvena-
tion [Khatchadourian et al. 2009], aim at alleviating this problem by reporting changes
in aspect matches as programs evolve. But this issue is out of reach for a standard type
system.

2.1.3. Unsound Typing of Argument and Return Types. AspectJ has a number of typing
issues which have been identified in the literature [Jagadeesan et al. 2006; De Fraine
et al. 2008]. First, observe that the advice inside the Discount aspect operates on objects
of the type User, not Customer as the advised code does. This is possible because AspectJ
allows for variant matching of argument types. The args pointcut in line 3 binds not
only objects of type User to usr but also objects of any subtype. In general, this is quite
convenient for the programmer, as she could therefore bind the same discount advice
also to join points that expose users that are not customers.

Although flexible, variant typing of argument types is unsafe. As an example, con-
sider the following advice, bound to the same pointcut, which implements a security
feature by replacing any User object with an object of the subtype Guest.

void around(User usr): checkingOut(∗, usr) { proceed(new Guest()); }

Because Guest is not a subtype of Customer, the checkOut method will fail at runtime
with a ClassCastException as it requires a Customer object.

If we now consider return types, it is easy to see that the treatment of Object as a
wildcard makes it easy to write an advice that returns values of a type that the advised
code is not prepared to handle. For instance, see the following

1 Object around(): call(Customer ∗(..)) {
2 return new Guest();
3 }

The preceding code is type correct in AspectJ, but it returns Guest into contexts in
which Customer objects are expected, causing similar exceptions at runtime.

When the return type of the advice is not Object, AspectJ properly ensures that
the advice does not return values of incompatible types. For that it checks that the
return type of the advice is a subtype of the return type of all join points matched
by the associated pointcut. However, this subtyping rule is also unsafe. The problem
originates from the fact that the call to proceed in the advice body is given the same
type as the advice itself. For instance, we have what follows.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:7

1 Guest around(): call(User ∗(..)) {
2 Guest ru = proceed(); return ru; //User may not be a Guest
3 }

The previous code produces a runtime exception, this time in the body of the advice
itself: proceed is incorrectly assumed to return a value of type Guest, whereas it can
return any value of type User.

2.1.4. Flexibility vs. Type Safety. The aforesaid examples illustrate a trade-off that is
inherent to aspect-oriented programming languages with implicit announcement and
quantification. Flexible quantification seems to be at odds with type safety. Indeed,
avoiding the typing issues given before can be achieved by imposing invariant matching
of argument and return types, but that in turn hinders the convenient quantification
mechanism that makes AspectJ so popular.

This trade-off is particularly problematic when it comes to defining an interface
abstraction that is meant to allow for a proper decoupling of base code and aspects,
supporting modular type checking. The design of Join Point Interfaces, and its evolu-
tion, is driven by the desire to preserve type safety without abandoning—as much as
possible—the flexibility that makes AOP practical.

2.2. Approaches to Aspect Decoupling

We now step back and discuss several approaches to better support decoupling between
aspects and base code that have been proposed in the literature. This allows us to set
up the context of our proposal more precisely.

2.2.1. Decoupling with Explicit Announcement. In order to obtain better decoupling of
aspects, several approaches have been developed that simply avoid implicit announce-
ment, and rely instead on explicit announcement of join points. In these approaches
[Rajan and Leavens 2008; Hoffman and Eugster 2007; Eugster and Jayaram 2009;
Bodden 2011], base code explicitly denotes expressions or statements that should be
exposed as join points. Explicit announcement makes dependencies visible and is there-
fore more robust; it also simplifies typing. Another advantage of explicit announcement
is that it can sometimes be simpler to explicitly denote a region of code to be advised
than writing a precise and robust pointcut that exactly identifies that region. Like
Steimann et al., we believe that both implicit and explicit announcement are useful,
and therefore aim at supporting both mechanisms. This means that the preceding chal-
lenges with respect to implicit announcement with quantification need to be addressed.

2.2.2. Decoupling with Implicit Announcement. There is a very large body of work that is
concerned with modularity issues raised by the form of implicit invocation with im-
plicit announcement provided by aspect-oriented programming languages like AspectJ,
starting with Gudmundson and Kiczales [2001]. In the AOP literature, many propos-
als have been formulated, some aiming at providing more abstract pointcut languages
(e.g., [Gybels and Brichau 2003]), and others—as we do here—introducing some kind
of interface between aspects and base code. We now concentrate on the most salient
and most related proposals. We discuss further related work in Section 7.

Aspect-Aware Interfaces. Kiczales and Mezini [2005] argue that when facing cross-
cutting concerns, programmers can regain modular reasoning by using AOP. The par-
ticular notion of modular reasoning that is being considered is that of “being able to
make decisions about a module while looking only at its implementation, its interface
and the interfaces of modules referenced in its implementation or interface”. They in-
troduce an extended notion of interfaces for modules, called aspect-aware interfaces,

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:8 E. Bodden et al.

which can only be determined once the complete system configuration is known. While
the argument points at the fact that AOP provides a better modularization of cross-
cutting concerns than non-AOP approaches, it does not do anything to actually enable
modular type checking and separate development. Aspect-aware interfaces are the con-
ceptual backbone of current AspectJ compilers and tools which need to perform checks
at weave time.

Open Modules. Aldrich formulated the first approach for recovering modular rea-
soning through a language-enforced mechanism, Open Modules [Aldrich 2005]. Here,
modules are properly encapsulated and protected from being advised from aspects. A
module can then open up itself by exposing certain join points, described through point-
cuts that are now part of the module’s interface. Open Modules give up the flexibility of
global quantification to recover local reasoning: aspects rely on pointcuts for which the
base code is explicitly responsible. Aldrich formally proves that this allows replacing
an advised module with a functionally equivalent one (but with a different implemen-
tation) without affecting the aspects that depend on it. Ongkingco et al. [2006] have
implemented a variant of Open Modules for AspectJ.

Crosscutting Interfaces. Sullivan et al. [2010] explored a different approach based
on a more semantic notion of modular reasoning, directly related to the original work
of Parnas [1972]. According to Parnas, a software is modular if it allows for separate
development and successfully anticipates future changes. In that sense, modular rea-
soning is a result of a proper design, which is to a large extent achievable even if the
programming language does not provide machine-checked mechanisms that support
such decomposition.

In that spirit, XPIs are design rules that aim at establishing a contract between
aspects and base code in standard AspectJ. With the XPI approach, aspects generally
only define advices but no pointcuts. The pointcuts, in turn, are defined in another
aspect representing the XPI. This additional layer of indirection improves the system
evolution because the resulting XPI is a separate entity and hence can be agreed upon
as a contract between developers. The authors also show how certain parts of such a
contract can be checked automatically using static crosscutting or contract-checking
advices in the XPI aspect itself.

XPIs are interesting in that they do not sacrifice any of the flexibility of implicit an-
nouncement and global quantification as provided by AspectJ. However, without a fully
language-enforced mechanism, XPIs cannot provide any strong guarantees towards an
error-free integration between separately developed modules. Also, by virtue of being a
design approach, XPIs obviously do not address the type soundness issues of AspectJ.

In this work we are interested in introducing a typed abstraction between aspects
and base code that enables modular type checking in a safe and flexible manner. In
that respect, the closest proposal is Join Point Types (JPTs) [Steimann et al. 2010],
which we next discuss in detail.

2.3. Join Point Types

We introduce Join Point Types (JPTs) in detail, to explain the main concepts, their
benefits, and—for our purposes of safe modular type checking—their limitations. This
understanding is necessary because our proposal for Join Point Interfaces takes JPTs
as a starting point. This section focuses on the issues of JPTs that are most relevant to
the main argumentation line of this article: quantification, typing, and advice dispatch.
For completeness, other issues are discussed in Section 7.

2.3.1. Introduction to JPTs. Listing 3 shows the previous example expressed with JPTs. A
JPT is defined as a plain data structure: lines 1–3 define the join point type CheckingOut

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:9

Listing 3. Shopping session example with JPTs.

along with the names and types of context parameters that join points of this type
expose. The base class ShoppingSession is enhanced to declare that it exhibits join
points of type CheckingOut. In line 5 the class binds the join point type to concrete join
points, using a regular AspectJ pointcut.

Through the use of join point types, the aspect is completely liberated from pointcut
definitions. Note that in line 9 the aspect refers directly to the join point type, eliminat-
ing any reference to advised code elements. This design therefore properly decouples
advised code and aspects through a typed abstraction.

2.3.2. Quantification Issues. With JPTs, classes have to explicitly declare that they ex-
pose join points of a certain type, through an exhibits annotation, and then define
the corresponding pointcut. This mechanism is called polymorphic pointcuts, because
each class is responsible for its own exposure behavior, similarly to how each class is
responsible for implementing its own methods.

This approach sacrifices the global quantification that AspectJ supports. Aspects
that involve broadly crosscutting pointcuts, like profiling in Listing 1, are not easily
expressed with JPTs. Instead programmers must expose join points of the given JPT
in each class.

The idea of supporting global quantification originates from JPTs [Steimann et al.
2010, Section 3.1]. There, such a mechanism is first considered but then discarded in
favor of the mechanism of polymorphic pointcuts because, as the authors argue, global
quantification, by its very nature, hinders modular reasoning [Steimann 2013]. Both
the language specification [Steimann et al. 2010, Section 4] and its implementation
do not support global quantification, nor is it empirically evaluated. The lack of global
quantification “seems to be the necessary price for achieving modularity” [Steimann
et al. 2010, page 24]. In our view, however, it is unsatisfactory not to be able to accomo-
date a number of successful applications of AOP like dynamic analyses.

2.3.3. Typing Issues. While JPTs are a typed abstraction to decouple advised code and
aspects, the proposed type system is unsound. Notice that the join point type definition
in lines 1–3 of Listing 3 specifies neither the return type of these join points, nor the
checked exceptions that the execution of these join points may throw.

Because this information is lacking, JPTs must defer checking of some conditions,
such as return type compatibility, to weave time or even runtime. The situation, while
similar to that of AspectJ, is arguably more problematic because typed interfaces are
supposed to enable separate development and modular type checking.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:10 E. Bodden et al.

To understand the gravity of the problem, one can make the analogy with interfaces
in statically typed languages like Java. Interfaces allow for modular type checking and
independent development. However, if interfaces only included type information about
method parameter types, such as

interface Printer { print(Document d); }

it would be easy to see that the type system would not be able to maintain soundness
due to the lack of information about the return type and checked exception types
of method print. Both implementors and clients of this interface would have to
make informed guesses about those types, resulting in fragile code due to hidden
dependencies.

To illustrate the problem with checked exceptions, which we have not elaborated on
earlier, consider that some requirements changed on the aspect side. To determine a
customer’s birthday the aspect now has to submit an SQL query.

void around(CheckingOut jp) throws SQLException {
boolean hasBirthday = SQL.query(/∗query omitted∗/);
double factor = hasBirthday ? 0.95 : 1;
jp.price = jp.price ∗ factor;
proceed(jp);

}

SQL queries can cause checked SQLExceptions, and the aspect programmer, being
careless, decides to just pass the exception on, by including SQLException in its throws
clause. Nothing in the JPT type system prevents the programmer from doing so. Since
the join point type definition contains no information about exceptions, a static type
checker based on this definition cannot tell which exceptions are allowed or not. As a
result, the type error remains latent until system integration time: weaving will fail
and report an error if the advice is woven into a context in which SQLExceptions are
unexpected.

Finally, JPTs also inherit from AspectJ the same unsoundness problems with respect
to variant argument and return types, which we discussed in Section 2.1.3 and therefore
do not reiterate here.

2.3.4. Problem of Join Point Duplication. Another very useful feature of JPTs is the ability
to declare join point subtypes. Such subtypes typically describe more restricted sets of
join points than their supertypes, and they may expose additional context information.
For instance, consider that we introduce two subtypes of CheckingOut from our running
example.

1 joinpointtype BuyingBestSeller extends CheckingOut { String
bestSellerName; }

2 joinpointtype BuyingEcoFriendly extends CheckingOut { }

The interesting question about such join point subtypes is in what way join points of
such types should be dispatched to advices. Within each aspect, the most specific advice
defined for the actual type of the join point is executed. Consider the occurrence of a
BuyingBestSeller join point, where an aspect implements an advice for the CheckingOut
JPT. The advice is executed as if the join point were of type CheckingOut, ignoring the
additional bestSellerName argument. If an aspect instead implements an advice for both
CheckingOut and BuyingBestSeller, then only the latter will execute, potentially making
use of the additional bestSellerName argument.

The preceding description tends to suggest that JPT supports join point polymor-
phism, that is, the ability to consider join points at different types. An interesting

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:11

corner case, though, reveals the fact that JPTs implement join point duplication rather
than polymorphism. Consider the situation in which a join point is of two sibling types,
for example, BuyingBestSeller and BuyingEcoFriendly. This can occur when the respec-
tive pointcuts associated with those types overlap, that is, match a nondisjoint set of
join points. Now consider an aspect that only implements an advice for CheckingOut,
which sends out a notification email.

The advice dispatch semantics of JPTs results in the same advice being executed
twice for the same underlying join point. This is because the semantics of JPT is that
of join point duplication, rather than polymorphism. In effect, for a given join point,
the implementation creates one join point type instance per type assigned to the join
point. In the example, it creates one join point of type BuyingBestSeller and one join
point of type BuyingEcoFriendly.

To us, this semantics is confusing. After all, a join point is “a principled point in the
dynamic execution of a program” [Kiczales et al. 2001], which conceptually cannot be
duplicated. Executing the same advice twice for the same join point (e.g., a single call
to method checkOut) is surprising.2 A true polymorphic treatment of join point types
would rather allow a single join point to be seen at different types, without inducing
duplication of any kind.

3. JOIN POINT INTERFACES

The main contribution of this article is the design, implementation and evaluation of
join point interfaces, a novel interface abstraction that combines ideas from previous
work together with novel concepts to obtain a language design that is first and foremost
(to the best of our knowledge) type sound, but yields a flexibility similar to the one that
users are used to from plain AspectJ. Specifically, join point interfaces reuse but refine
the ideas of join point types from Steimann et al. [2010], incorporating ideas from the
work of Jagadeesan et al. [2006] on generic advice, and innovating in support for global
quantification and join point polymorphism. The main contribution of this article is
to make all these concepts work together in a sound and seamless fashion, to yield a
language design that promises to be of practical use.

3.1. Introduction to JPIs

In the following we describe JPIs from a user viewpoint, discussing how the language
design of JPIs addresses the problems previously identified.

3.1.1. Defining Join Point Interfaces. Considering the running example from previous sec-
tions, programmers can use the following join point interface definition to decouple the
aspect definition from the advised base code.

jpi void CheckingOut(double price, Customer cus);

In the core language design, join point interfaces are, except for the jpi keyword,
syntactically equivalent to method signatures. This is for a good reason: methods
are designed to be modular units of code that can be type checked in a modular way,
and we wish join point interfaces to enjoy this property. Notably, join point interfaces
include both return and checked exception types, which pointcuts and join point types
are missing.

3.1.2. Implicit Announcement with Pointcuts. Programmers can raise join points of a certain
JPI through either implicit or explicit announcement. Implicit announcement uses

2Steimann et al. actually acknowledge this problem: “This situation may appear somewhat awkward. [...]
We leave this debate for future exploration.” [Steimann et al. 2010, page 16].

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:12 E. Bodden et al.

Listing 4. Example from Figure 2 with closure join points.

pointcuts, just like in AspectJ or JPT. For instance, the class ShoppingSession can
exhibit the appropriate CheckingOut join points as follows.

class ShoppingSession {
exhibits void CheckingOut(double price, Customer c):

execution(∗ checkOut(..)) && args(∗, price, ∗, c);
...

}

In this piece of code, the programmer raises join points implicitly, through an exhibits
clause that defines an associated pointcut. Within the JPI language, a pointcut
attached to an exhibits clause only matches join points that originate from a code
fragment lexically contained within the declaring class. Just like in JPT, exhibits
clauses do not match join points in subclasses. This avoids an overly complex se-
mantics, as previously observed by Steimann et al. [2010]. There are two important
differences compared to JPTs: quantification includes inner classes (we come back to
this in Section 3.2), and aspects themselves can exhibit join points. (In the following,
when we talk about a classes or base-code that exhibits join points, we therefore also
include aspects.)

3.1.3. Explicit Announcement with Closure Join Points. JPIs support explicit announcement
through a language construct called Closure Join Points [Bodden 2011]. Closure join
points are explicit join points that resemble labeled, instantly applied closures, that is,
anonymous functions with access to their declaring lexical scope. Closure join points
were first proposed independently of JPIs; their syntax and semantics solves several
subtle semantic issues that arise with the explicit announcement in the JPT implemen-
tation (discussed elsewhere [Bodden 2011]). Join point interfaces seamlessly integrate
with closure join points.

Listing 4 shows the shopping-session example from Listing 2 adapted to use explicit
announcement. Instead of using a pointcut in an exhibits clause, the programmer
exposes a sequence of statements (lines 6–8) using a closure join point of the JPI
CheckingOutR. This JPI is identical to CheckingOut, except for the fact that it declares a
return type double. Note that an advice is oblivious to whether a join point is announced
implicitly or explicitly; only its type—as specified by one or more JPIs—matters. (Note
that, similar to how Java objects can implement multiple interfaces, join points can be
typed with several JPIs. We will get back to this in Section 3.4.)

3.1.4. Advising JPIs. The following piece of code shows how programmers can advise
join points of a given join point interface.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:13

aspect Discount {
void around CheckingOut(double price, Customer c) {

double factor = c.hasBirthday()? 0.95 : 1;
proceed(price∗factor, c);

}
}

As with JPTs, advices for JPIs only refer to join point interfaces, not to pointcuts
or base-code elements. The main difference with JPTs is that the advice signature
matches the JPI, and hence receives context information exposed at join points via
formal parameters, as in AspectJ. In our design, join points are not first class.

3.2. Flexible Quantification

While join point interfaces generally follow the same approach as JPTs with respect to
decoupling, we aim at designing a solution for widely quantifying aspects like dynamic
analyses. This implies some trade-offs with respect to modularity and separate devel-
opment, which we discuss shortly. The combination of local and global quantification
that JPIs provide is in itself a novel answer to the quantification design question.

3.2.1. Global Quantification. Having to define pointcut expressions within every class
that requires advising does not scale very well when trying to implement dynamic
analysis aspects such as tracing or runtime checking, which require wide global quan-
tification. We allow programmers to specify a global pointcut, together with the defini-
tion of a JPI. We call such a globally quantifying JPI a global JPI.

For the profiling aspect from Listing 1, an appropriate global JPI definition could
look as follows.

global jpi Object AllExec(): execution(∗ ∗(..));

Note that this uncontrolled use of global quantification reintroduces implicit de-
pendencies between the global JPI and the base code. Indeed, the base code does not
directly refer to the JPI, hence modular reasoning is hindered.

The situation is still better than in plain AspectJ, however, as the base-code pro-
grammer needs to be aware of the JPIs only, independently of the specific aspects that
intend to advise these JPIs. So aspects and base code can be separately developed. In a
team development scenario, programmers could even agree upon defining global JPIs
in a single file, making the implicit dependencies entailed by global quantification more
easily tractable. Highlighting support by the development environment such as in the
AspectJ Development Tools [Clement et al. 2003] could aid base-code programmers
further, without requiring access to aspect definitions. Nevertheles, JPIs do offer users
additional control over global quantification if desired.

3.2.2. Controlled Global Quantification. Global quantification can be controlled in a fine-
grained manner. For instance, any class or aspect may seal itself to prevent global
quantification from applying to its own definition.

sealed class Secret { ... }

Join points raised lexically inside the Secret class are hidden to global pointcuts. A
sealed type can opt to exhibit join points explicitly if desired; sealing just impacts
global pointcut definitions. For instance, the following class is immune to the AllExec
global pointcut, but exposes certain Caching join points.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:14 E. Bodden et al.

sealed class Secret {
exhibits Object Caching() : ...

}

Further, programmers can opt to refine global pointcuts that they are aware of. When
doing so, the declared global pointcut is a available as a named pointcut global inside
an exhibits clause.

sealed class Secret {
exhibits Object AllExec() : global() && !call(∗ secret(..))

}

Here, class Secret allows all its method execution join points to be matched by the
AllExec global pointcut, but selectively hides the executions of a secret method.
Sealing a class eliminates implicit dependencies, because it can only be advised
through (possibly global) JPIs that are explicitly referenced in its definition.

3.2.3. Open and Sealed Classes. So far, we have considered that, by default, classes
are open to global quantification, and that classes that want to prevent global advising
need to be explicitly declared as sealed. The dual approach is also appealing: by default,
all classes are sealed, and classes that approve global advising need to be explicitly
declared as open. The choice of a good default reflects a particular inclination towards
either favoring backward compatibility with the way programmers are used to program
in current aspect languages like AspectJ, or favoring instead modularity in a more
conservative manner.

Because we believe that there is no absolute response to this language design ques-
tion, we actually support both default semantics in our implementation.3 This means
that it is possible to declare a class or aspect as open.

open class NothingToHide { ... }

If the language default is set to sealed-by-default, then the previous declaration allows
the class NothingToHide to be exposed to global quantification. (Otherwise it is just
redundant.)

Figure 2 summarizes the different scenarios in presence of global quantification.
First, Figure 2(a) shows how unrestricted global quantification over an open class
implies fragile dependencies between the base code and the global JPI. Note that this
situation is still “better” than the AspectJ situation (Figure 1(a)), because the aspects
themselves do not have implicit dependencies. Figure 2(b) depicts the situation in which
an open class refines the global JPI 1. The implicit dependency to JPI 1 is replaced by
an explicit dependency, but an implicit dependency to the other global JPIs remains.
Finally, Figure 2(c) shows how a sealed class that chooses to refine a global pointcut
enjoys the same benefits as with nonglobal JPIs (Figure 1(b)): no implicit dependencies
are left. In fact, in this case the only difference to the the scenario with a nonglobal
JPI is that the global JPI provides a default pointcut global whose use can ease the
definition of the exhibits clause.

3At present, the default is that of explicit sealing, but this can be changed through a compiler flag. Supporting
more fine-grained specification of the semantics of unannotated classes, for instance at the package (JAR)
level, is left for future work.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:15

Fig. 2. Quantification variants and impact on dependencies.

3.2.4. On Local Quantification. Join Point Types and Open Modules have different takes
on local quantification. With Open Modules, classes themselves do not declare their
exposed join points; it is the task of the module. The argument is that the maintainer
of the module is in charge of all the classes inside the module, and therefore has
sufficient knowledge to maintain classes in sync with the pointcuts in the module
interface. With JPTs, quantification is class local: each class is responsible for what it
exhibits. This class locality is very strict: even nested classes are not affected by the
exhibited pointcuts of their enclosing classes.

In this work, we do not extend Java with a new notion of modules (this is left for
future work), but we do support nested classes in the sense that the exhibited pointcut
of a class matches join points in nested classes as well. This means that we can use class
nesting as a structuring module mechanism, and obtain module-local quantification, as
in Open Modules. Of course, this approach to modules is certainly not as well supported
in Java as it would be in a language like Newspeak [Bracha et al. 2010], in which
modules are objects, supported by a very flexible virtual class system. We believe that
module-local quantification is a good intermediate situation between strict class-local
quantification and global quantification. If Java ever obtained a standardized language-
level module system, then exhibits clauses would be part of module declarations.

3.3. Modular Type Checking

We now turn to the issue of modular type checking, and how to reconcile it with
flexibility.

3.3.1. Invariance. To avoid the type unsoundness caused by type variance in argument
and return types previously explained for AspectJ (Section 2.1.3), the JPI type sys-
tem enforces that an advice for a JPI such as CheckingOut carries a signature whose

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:16 E. Bodden et al.

argument and return types coincide exactly with those of the JPI declaration. In other
words, we enforce type invariance. This avoids the type unsoundness that users may
experience with AspectJ.

void around CheckingOut(double price, Customer cus) {
proceed(price, new Guest()); //type error

}

In this example, due to type invariance, the injection of objects of incorrect types such
as Guest given before is no longer possible. (Remember that Guest is not a subtype of
Customer.) Similarly, the return type of the advice cannot be a subtype of the return
type of the JPI, in order to avoid runtime type errors in the advice body. Additionally,
the Object return type is not a wildcard; it really means Object.

3.3.2. Checked Exceptions. Join point interface signatures must be complete with re-
spect to the checked exceptions they declare. The preceding JPI definition declares no
exception, which gives both the aspect and the base code the guarantee that the re-
spective other side of the interface cannot throw any checked exceptions at join points
of this type. If needed, the programmer can declare checked exceptions in the join point
interface.

jpi void CheckingOut(double price, Customer cus) throws SQLException;

In this example, both the advised join point and the handling advice are allowed to
throw SQLExceptions, but must also take care to handle (or forward) the exceptions
appropriately. For instance, here are two possible advice definitions.

void around CheckingOut(double price, Customer cus) {
try{ proceed(price, cus); } catch(SQLException e) { ... }

}
void around CheckingOut(double price, Customer cus) throws SQLException {

proceed(price, cus);
}

The first advice handles SQLExceptions, while the second advice simply forwards them.
Both are valid because the base code has to be prepared anyway to handle such
exceptions. This is because the base code cannot know if and how the join point is
going to be advised. The type checker therefore conservatively assumes, as defined
in the JPI, that exceptions of type SQLException may be thrown in any case. It seems
that a way to distinguish potentially handled from definitely handled exceptions could
prove useful, but we leave this question to future work.

3.3.3. Regaining Flexibility through Generic Types. Especially in combination with global
quantification, the invariant typing of JPIs can be too rigid, preventing certain join
points from being advised. Recall the global JPI definition from Section 3.2.

global jpi Object AllExec(): execution(∗ ∗(..));

Due to invariant typing, this definition does not achieve what the user actually
intends, as it only selects join points whose return type is exactly Object, and which
also do not throw any checked exceptions.4

4In practice this would actually cause error messages because the pointcut matches join points that are not
type compatible with the JPI signature. This is similar to the matching errors raised by the AspectJ compiler
when the return type of an advice does not coincide with the type of a matched join point.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:17

Listing 5. Advice overriding.

To regain flexibility while preserving type safety, we resort to parametric polymor-
phism and support generic JPIs. This is directly inspired by work on generic advice
by Jagadeesan et al. [2006], which was developed further by De Fraine et al. [2008]. A
proper generic definition of the AllExec JPI is as follows.

<R,E> global jpi R AllExec() throws E: execution(∗ ∗(..));

In this definition, we explicitly abstract from the return type and any checked-
exception type that the method may declare. (Note that the type variable E is special
in the sense that it can represent any number of declared exceptions. We explain
the semantics later in this article.) As in Java, type variables can have an upper
bound; this allows code advising a generic JPI to make stronger assumptions about
the concrete types at the respective join points.

<U extends User> jpi void CheckingOut(double price, U user);

<U extends User> void around CheckingOut(double price, U user) {
log(user.getName()); //succeeds (assuming getName() is defined on

User)
proceed(price, new User()); //fails: User is not a subtype of U

}

Note that the advice is allowed to proceed only with objects of type U. This is because
U denotes some concrete subtype of User, not User itself, and therefore User is not a
subtype of U. In practice, the only valid values to proceed with are thus either user
itself, the result of user.clone() (which, due to clone() having return type Object,
the programmer would need to cast to U), or a reflectively instantiated peer object of
user. The same restriction applies to values returned by proceed and by the advice.
Section 4.2.4 gives further information on the semantics of type variables used for
checked exceptions.

3.4. Polymorphic Join Points and Advice Dispatch

A join point interface denotes the type of a join point. A join point can be of different
types: for instance, if both the CheckingOut and AllExecs JPIs are used, then the join
point that corresponds to the execution of the checkOut method has both types. JPIs
implement an advice dispatch semantics that guarantees that every advice executes at
most once for each join point, thereby avoiding the multiple execution problem of JPTs
(Section 2.3.4). Section 4.3 describes this semantics in details.

Also, a JPI can extend another JPI. Consider two subtypes of CheckingOut, Buying
and Renting, and the following business rule: the customer gets a 15% discount when
renting at least five products of the same kind; this promotion is not compatible with
the birthday discount. Listing 5 shows an implementation of this additional rule using

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:18 E. Bodden et al.

Table I. Summary of Features and their Purpose

Feature Purpose

Join point interfaces Decoupling aspects and base code

JPIs as full method signatures Complete specification for modular checking

Class-local pointcut matching Limit pointcut fragility

Closure join points Support explicit announcement

Controlled global pointcuts Support wide quantification

Invariant typing of argument, return, and excep-
tion types Preserve type soundness
Invariant pointcuts

Parametric polymorphism Enhance the flexibility of the type system

Join point polymorphism Support expressive modeling and handling of
events; no duplication of join points

subtyping on JPIs. First, we declare the JPI Renting as extending CheckingOut. The
semantics of this subtyping relationship implies that any join point of type Renting is
also a join point of type CheckingOut. The extends clause defines how arguments are
passed to superjoin points, similar to primary constructors in Scala [Odersky et al.
2008]. In the example, the first and third arguments of Renting join points become the
first, respectively second, argument when this join point is seen through the CheckingOut
interface.

This effect can be seen in the aspect Discount, which now declares two advices. The
first one is the same as in the previous example. In general, it applies to all CheckingOut
join points, and if this advice was the only advice in the aspect, then it would indeed
execute also for join points of type Renting. In the example, however, the aspect defines
a second advice specifically for Renting. In this case, an overriding semantics applies:
the more specific advice overrides the first advice for all join points that are of type
Renting. As a result, the first advice only executes for join points of other subtypes of
CheckingOut, that is, for CheckingOut itself, or for Buying.

3.5. Summary

Table I summarizes the main features of Join Point Interfaces and the purposes they
fulfill. When designing the JPI mechanism, and faced with a tension between type
safety and flexibility, we always opted in favor of type safety first. We then tried to
recover flexibility by introducing new mechanisms, without sacrificing safety. For in-
stance, the first version of JPIs [Inostroza et al. 2011] only had invariant typing, which
is safe but sometimes too rigid. Similarly, the first incarnation of JPIs did not have
any support for global quantification. Parametric polymorphism and controlled global
quantification were introduced to recover flexibility. As a result, we propose an in-
tegrated language design that provides strong typing guarantees, supports separate
development, and can accommodate a smooth transition path from standard AOP
practice.

4. SYNTAX AND SEMANTICS OF JPIs

We begin this section by describing the syntax of JPIs, designed as an extension to
AspectJ (Section 4.1). Join point interfaces aid the separate development of aspect-
oriented programs by precisely mediating the dependencies between aspects and base
code. The most fundamental contribution of JPIs therefore lies in the static type system
that supports modular type checking: we informally describe it in Section 4.2. Our

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:19

Fig. 3. Syntactic extension for Join Point Interfaces (AspectJ syntax is shown in gray).

proposal of JPIs also innovates over previous work in the way it supports join point
polymorphism. The dynamic semantics of JPIs is described in Section 4.3.

4.1. Syntax

Figure 3 presents our syntactic extension to AspectJ to support join point interfaces
and closure join points. Type declarations, which normally include classes, interfaces,
and aspects, are extended with a new category for JPI declarations. A jpi declaration
specifies the full signature of a join point interface: the return type at the join points,
the name of the join point interface, its arguments, and optionally, the checked excep-
tion types that may be thrown. A join point interface declaration can also specify a
superinterface, using extends. In that case the name of the extended JPI is given, and
the arguments of the superinterface are bound to the arguments of the declared JPI.
Further, it can specify a global pointcut expression.

Classes and aspects can have a new kind of member declaration, for specifying the
join point interfaces that are exhibited. An exhibits declaration specifies a join point
interface signature and the associated pointcut expression that denotes the exhibited
join points.

Further, our extension allows advices to be bound to JPIs. Opposed to normal advices,
instead of directly referring to a pointcut expression, such advices instead refer to a
join point interface. The information about return type, argument types, and checked-
exception types that the JPI specifies becomes part of the advice signature.

Closure join points can be used in any place in which an expression can be used. A
closure join point comprises the keyword exhibit, an identifier (the name of the JPI
used to type the exposed join point), and a block, plus optionally a list of formal and
actual arguments. If those lists are omitted, this is equivalent to specifying empty
lists. The block effectively defines a lambda expression, while the formal parameter
list defines its λ-bound variables. Opposed to a regular lambda expression, however, a
closure join point must be followed by an actual parameter list: the closure is always
immediately called; it is not a first-class object.

Generic types can be used within JPI declarations, advice declarations, and exhibits
clauses. Closure join points do not need type parameters, as they are actual instances
of join points, binding to the type parameters of the corresponding join point interface.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:20 E. Bodden et al.

The language extension is backwards compatible with AspectJ, that is, any valid
AspectJ program is valid in this language, and the semantics of the program is un-
changed. This allows for a gradual migration of AspectJ programs to join point inter-
faces. It would be simple, though, to include a “strict” mode that instructs the parser
to disallow AspectJ’s regular pointcut and advice definitions.

4.2. Static Semantics

We next describe the JPI type system, a key contribution of this work. The type system
supports modular type checking of both aspects and classes; only knowledge of shared
JPI declarations is required to type check either side. This is similar to type checking
a Java class based on the interfaces it references.

We first discuss how JPIs are used to type-check aspects. Then we turn to type-
checking base code that exhibits certain JPIs. Finally, we discuss type-checking JPIs
themselves, in particular considering JPI inheritance.

4.2.1. Type-Checking Aspects. An aspect is type checked just like an AspectJ aspect, save
for its advices. There are two facets of type checking an advice: checking its signature
and checking its body. Type checking the signature of an advice is simple, but requires
care. Each advice declares an advised JPI in its signature. The argument types of the
advice must be exactly the same as the ones declared in the JPI. For around advice,
the return types must also exactly coincide. As explained in Section 3.1.4, the crucial
requirement here is that the typing of all types in the signature is invariant.5

Checked exceptions require care. Calls to proceed are assumed to potentially throw
any types of checked exceptions that the JPI, which the surrounding around advice
is bound to, declares. An advice must not declare any additional exception, as this
could lead to uncaught checked exceptions on the side of the base code. It can, however,
declare fewer exceptions if the omitted exceptions are handled within the advice, or
declare additional exceptions (e.g., EOFException) provided they are subtypes of expected
exceptions (e.g., IOException) that are also declared in the JPI.

The exceptions that are declared in the advice interface are typed invariantly with
respect to the JPI. This strict invariance requirement for exceptions is required for the
same reason as for return and argument types. Let us denote TS the checked exception
thrown at a join point shadow6, TI the exception type declared in the JPI, and TA the
type of checked exception thrown by the advice. If TS < TI

7, this means that the context
of the shadow is not prepared to handle TA if TS < TA <: TI . Conversely, if TS > TI ,
the advice is not prepared to handle TS when invoking proceed. Therefore TS = TI by
necessity.

Type checking the advice body is similar to type checking a method body, with the
additional constraint of considering calls to proceed. A join point interface is identical to
a method signature (except for the extends clause used for join point subtyping). In fact,
a JPI specifies the signature of proceedwithin the advice body, thereby abstracting away
from the specific join points that may be advised. This is a fundamental asset of JPIs,
and the key reason why we believe that interfaces for AOP ought to be represented
as method signatures, including return and exceptions types. JPIs fully specify the
behavior of advised join points as far as the type system is concerned, thereby allowing
safe and modular static checking of advice.

5In theory, since before/after advice cannot replace any values in the context in which they execute, one
could loosen their typing restrictions on argument types. We were unable to find an advantage of doing so,
however, which is why we just apply the same restrictive typing rules to before and after advice as well.
6A join point shadow is the source expression whose evaluation produces a given join point [Masuhara et al.
2003; Hilsdale and Hugunin 2004].
7We use <: for subtyping, and < for strict (i.e., nonreflexive) subtyping.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:21

4.2.2. Type-Checking Base Code. On the other side of the contract is base code, which
can exhibit join points. The base code must also obey the contract specified by join
point interfaces. Part of this contract has to be fulfilled by the pointcut associated with
the exhibits clause used for implicit announcement: the pointcut has to bind all the
arguments in the signature, using pointcut designators such as this, target, and args.
To comply with the invariant semantics, those pointcuts must match invariantly, that
is, a pointcut such as this(A) must only match join points with declared type A. As we
will explain in Section 5, this semantics differs from the one of AspectJ.

Because pointcuts do not account for return and exception types, the type system
checks these types at each join point shadow matched by the pointcut associated with
the exhibits declaration. More precisely, the pointcut is matched against all join point
shadows in the lexical scope of the declaring class. Whenever the pointcut matches
a join point shadow, the type system checks that the return type of this shadow and
the JPI coincide. If the shadow has a different return type, the type checker raises
an error message stating that the selected join point shadow is incompatible with the
JPI in question. Similarly, the type system validates that the declared exceptions of
the shadow are the same as those of the JPIs; if they are not, the type checker raises
an error. Here again, type compatibility is invariant. Note that those checks, although
they require pointcut matching, do not require access to any aspect code.

One may wonder why we raise an error message when pointcuts select incompatible
join point shadows and not simply restrict the matching process to exclude incompat-
ible shadows instead, taking into account the return and exception types of the JPI.
The reason is to follow as closely as possible the way AspectJ deals with such situa-
tions already. In the following example, AspectJ raises an error because the execution
pointcut selects a join point (in line 2), whose return type int is incompatible with the
return type void of the around advice.

1 void around(): execution(int foo()) { ... }
2 int foo () { return 0; }

Type checks at join point shadows are the fundamental contribution of JPIs from
the point of view of type-checking base code. All previous approaches, particularly
JPTs [Steimann et al. 2010], are not able to perform these checks modularly, simply
because the specification of return and exception types are not part of the proposed
interfaces. These approaches have to defer type checks to weave time, or even worse,
to runtime. With JPIs, conformance can be checked statically and modularly, prior to
weaving.

Type-Checking Closure Join Points. Type-checking closure join points follows the
Java static semantics for methods defined within inner classes. Code within a closure
join point has access to its parameters, to fields from the declaring class, and to local
variables declared as final. Access to non-final local variables is forbidden because,
by exposing a block of code to aspects in the form of a closure join point, aspects may
choose to execute the closure in a different thread, or may choose to not execute the
closure at all. In this case, write access to local variables may cause data races or
undefined values on those variables [Bodden 2011].

Other than that, we type-check closure join points according to the same rules as
implicitly announced join points. To keep the code as concise as possible, closure join
points do not define return and exception types; instead those are inferred from the join
point interface declaration they reference. Because of this, those parts of the closure
join point’s signature are automatically invariant with respect to the referenced join
point interface. Arguments are deliberately not inferred. This is because we want to

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:22 E. Bodden et al.

allow users to give arguments within the closure join point their own local name, in-
dependent of what was specified in the JPI declaration and independent of the context
in which the closure join point is declared. This is in line with method definitions and
lexical scoping in Java. The independence from the closure join point’s declaring con-
text is important to distinguish the values of such variables that are declared in this
context from the potentially altered values that an advice may pass as the closure join
point’s arguments. For instance, in Listing 4 the value of alteredPrice may differ from
the one of price. For the types of those arguments, we check that the declaration in the
closure join point’s header obeys an invariant typing semantics. Further, we check that
the body of a closure join point only throws checked exceptions of types that the refer-
enced JPI declares, and conversely that the declaring context of the closure join point
is prepared to handle (or declares to forward) all checked exceptions of these types.

4.2.3. Type-Checking JPIs. Join point interfaces support a subtyping relationship. We
employ type checking at the level of JPIs to ensure that subtyping relationships do not
break type soundness. As we exemplified in Section 2, any JPI can declare to extend
another JPI. During this process, the sub-JPI can add context parameters; JPIs thus
support breadth subtyping. On the other hand, all arguments that do coincide have
to be of the exact same type as the respective arguments in the JPI supertype; JPIs
disallow depth subtyping. This is due to the same reasons for which we use invariant
argument typing in all other situations. For example, the following code would raise a
type error, even if B were a subtype of A.

jpi void Base(A a);
jpi void Sub(B b) extends Base(b); //type error; no variance allowed

In addition, JPI subtypes must declare the same return type as their super-JPI, and
must declare the same exceptions to be thrown.

4.2.4. Parametric Polymorphism through Generic Types. In general, the semantics of type
checking in the presence of parametric polymorphism is exactly the same as that of
Java with generics, as defined in Featherweight Generic Java [Igarashi et al. 2001].
If a JPI uses type variables, then any referencing exhibits clauses and advices must
use generic type variables at the same signature positions, with identical type bounds
(if present), and vice versa. The names of type variables are scoped locally, that is, the
following is allowed.

<A> jpi void JP(A x);
 before JP(B x) { ... } //is ok even though B!=A

When checking base code, a type at a shadow matches a type variable in the JPI if it is
a subtype of the bound of that variable. As explained before, this is where flexibility is
gained, allowing generic JPIs to be practical in the face of wide crosscutting. Note that
soundness is preserved, through parametricity [Reynolds 1983]: advices cannot assign
any values to variables of a parametric type (modulo the usage of clone or reflection).

We only support upper bounds for type variables (declared with extends), since they
are enough to handle the needs for polymorphism that we have observed in prac-
tice through the case study. We leave to future work the exploration of the other fea-
tures found in object-oriented languages with parametric polymorphism (lower bounds,
wildcards, type constraints as in Scala [Odersky et al. 2008], etc.).

As we already showed in Section 3.3.3, programmers can choose to use parameterized
types for checked exceptions just as for any other type declaration. An interesting

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:23

question is how bounds impact type checking for checked exceptions. Imagine the
following example.

<S extends SQLException, ANY> jpi void J() throws IOException, S, ANY;

<S extends SQLException, ANY> void around J() throws IOException, S, ANY {
try { proceed(); }
catch(S s) { //s is seen as SQLException

s.getSQLState();
throw s;

} catch(IOException i) {
throw i;

} catch(ANY a) { //a is seen as Throwable
a.getStackTrace();
throw a;

}
}

This example is type-correct. The advice calls proceed and then reacts to a range of
possible thrown exceptions, eventually rethrowing them. Rethrowing exceptions is
always sound, including for variables of a generic type. Note that the advice may
safely throw a new IOException(). This is safe, as our type system ensures that the
JPI will only be bound to join points that declare to throw IOException. The advice
may not, however, throw any other types of exceptions. This includes SQLException,
as SQLException is not a subtype of S or ANY. The type bounds are thus helpful only
for accessing the members of the exception object at a certain type. For instance,
getSQLState() is only declared on type SQLException. For type bounds on type variables
used for checked exceptions, we enforce that the bounds are a subtype of Throwable.

4.2.5. Global Join Point Interfaces. The type system enforces that the global() pointcut
designator is only (and always) used in exhibits clauses that bind to a JPI that is
itself declared as global. The signature of the global pointcut is defined through the
signature of the JPI that defines this pointcut.

When refining a global pointcut with an exhibits clause, programmers may provide
no pointcut at all. In that case, the class or aspect is sealed against the global pointcut
of the specific JPI.

The modifiers open and sealed must only occur in front of class and aspect decla-
rations, including inner classes. If an inner class declares no such modifier then its
sealing status implicitly defaults to that of its enclosing class. (Note that we could even
offer sealing on the method level, a feature we plan to investigate in the future.)

4.3. Dynamic Semantics

The dynamic semantics of JPIs differs slightly from that of a traditional aspect lan-
guage. Briefly, the traditional model is as follows [Wand et al. 2004]: all aspects (point-
cuts and associated advices) are present in a global environment; at each evaluation
step, a join point representation is built and passed to all defined aspects; more pre-
cisely, the pointcuts of an aspect are given the join point in order to determine if the
associated advices should be executed or not.

With JPIs, aspects do not have pointcuts. They advise JPIs, and base code defines
the join points that are of these types, either using pointcuts (implicit announcement)
or using closure join points (explicit announcement). The global environment contains
aspects with their advices. With implicit announcement, conceptually, a join point
representation is passed only to the pointcuts defined in the current class (and outer

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:24 E. Bodden et al.

classes, if present), at each evaluation step. If a pointcut matches, then the join point
is tagged with the corresponding JPIs. Then, the advices that advise one of the tagged
JPIs are executed.

In the presence of join point polymorphism and inheritance among JPIs, it is inter-
esting to ask which advice is executed. We write AT to denote an advice of aspect A
that advises JPI T ; we write jpT to denote a join point jp tagged with JPI T . The
semantics of advice dispatch is directly inspired by the semantics of message dispatch
in multiple dispatch languages like CLOS [Paepcke 1993] and MultiJava [Clifton et al.
2000]. Indeed, an aspect with its multiple advices (each declared to advise a specific
JPI) can be seen as a generic function with its multiple methods. Once a join point jp
is tagged with interfaces T1, . . . , Tn we select, for each aspect A, all applicable advices.
An advice AS is applicable to jpT1,...,Tn if there exists an i such that Ti <: S. In order to
support overriding, among all applicable advices AS1 , . . . , ASk, we invoke only the most
specific ones, defined as the ASj such that for all i, either Sj <: Si or Si ≮: Sj .

Aspect-oriented programming, like any publish-subscribe mechanism, inherently
supports multiple reactions to a single event. This differs from multiple dispatch, which
requires exactly one method to execute. The difference manifests in two ways in the
semantics. First, if there are no applicable advices, then nothing happens; no advice
executes. In contrast, a multiple-dispatch language throws a message-not-understood
error if no applicable method can be found. Also, message dispatch requires that there
is a unique most specific applicable method, otherwise an ambiguity error is raised8.
In our case, we execute all the most specific applicable advices, in the precedence order
imposed by regular AspectJ when multiple advices of a same aspect match the same
join point [Laddad 2003].

In the preceding, we have overlooked one specificity of AspectJ and most aspect
languages: the fact that advices can be of different kinds—before, after, or around. The
advice overriding scheme we described is kind specific: an advice may override another
advice only if it is of the same kind. (In Section 6, we will show cases where this is
useful.) For instance, consider an aspect that defines two advices AT1 and AT2 , with
T2 <: T1. If one is a before advice and the other is an after advice, both are executed
upon occurrence of a join point jpT2 . Conversely, if both are around advices, only the
most specific (AT2) executes, as explained earlier.

In practice, we found that advice overriding is not always desirable (see Section 6.3.3).
We support the possibility to declare an advice as final to prevent overriding. A final
advice always executes if applicable, regardless of whether there exists a more specific
applicable advice; in such a case, both execute, in the order defined by the standard
AspectJ composition rules.

A fundamental asset of the dispatch semantics presented here is that it gives the
guarantee that a given advice executes at most once for any given join point. This is
in stark contrast with the semantics of join point types [Steimann et al. 2010], where
the same advice can—in our view surprisingly—be executed several times for the same
join point, as discussed in Section 2.3.4.

5. IMPLEMENTATION OF JPIs

With this article we provide a full implementation of join point interfaces as an exten-
sion to the AspectBench Compiler (abc) [Avgustinov et al. 2005]. The implementation
is maintained within abc’s own code base.9 The main goal of JPIs is to facilitate mod-
ular type checking and therefore separate development. A secondary goal would be to

8In a statically typed language like MultiJava, both cases can be ruled out by the type system.
9abc can be downloaded at: http://aspectbench.org/.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:25

also allow for separate compilation. Unfortunately, abc was not designed to support
separate compilation. The implementation we provide is therefore only a best-effort so-
lution that, to the best of our knowledge, fulfils the primary goal of sound and modular
type checking. Given an appropriate compiler implementation, separate compilation
can be achieved. We are exploring the possibility to integrate JPIs in the main AspectJ
implementation (eclipse.org/aspectj), which does support separate compilation.

With this in mind, in the following we first describe an abstract compilation scheme
that could provide separate compilation with JPIs. Section 5.2 describes the current
abc implementation.

5.1. Separate Compilation with Join Point Interfaces

As described in Section 4, type checking an aspect requires only the code of the aspect
itself and the code of all referenced JPIs. Similarly for the base code, type checking
requires access to the base code itself, and to all referenced JPIs. If the application
uses global JPIs, then the base code requires access to these global JPIs as well, even
though they are not referenced explicitly in the base code (recall Figure 2). Because
this scenario still allows base code to be independent from actual aspect definitions, we
conjecture that this requirement should pose no problem in practice. Global pointcut
definitions are part of the global JPI definitions, and are therefore shared as well.

When a code module containing classes (or aspects, since aspects can exhibit join
points too) is compiled with a set of JPIs, then the module is first type checked. This
involves matching all pointcuts from exhibits declarations (global pointcut definitions
are hereby inlined) against the base code, to determine whether all matched shadows
comply with the declared JPIs. Afterwards, aspects are turned into plain Java classes.
At this point, the compiler persists metadata information about JPI declarations and
pointcuts in class-file attributes. (This is also the approach the Eclipse AspectJ compiler
uses for regular AspectJ.) This information would include the information of which JPIs
were considered to type check the code.

Later, the programmer would then ask the compiler to weave the individual modules
into a ready-to-be-run application. At this point, the compiler would use the metadata
information to check that the set of all JPIs is consistent for all modules. If so, then this
guarantees that the composition is type safe. Second, the compiler would use the meta-
data information to determine the correct advice precedence according to our dynamic
dispatch rule (see what follows), match again all JPIs against the code using the associ-
ated pointcuts, and insert appropriate advice-dispatch code at every join point shadow.

5.2. Implementation Based on abc

The current implementation of JPIs is restricted to a much simpler compilation scheme,
imposed by the fact that the abc compiler does not support separate compilation.
Following this restriction, we assume that all aspects, base code, and JPIs are present
at the same time. Note that this has no impact on the modularity of type checking, but
it does free us from dealing with metadata information in class files.

One detail that nevertheless requires further discussion is how we ensure the correct
dispatch semantics for advices referring to JPIs. Remember that syntactically advice
declarations do not at all refer to any pointcut. Instead they refer to a JPI declaration,
which in turn may be bound to pointcuts by one or more exhibits clauses. To allow for
maximal reuse of existing functionality in the abc compiler, we decided to implement
the dispatch semantics through a transformation that computes for each such advice
a single pointcut, based on the referenced JPI, its type hierarchy, and the exhibits
clauses of those types. Let a be the advice to compute the pointcut for, as the set of
other advices in the same aspect and es the set of all exhibits clauses in the program.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:26 E. Bodden et al.

Then we compute the pointcut for a as follows.

pc(a, as, es) = pc+(a.jpi, es) ∧ ¬pc−(a, as, es)

pc+(jpi, es) =
∨

e∈es, e.jpi <: jpi

e.pc

pc−(a, as, es) =
∨

a′∈as, a′�a

pc+(a′.jpi, es)

The equation10 for pc+ implements polymorphism: if a refers to a.jpi then a will match
not only on join points for a.jpi itself but also for all subtypes. The equation for pc−
implements advice overriding within the same aspect: if an advice a′ has the same kind
as a but refers to a more specific JPI type, then a′ overrides a, which means that a will
not execute for the join points of this JPI. For advice that has been declared final, pc−
is simply skipped, so as to avoid overriding. The way in which we compute the pointcuts
is quite similar to the way in which pointcuts are computed for advices associated with
a JPT [Steimann et al. 2010, Section 4.3]; the main difference is the way in which we
allow advice overriding.

To implement the previous equation, the implementation has to overcome a few
technical obstacles. JPI declarations can rename formal arguments of their supertypes
in their extends clauses. The implementation undoes this renaming in the back-end
by inlining pointcuts. Further, the pointcut pc−(a, as, es) is used under negation. This
raises an issue with argument-binding pointcuts, like this(a), because they cannot
be negated: if a pointcut does not match, there is no value that a could be bound
to. Fortunately, abc supports a way to close such pointcuts so that the variables do
not appear free any longer. This is done by rewriting a pointcut such as this(a) to
(λa.this(a)); such a pointcut can be negated, and if a is of type A, the negation is
equivalent to !this(A), which yields the semantics we need.

Note that the separate compilation scheme from Section 5.1 would not restrict us
from computing a single pointcut per advice, since at integration time the entire pro-
gram with all JPIs and associated pointcuts is known. Again, the crucial point is that
no error can happen at integration time.

5.3. Global Pointcuts

We implement the desired runtime semantics for global pointcut by inlining global
pointcuts into every aspect and class, replacing occurrences of the global(..) pointcut
by the corresponding global pointcut definition. In case a class contains no refinement
for a global JPI (e.g., void JP()), and the class is not sealed, then we treat it as if the
class (or aspect) actually defined an exhibits clause for the global JPI whose definition
is simply global(), for instance, as follows.

exhibit void JP(): global();

5.4. Invariant Pointcut Designators

As noted in Section 4, we must ensure that join point interfaces are invariantly typed.
As it turns out, in AspectJ it is not straightforward to ensure invariant typing for
arguments. The problem is that, as we already explained in Section 2.1.3, the standard

10� denotes kind-specific subtyping for advices: a′ � a means that a′ and a are of the same kind and
a′. jpi < a. jpi.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:27

pointcuts this, target, and args come with a variant semantics. The fact that a JPI’s
arguments are typed invariantly against their associated advices does not change this
fact; to enforce invariance, we also need to restrict the join point matching accordingly.
One way to address this problem is to redefine the matching semantics of the this,
target, and args pointcuts such that they match a join point only if the declared type
at the join point is exactly the same as the declared type used within the pointcut.
This design, however, would give up backward compatibility with AspectJ. Since our
overall language design can be integrated as a fully backward-compatible extension,
we opted for another design, such that existing AspectJ applications can be easily
migrated.

The current implementation supports three additional pointcuts—namely This,
Target, and Args, which have an invariant matching semantics. In the example, the
pointcut.

pointcut checkingOut(double price, User usr):
execution(∗ ShoppingSession.checkOut(..)) && Args(∗, price, ∗, usr);

would simply not match the checkOut method from Listing 1 because checkOut would
assign usr a value of type Customer, not User. The pointcuts only match if the declared
type of the respective argument position of the JPI is the same as the respective
declared type at the shadow. (Note that we still match variantly on the actual runtime
type, i.e., the pointcuts are allowed to match runtime values of subtypes of the shadow’s
respective declared type. This is safe because due to the invariance on declared types
we know that the shadow’s context can handle those subtypes.) Due to the introduction
of these novel pointcuts, the existing semantics of this, target, and args remains
unchanged. When programmers use one of those pointcuts within an exhibits clause,
the compiler issues a warning, notifying the programmer that This, Target, or Args
should be used instead, as otherwise type soundness cannot not be guaranteed. When
using an invariant pointcut with a type variable, the implementation falls back to the
default semantics of AspectJ for the respective pointcut, matching variantly again (up
to the upper bound of the type variable).

5.5. Static Overloading

In addition to overriding, we also support static overloading of JPIs. For instance, one
can write the following definition.

jpi void CheckingOut(double price, Customer cus);
jpi void CheckingOut(double price, int amount, Customer cus);

Similar to overloaded methods in Java, overloading of JPIs is resolved completely
at compile time. Overloaded JPI definitions are thus treated exactly as if they had
different names. Therefore, overloading is just a means to allow the programmer to
document that two JPIs are inherently related; it has no semantic implications.

5.6. Reuse of Implementation for Closure Join Points

Interestingly, our abc extension for join point interfaces extends and completely
reuses the original implementation for closure join points [Bodden 2011]. abc uses
the JastAdd [Ekman and Hedin 2007] compiler front-end, which allows for a truly
modular language definition. This allows the JPI extension to modularly define how
the closure join points implementation needs to be refined to match the correct syntax
and semantics that they require when used in combination with join point interfaces.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:28 E. Bodden et al.

6. EMPIRICAL EVALUATION

We first discuss the benefits of join point interfaces based on previous studies. Then we
report on a case study where we inspected several AspectJ applications for their usage
of pointcuts, and converted two of them to use JPIs. To measure the impact of generic
JPIs and controlled global quantification, we converted each project three times. The
first version uses neither generics nor global JPIs, the second includes generics, and
the third uses the full set of language mechanisms.

6.1. Benefits of Join Point Interfaces in Light of Previous Studies

Join point interfaces establish a clear contract between base code and aspects, aid-
ing separate development, sharing ideas with XPIs and JPTs. The benefits of XPIs
and JPTs on modularity have been empirically demonstrated in previous editions of
TOSEM [Sullivan et al. 2010; Steimann et al. 2010].

Recently, Dyer et al. [2012] report on an exploratory study of the design impact
of different approaches to aspect interfaces. They consider the evolution of aspect-
oriented software using different approaches, namely plain AspectJ, annotation style,
and quantified, typed events [Rajan and Leavens 2008]. While they do not consider
JPIs in their study, their key results support our design of join point interfaces.

—The use of inter-type declarations is prevalent. By integrating JPIs in AspectJ, we
inherit this mechanism for free.

—Quantification failure due to the need to advise join points that cannot be denoted
using the pointcut language occurred on 5% of advised join point shadows. Explicit
announcement addresses these cases nicely.

—The lack of quantification support with quantified typed events was problematic
because it required to keep track of design rules that affect all members of a given
class (e.g., make all methods synchronized). Implicit announcement with exhibits
clauses supports these cases.

—Almost a fifth of changes to pointcuts was due to the fragile pointcut problem. In our
setting, pointcuts would likely be per class, making those changes more localized.

—There were several instances where the fact that context information is restricted to
join-point-specific attributes (this, target, args) was problematic, yielding additional
complexity. Explicit announcement approaches make it easy to expose arbitrary
context information.11

To evaluate the importance of a sound treatment of checked exceptions in aspect
interfaces, it is instructive to look at the lessons learned by Robillard and Murphy
in an effort to design robust programs with exceptions [Robillard and Murphy 2000].
They report that focusing on specifying and designing the exceptions from the very
early stages of development of a system is not enough; exception handling is a global
phenomenon that is difficult and costly to fully anticipate in the design phase. Thus,
inevitably, the exceptions that can be thrown from modules are bound to evolve over
time, as development progresses and this global phenomenon is better understood. The
support that JPIs provide to report exception conformance mismatch between aspects
and advised code in a modular fashion is therefore particularly necessary: as modules
change their exception interface, immediate and local feedback is crucial to decide if
these changes must be promoted to the actual contract between aspects and advised
code. This avoids errors before system integration time.

11Context-aware aspects [Tanter et al. 2006] are a general mechanism that supports arbitrary context
information with implicit announcement; a similar flexibility is found in AspectScript [Toledo et al. 2010].

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:29

6.2. Case Study Subjects

To find a practical semantics for JPIs, and in particular join point polymorphism,
we have first inspected a set of existing AspectJ applications from the corpus of
Khatchadourian et al. [2009]: AJHotDraw, an aspect-oriented version of JHotDraw, a
drawing application; Glassbox, a diagnosis tool for Java applications; SpaceWar, a space
war game that uses aspects to extend the game in various respects; and LawOfDemeter,
a small set of aspects checking the compliance to the Law of Demeter programming
rules [Lieberherr et al. 1988]. The code for all subjects is available from the JPI project
Web site.

The first three projects were selected because of their comparatively large size and
number of aspects. LawOfDemeter is a rather small project that showcases an inter-
esting use of pointcuts, as discussed further shortly.

6.3. Join Point Polymorphism

We inspected the programs using both the AspectJ Development Tools [Clement et al.
2003] and AspectMaps [Fabry et al. 2011]. These tools allowed us to easily identify
which advices advise which join point shadows. In particular, we focused on the shadows
that are advised by more than one advice, as this hints at potential for subtyping. We
also systematically investigated all pointcut expressions used in these projects and
looked for potential type hierarchies. Our investigation revealed several interesting
example hierarchies and clearly supports the usefulness of our semantics of join point
subtyping. We now discuss a few representative examples.

6.3.1. Subtyping Patterns. We identify two patterns that programmers use to “emulate”
subtyping with pointcuts. LawOfDemeter contains the following pointcuts.

pointcut MethodCallSite(): scope() && call(∗ ∗(..));
pointcut MethodCall(Object thiz, Object targt):

MethodCallSite() && this(thiz) && target(targt);
pointcut SelfCall(Object thiz, Object targt):

MethodCall(thiz,targt) && if(thiz == targt);

These pointcuts form an instance of a pattern that we call subtype by restriction.
MethodCall restricts the join points exposed by MethodCallSite to instance methods,
through additional this and target pointcuts. SelfCall restricts this set further by
identifying self-calls using an additional if pointcut. A programmer could model this
join point type hierarchy with JPIs as follows.

1 jpi Object MethodCallSite();
2 jpi Object MethodCall(Object thiz, Object targt) extends MethodCallSite();
3 jpi Object SelfCall (Object thiz, Object targt) extends MethodCall(thiz,

targt);

The example shows that it is useful to allow subtypes to expose more arguments than
their supertypes (a.k.a. breadth subtyping): MethodCall exposes thiz and targt, while
MethodCallSite exposes nothing at all.

SpaceWars includes various instances of the subtype by restriction pattern, but also
features instances of the dual pattern, supertype by union. Consider the following.

pointcut syncPoint():
call(void Registry.register(..)) | |
call(void Registry.unregister(..)) | |

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:30 E. Bodden et al.

Fig. 4. A potential hierarchy of join point interfaces in Glassbox.

call(SpaceObject[] Registry.getObjects(..)) | |
call(Ship[] Registry.getShips(..));

pointcut unRegister(Registry registry):
target(registry) &&
(call(void register(..)) | | call(void unregister(..)));

Here the pointcut unRegister matches a subset of the join points matched by syncPoint
because syncPoints includes additional join points by disjunction (set union). Here
also, the subtype induced by unRegister exposes an additional argument.

6.3.2. Depth of Subtyping Hierarchies. Glassbox proved to be a very interesting case study
in that it provides over 80 aspects, and more than 200 pointcut definitions, with po-
tential for nontrivial join point type hierarchies. Here, we only show one of the most
interesting examples in Figure 4. The figure shows a hierarchy formed by 11 pointcuts
within the aspect ResponseTracer. We have added Stats as a root type that the aspect
does not contain explicitly, but which could be introduced to abstract the common parts
of the StartStats and EndStats pointcuts.

6.3.3. Advice Overriding. Glassbox showcases the interest of being able to declare
some advice as final to avoid overriding. An aspect in charge of system initial-
ization advises the execution of TestCase object constructors. Five test classes im-
plement the InitializedTestCase interface (ITC for short), and five implement the
ExplicitlyInitializedTestCase interface (EITC for short); one class implements both
(these interfaces are added via inter-type declarations). The aspect defines four be-
fore advices on these constructors, discriminating between different categories using
pointcuts. These pointcuts correspond to four join point types T1 . . . T4, where T1 is a
supertype of the three others. Without declaring the advice for T1 final, the advice for
T1 never executes since it is always overridden. The only solution would then be to
refactor the program to move the advice for T1 in a separate aspect. Declare the advice
for T1 as final solves the problem in a simpler manner, as it guarantees that the advice
will not be overridden and therefore always execute.

6.4. Join Point Polymorphism vs. Join Point Duplication

As discussed earlier, JPIs differ from JPTs in the way in which they resolve advice
dispatch. Our design decision to implement join point polymorphism rather then du-
plication is reinforced by the case study. With JPTs, in Glassbox, for all classes that
implement only one of the two interfaces ITC and EITC—10 out of 11—the advice as-
sociated with T1, which initializes a factory object, is executed twice. Our dispatch
semantics of JPIs avoids this problem: a given advice is guaranteed to execute at most
once for any given join point (Section 4.3).

6.5. Per-Kind Advice Overriding

AJHotDraw contains the following definitions.
pointcut commandExecuteCheck(AbstractCommand acommand) :

this(acommand)

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:31

&& execution(void AbstractCommand+.execute()) ..
&& !within(∗..JavaDrawApp.∗);

before(AbstractCommand acommand):
commandExecuteCheck(acommand) {..}

pointcut commandExecuteNotify(AbstractCommand acommand) :
commandExecuteCheck(acommand)
&& !within(org.jhotdraw.util.UndoCommand) ..
&& !within(org.jhotdraw.contrib.zoom.ZoomCommand);

after(AbstractCommand acommand):
commandExecuteNotify(acommand) {..}

This is another instance of the subtype by restriction pattern, with commandExecuteNotify
refining the pointcut commandExecuteCheck. This example validates our semantics to
consider advice kinds separately when resolving advice overriding (Section 4.3). In the
example, the first pointcut is advised with a before advice, while the second is advised
by an after advice. Assume now that we had abstracted from those pointcuts using
JPIs as in the following code.

before CheckingView(AbstractCommand acommand){..}
after NotifyingView(AbstractCommand acommand){..}

In this example, NotifyingView is a subtype of CheckingView. If we did not separate
advices by advice kind when determining advice overriding then only the NotifyingView
would execute at a NotifyingView join point, leading to an altered semantics compared
to the original AspectJ program. Conversely, because we do separate advices by kind,
when encountering a NotifyingView join point, the CheckingView advice is executed
before the join point and the NotifyingView afterward.

6.6. Duplication of Advice due to the Lack of Generic Types

The typing rules for JPIs enforce invariance on both return and exception types of
join point interfaces (Section 4.2). This is the simplest way to ensure soundness, but
can be too rigid unless generic types are used. In an application like AJHotDraw,
in which most pointcuts are very specific anyway, this rigidity is less problematic
than in applications that rely on wide-matching pointcuts, such as LawOfDemeter.
To assess the usefulness of generic JPIs, we first converted AJHotDraw and La-
wOfDemeter to use JPIs but not generics (and no global quantification either). All
converted projects are available online on the JPI project Web page. In AJHotDraw,
we found that only three advices required multiplication, but many copies had to be
created, increasing the total number of advices in this project from 49 to 77. In La-
wOfDemeter the number of advices was increased more than 10 times, moving from 6 to
68!

To see why, let us consider the Check aspect defined in the LawOfDemeter (LoD)
project, which checks that an object only sends messages to a certain set of closely
related objects according to the Law of Demeter [Lieberherr et al. 1988]. Figure 5
shows an advice that registers the LoD violations within an aspect called Check. The
important thing to note in this aspect definition is the extreme quantification used
(call(∗ ∗(..))), which is typical of dynamic analysis aspects.

To migrate the Check aspect to use JPIs, conversely to what we suggested in
Section 6.3.1, we cannot just use a single JPI like the following.

1 jpi Object MethodCall(Object thiz, Object targt);

The reason is that, in order to ensure type soundness, such a JPI could only match join
points where the argument and return type at the shadow is Object. This means that

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:32 E. Bodden et al.

Fig. 5. LoD check aspect (excerpt).

Fig. 6. LoD check aspect with (nongeneric) JPIs.

we would need to define one JPI per possible combination of types for this, target,
and the return type! (Normall, even all possible types of checked exceptions would
need to be considered, but the LoD project uses no checked exceptions.) In the concrete
LoD project, just handling the Check aspect for the examples included in the project
required us to write 21 JPIs.

1 jpi void MethodCall(TemporalQueue thiz, TemporalQueue targt);
2 jpi int MethodCall(TemporalQueue thiz, TQ N targt);
3 jpi PQ Node MethodCall(TemporalQueue thiz, TemporalQueue targt);
4 //etc.

In addition to this tedious and fragile list of JPI definitions, again due to invariance,
the Check aspect itself has to contain one advice for each such JPI. As Figure 6 shows,
all advice bodies are exact copies (note that for after advice, the return type of the JPI

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:33

Fig. 7. LoD check aspect with a generic JPI.

Table II. Number of Advices Defined in Each Version

AspectJ Non-generic JPI Generic JPI
LoD 6 68 6

AJHotDraw 49 77 49

is simply ignored). While this approach is “correct” in that all expected join points are
matched and type soundness is preserved, it is highly cumbersome for programmers
and, most importantly, it does not scale. As soon as one wants to apply the LoD aspects
to other projects, more JPIs and advices have to be defined; the crosscutting concern is
not modularized any longer.

It is worthwhile noting that JPTs would not suffer from this kind of duplication, due
to their more flexible but unsound type system.

6.7. Generic Types to the Rescue

As explained earlier, our answer to this problem is the support for generic JPIs. Using
generics, the preceding definitions can all be collapsed into one.

1 <R, A, B> jpi R MethodCall(A thiz, B targt);

This generic interface abstracts away the specific types involved. Now the programmer
can define a generic version of the Check aspect using a polymorphic advice (Figure 7).

To assess the impact of generic JPIs, we reimplemented the AJHotDraw-JPI and
LoD-JPI projects. As Table II shows, generic JPIs completely eliminate the problem
of repeated advice declarations in both projects. While the number of advice declara-
tions in the (nongeneric) JPI version was considerably increased (more than 10x for
LoD), the version using generic JPIs presents the exact same number of advices. This
clearly validates the practical positive impact of extending JPIs to support parametric
polymorphism.

6.8. Duplication of Exhibits Clauses due to Absence of Global Quantification

As our study also revealed, if JPIs are used in combination with highly crosscutting
aspects, developers may be forced to modify several (if not all) existing classes to in-
troduce exhibits clauses. To illustrate, let us consider the situation that a programmer
wishes to apply the generic JPI version of the Check aspect (Figure 7) to two classes
TemporalQueue and Repository. The programmer would introduce the exhibits clauses,
as shown in Figure 8. We note that this approach is fragile and does not scale: pro-
grammers must modify every single class to introduce the exhibits clauses. Moreover,
this redundancy is unnecessary, as in most cases all classes will bind the same JPI
to the same pointcut expression. In the migration of LoD to its generic JPI version,
this problem forced us to modify 21 of 23 classes to include the corresponding exhibits
clauses. JPTs, in this case, would suffer from the same duplication.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:34 E. Bodden et al.

Fig. 8. Base code advised by the generic JPI version of check aspect.

Table III. Number of Exhibits Clauses Defined in Each Version

Generic JPI version Global JPI version
LoD 130 0

AJHotDraw 46 46

6.9. Controlled Global Quantification to the Rescue

Using a global JPI allows programmers to easily replace all exhibits clauses by the
following declaration.

<T, U, V> global jpi T MethodCall(U thiz, V targt) :
call(T ∗(..))
&& This(thiz)
&& Target(targt);
//&& !within(lawOfDemeter..∗)
//&& !cflow(withincode(∗ lawOfDemeter..∗(..)));

Note that the commented-out clauses in the previous pointcut become unnecessary
when we seal all classes/aspects in the lawofdemeter package. Although sealing is not
generally enough to avoid infinite recursion in the execution of aspects (see Section 7 for
details), it is in the case of LoD, as the LoD aspects call only code from the lawofdemeter
package and from the JDK, which in our compiler is sealed by default. AJHotDraw
uses no global pointcuts, and therefore also cannot benefit from sealing. For both
applications it would not have made sense to seal all types by default.

To assess the impact of global pointcuts, we reimplemented the generic JPI versions
of both AJHotDraw and LoD with global pointcuts. As Table III shows, global point-
cuts significantly decrease the amount of scattered exhibits clauses in projects such
as LoD, which implement highly crosscutting aspects. While the number of exhibits
clauses in the (generic) JPI version of LoD was 130, the version using global JPIs in

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:35

Listing 6. JPT example causing infinite loop.

fact goes without any exhibits clauses. As expected, however, for applications such
as AJHotDraw, which comprise highly specific pointcuts, global quantification cannot
help, as different classes must expose different join point shadows for matching to the
respective aspects.

There is a clear tension between global quantification and class-level exhibits
clauses. On the one hand, exhibits declarations at the class level demand more code
annotations but have the positive effect of allowing for truly local reasoning at the class
level. On the other hand, global pointcuts allow programmers to eliminate many code
annotations at the cost of losing the ability to reason about advising locally.

Our case study shows that none of the two mechanisms is ideal for every aspect;
highly crosscutting aspects do benefit from global quantification. Many of them, like
LoD, or more generally dynamic analyses, cause no harm, because they are only ob-
serving the base-code execution. For other aspects that are meant to directly affect the
base execution, global quantification may be the wrong choice. The design we propose
reflects the intent to be pragmatic and support both families of aspects: programmers
can make the choice of which mechanism to use, in well-typed setting.

7. RELATED WORK

In Section 2, we discussed previous approaches to aspect decoupling. We now give
additional details on join point types, and describe how our work relates to event-based
publish/subscribe systems. Finally, we discuss other approaches to type-safe aspects.

7.1. Further Information on Join Point Types

In Section 2.3.1 we have elaborated on the facets of JPTs that are most relevant to
this work. We now discuss additional information about other minor differences with
respect to join point interfaces.

Symmetry. In our proposal, both classes and aspects are allowed to exhibit join
points. This is different from JPTs, where aspects cannot do so. In other words, in
the semantics of JPTs, aspects are always sealed. According to Steimann et al. [2010,
page 10], the motivation for this asymmetric approach is to avoid the possibility of
infinite recursion (caused by an advice advising itself). Unfortunately, only ensuring
that aspects do not lexically emit join points is not enough. Consider the JPT code in
Listing 6. In this example, the aspect itself indeed does not expose any join points.
However, it invokes Util.print, which does. This triggers an infinite recursion.

Tanter showed earlier that infinite recursion can be avoided by introducing execution
levels [Tanter 2010]. Execution levels are a dynamic property of control flow: the entire

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:36 E. Bodden et al.

control flow of an aspect is prevented from being advised by itself, not just the join
points that are lexically raised within the aspect. An efficient AspectJ implementation
of execution levels has already been developed [Tanter et al. 2010], showing how mul-
tiple dynamic analyses aspects can be reused off-the-shelf, even when the whole Java
standard libraries are open to advising. We plan to study the integration of execution
levels and JPIs in the future.

First-Class Join Points and Representation. Join points are first-class objects in JPTs
but not in JPIs. In that respect, we simply decided to follow the design of AspectJ, in
which join points are not first class either. In any case, just like in AspectJ, an advice
can obtain a reified join point mirror through reflection using thisJoinPoint. Other
aspect languages, like AspectScheme [Dutchyn et al. 2006], also support first-class join
points, although this is arguably more natural in these languages where functions
are first class. First-class join points are more powerful because they can outlive their
original execution context.

Whether first class or not, the important point for the purpose of sound decoupling
is that interfaces must carry the appropriate type information to allow modular type
checking. Just like first-class functions can be statically typed, first-class join points
are not problematic per se. In the design of JPTs, however, join point types miss crucial
typing information about return types and checked exceptions. While one could add
this information to the record-like representation of JPTs, one would in essence obtain
the description of a typed signature of a first-class function, but with a different syntax.
To us, the fact that type information is needed about the return type and exception
types in order to soundly specify the interface at a join point strongly suggests that a
method signature represention is better suited than a record definition. Interestingly,
other approaches to type-safe aspects (discussed later in Section 7.3) also adopt a
method/function type to describe join points.

Semantics of Explicit Announcement. Finally, the explicit join points used in JPTs
can have a somewhat surprising semantics to Java programmers, as they introduce
a form of dynamic scoping. This issue also leads to the potential to have data races
on local variables if aspects decide to execute the original join point asynchronously.
Earlier work by Bodden discusses these problems in detail; closure join points were
designed to address these issues [Bodden 2011].

7.2. Event-Based Languages

There is a large body of work on expressive language mechanisms for event announce-
ment, composition, and processing, usually called event-based languages, or also sum-
marized under the umbrella term publish/subscribe. In general, such systems differ
from join point interfaces in that they typically focus more on the event handling side
than on the event announcement side. With join point interfaces, the emphasis is on
supporting both implicit and explicit announcement in a uniform, flexible, and yet
type-safe manner. Event-based languages typically allow for explicit announcement
only, but often provide for more declarative event-processing facilities. In contrast, ad-
vices in AspectJ contain plain Java code, which makes them anything but declarative.
But there is also a conceptual difference. Pure event-based systems typically have a
notion of atomic events. This is very different from AspectJ, in which join points em-
bed computation, and thus have a duration, can be skipped, repeated, or replaced by
an alternative computation. This embedding of computation inside join points largely
complicates the control flows and data flows involved, and makes static typing more
challenging. To see how, we next discuss how JPIs relate to five existing event-based
approaches in this area, namely EJP, Ptolemy, EventJava, EScala, and Fabric.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:37

Explicit Join Points (EJP). Hoffman and Eugster [2007] first introduced the idea
of trading obliviousness such that advised code raises events explicitly. Explicit Join
Points, or EJPs, support a novel paradigm called cooperative aspect-oriented program-
ming [Hoffman and Eugster 2012]. EJPs only support explicit announcement and are
close to AspectJ in the sense that they rely on the original flexibility and unsound
typing rules for around advice. Through the language design of EJPs, the interaction
at those program points can be very rich. A particularly interesting feature is that
the EJP implementation allows an advice to consume checked exceptions (by handling
them with a try/catch block). As the authors show, this can be a very useful feature
which can often simplify code readability and maintenance. Unfortunately, though,
this semantics is only correct under the assumption that some aspect actually will be
connected to each such EJP at any time. The EJP language addresses this issue by
allowing EJP declarations to define a handles clause, which indicates that the EJP is
guaranteed to handle certain checked exception types. The compiler assumes a closed
program, checking that indeed some advice is bound to such an EJP. It also checks
that the execution of the advice does not depend on dynamic checks, because if it did
there may be an execution path on which a checked exception evades the EJP with-
out being handled. This semantics, while interesting and flexible, is therefore not a
semantics that we can adopt for JPIs, because we want to free base-code programmers
from any dependency about specific aspects, and want to ensure that type checking
can be carried out modularly. On a different topic, quite interestingly, the case study
of Hoffman and Eugster shows good use cases for generic types even in the absence of
global quantification. In our study we only found two nonglobal JPIs for which generic
types were helpful.

Ptolemy. Like EJPs, Ptolemy [Rajan and Leavens 2008] also only supports explicit
announcement of events. Events are defined with event types, which syntactically
follow JPTs in that they resemble records. Like JPTs, they miss information about
checked exceptions, but unlike JPTs they do include a return type. It is quite interesting
to compare Ptolemy to JPIs because it shows what typing rules can be relaxed if one
restricts the expressive power of advices. Ptolemy does support around advice, but
forces around advice to always proceed with the original context values (arguments,
receiver). A recent publication on Ptolemy explains the support for depth subtyping
that is possible thanks to this restriction [Fernando et al. 2012]: for instance, if one
event type binds a value of type List, then an event subtype can safely specialize this
type to LinkedList. This is safe because the type is only used to pass values into the
advice but not from the advice back into the advised context. Further, because Ptolemy
only supports explicit announcement, emitted join points have a single most specific
type, simplifying advice dispatch. Ptolemy also supports behavioral contracts, called
translucid contracts [Bagherzadeh et al. 2011], to specify and verify control effects
induced by event handlers. These verification techniques go beyond usual type checks,
but would be interesting to see in combination with JPIs. Ptolemy is clearly lacking
some better handling of exceptions. Code drawn from a recent case study by the authors
[Dyer et al. 2012] shows that event types do not declare exceptions, but that all advices
declare to throw Throwable. Nevertheless, none of the contexts that raise the respective
explicit join points is actually prepared to catch such exceptions. This approach is
therefore unsound with respect to the Java semantics of checked exceptions.

EventJava. The language EventJava by Eugster and Jayaram [2009] focuses even
more on event processing than announcement. The language allows for powerful event
combinators and filters, and a notion of “streams”, which give programmers a view on
a sliding window over a sequence of equally typed events. EventJava is quite different
from JPIs, though, in that all its event handling occurs asynchronous to the base

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:38 E. Bodden et al.

program. Event handlers therefore cannot return values. There is also no facility for
implicit announcement.

Distributed Programing with Typed Events. In a recent piece of work on distributed
programing with typed events, Eugster and Guerraoui [2004] show how typed events
can successfully establish high-level abstractions in a distributed setting. Interestingly,
the authors discuss not only a language-based but also a library-based approach. From
a type-checking perspective, the scenario appears similar to EventJava, as events are
explicitly announced and always asynchronous.

Fabric. Fabric [Liu et al. 2009] is a Java language extension that supports distributed
programming in a largely transparent fashion. Programmers can access worker nodes,
dissemination nodes, and storage nodes through special object handles. Invocations
on these nodes are automatically processed through the language runtime without re-
quiring programmers to write boilerplate code. Event announcement happens through
standard method calls and is thus always explicit. One feature that sets Fabric apart
from most other languages is a type system that allows programmers to track infor-
mation flow throughout the distributed system. It would be interesting to think about
the impact of adding such a feature to the JPI language.

EScala. EScala [Gasiunas et al. 2011] is an approach to modular event-driven pro-
gramming in Scala, which, like JPTs and JPIs, also combines implicit and explicit
events. EScala does not support around advice, so event definitions need not declare
return types; exception types are missing, but this reflects the design philosophy of the
Scala language. EScala treats both events and handlers as object members, subject
to encapsulation and late binding. Aspects specify events of interest with respect to
specific source objects. This contrasts with both JPIs and most other approaches, where
advices are attached to event types, regardless of the sources that emit these events.

7.3. Type Soundness and Aspects

Soundness issues with the type system of AspectJ were first reported by Wand et al.
[2004], although no solution was proposed. Jagadeesan et al. [2006] formulate a sound
approach in which an advice type may depend on explicitly declared type variables.
Like in our approach, they use the same signature for proceed and the corresponding
advice, and therefore require invariance as well. Some flexibility is regained because
the type variables from the signatures can be instantiated for each join point. Due to
parametricity, it is difficult to express arbitrary replacement advice.

MiniMAO1 [Clifton and Leavens 2006] and StrongAspectJ [De Fraine et al. 2008]
both consider different signatures for advice and proceed, thereby allowing more liberal
pointcut/advice bindings while maintaining soundness. StrongAspectJ is more flexible
in that it supports signature ranges for pointcuts and type variables for generic ad-
vices. As recognized by the authors, however, the more expressive typing constructs of
StrongAspectJ result in quite complicated syntax forms. The typig rules for JPIs are
more restrictive (our type ranges are basically singletons) but this design gives us the
advantage of being able to offer a simpler syntax. The A calculus [De Fraine et al. 2010]
refines the ideas of StrongAspectJ and proposes a simpler syntax, and a more flexible
typing approach in which both the advice body and proceed are given the same fresh
type variable, which fits in the declared type range.

Aspectual Caml [Masuhara et al. 2005] is an aspect-oriented extension of OCaml.
An interesting feature of Aspectual Caml is that it uses type information to influence
matching, rather than for reporting type errors. More precisely, they infer the type
of pointcuts from the associated advices, and only match join points that are valid

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:39

according to these inferred types. It is unclear if the inference approach may be ported
to an object-oriented language with subtype polymorphism.

All the aforesaid approaches are formulated in a traditional pointcut-advice setting,
without relying on interfaces to uncouple advised and aspect code. Our design of generic
JPIs basically follows the proposal of Jagadeesan et al. This choice is pragmatic: while
we have clear evidence of the interest of this approach for JPIs in our case study, we
have not faced a case where the extra flexibility of StrongAspectJ or the A calculus was
required. This may change in the future as we experiment with more programs.

8. CONCLUSION

Join Point Interfaces (JPIs) support flexible and safe decoupling of aspect-oriented
programs through modular type checking. Like interfaces in statically typed object-
oriented languages, JPIs are a machine-checked type-based contract that supports
separate development in a robust and safe manner. Key to this support is the spec-
ification of JPIs as method-like signatures with return types and checked exception
types. JPIs can be organized in hierarchies to structure the space of join points in a
flexible manner, enabling join point polymorphism and dynamic advice dispatch. The
use of parametric polymorphism in JPI definitions, along with support for controlled
global quantification, makes it possible for JPIs to preserve most of the flexibility that
AspectJ offers, without sacrificing type safety.

We have implemented JPIs as a publicly available AspectJ extension in the abc
compiler, and have rewritten a set of existing AspectJ programs to take advantage of
JPIs. This study supports our major design choices. In particular, the study confirms
that the design is both flexible and type safe. Further experiments will tell if more
advanced typing mechanisms like type ranges [De Fraine et al. 2008] are needed in
practice. We also plan to investigate to what extent join point interfaces can be enriched
with richer behavioral specifications.

ACKNOWLEDGMENTS

We wish to thank Friedrich Steimann and the anonymous reviewers for many helpful comments on earlier
versions of this article, which greatly helped us improve the quality of the presentation.

REFERENCES

J. Aldrich. 2005. Open modules: Modular reasoning about advice. In Proceedings of the 19th European
Conference on Object-Oriented Programming (ECOOP’05). A. P. Black, Ed., Lecture Notes in Computer
Science, vol. 3586, Springer, 144–168.

P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O. Lhoták, O. De Moor, D. Sereni, G.
Sittampalam, and J. Tibble. 2005. ABC: An extensible aspectj compiler. In Proceedings of the 4th ACM
International Conference on Aspect-Oriented Software Development (AOSD’05). ACM Press, New York,
87–98.

M. Bagherzadeh, H. Rajan, G. T. Leavens, and S. Mooney. 2011. Translucid contracts: Expressive specification
and modular verification for aspect-oriented interfaces. In Proceedings of the 10th ACM International
Conference on Aspect-Oriented Software Development (AOSD’11). ACM Press, New York, 141–152.

E. Bodden. 2011. Closure joinpoints: Block joinpoints without surprises. In Proceedings of the 10th ACM
International Conference on Aspect-Oriented Software Development (AOSD’11). ACM Press, New York,
117–128.

G. Bracha, P. Ahe, V. Bykov, Y. Kashai, W. Maddox, and E. Miranda. 2010. Modules as objects in newspeak.
In Proceedings of the 24th European Conference on Object-Oriented Programming (ECOOP’10). Lecture
Notes in Computer Science, vol. 6183, Springer, 405–428.

A. Clement, A. Colyer, and M. Kersten. 2003. Aspect-oriented programming with ajdt. In Proceedings of the
ECOOP Workshop on Analysis of Aspect-Oriented Software.

C. Clifton and G. T. Leavens. 2006. MiniMAO1: An imperative core language for studying aspect oriented
reasoning. Sci. Comput. Program. 63, 312–374.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

7:40 E. Bodden et al.

C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. 2000. MultiJava: Modular open classes and sym-
metric multiple dispatch in java. In Proceedings of the 15th International Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’00). ACM Press, New York, 130–145.

B. De Fraine, E. Ernst, and M. Südholt. 2010. Essential aop: The a calculus. In Proceedings of the 24th

European Conference on Object-Oriented Programming (ECOOP’10). 101–125.
B. De Fraine, M. Südholt, and V. Jonckers. 2008. StrongAspectJ: Flexible and safe pointcut/advice bind-

ings. In Proceedings of the 7th ACM International Conference on Aspect-Oriented Software Development
(AOSD’08). ACM Press, New York, 60–71.

C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. 2006. Semantics and scoping of aspects in higherorder
languages. Sci. Comput. Program. 63, 3, 207–239.

R. Dyer, H. Rajan, and Y. Cai. 2012. An exploratory study of the design impact of language features for aspect-
oriented interfaces. In Proceedings of the 11th International Conference on Aspect-Oriented Software
Development (AOSD’12). É. Tanter and K. J. Sullivan, Eds., ACM Press, New York, 143–154.

T. Ekman and G. Hedin. 2007. The jastadd extensible java compiler. In Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems and Applications (OOPSLA’07). 1–18.

P. Eugster and K. Jayaram. 2009. Eventjava: An extension of java for event correlation. In Proceedings of the
23rd European Conference on Object-Oriented Programming (ECOOP’09). Lecture Notes in Computer
Science, vol. 5653, Springer, 570–594.

P. T. Eugster and R. Guerraoui. 2004. Distributed programming with typed events. IEEE Softw. 21, 2, 56–64.
J. Fabry, A. Kellens, and S. Ducasse. 2011. Aspectmaps: A scalable visualization of join point shadows.

In Proceedings of 19th IEEE International Conference on Program Comprehension (ICPC’11). IEEE
Computer Society Press, 121–130.

R. D. Fernando, R. Dyer, and H. Rajan. 2012. Event type polymorphism. In Proceedings of the 11th Workshop
on Foundations of Aspect-Oriented Languages (FOAL’12). ACM Press, New York, 33–38.

V. Gasiunas, L. Satabin, M. Mezini, A. Núñez, and J. Noyé. 2011. EScala: Modular event-driven object inter-
actions in scala. In Proceedings of the 10th ACM International Conference on Aspect-Oriented Software
Development (AOSD’11). ACM Press, New York, 227–240.

S. Gudmundson and G. Kiczales. 2001. Addressing practical software development issues in aspectj with a
pointcut interface. In Proceedings of the Workshop on Advanced Separation of Concerns.

K. Gybels and J. Brichau. 2003. Arranging language features for more robust pattern-based crosscuts. In Pro-
ceedings of the 2nd ACM International Conference on Aspect-Oriented Software Development (AOSD’03).
M. Aksit, Ed., ACM Press, New York, 60–69.

E. Hilsdale and J. Hugunin. 2004. Advice weaving in aspectj. In Proceedings of the 3rd ACM Interna-
tional Conference on Aspect-Oriented Software Development (AOSD’04). K. Lieberherr, Ed., ACM Press,
New York, 26–35.

K. Hoffman and P. Eugster. 2007. Bridging java and aspectj through explicit join points. In Proceedings of
the 9th International Symposium on Principles and Practice of Programming in Java (PPPJ’07). ACM
Press, New York, 63–72.

K. Hoffman and P. Eugster. 2012. Trading obliviousness for modularity with cooperative aspectoriented
programming. ACM Trans. Softw. Engin. Methodol. 22, 3.

A. Igarashi, B. C. Pierce, and P. Wadler. 2001. Featherweight java: A minimal core calculus for java and gj.
ACM Trans. Program. Lang. Syst. 23, 3, 396–450.

M. Inostroza, É. Tanter, and E. Bodden. 2011. Join point interfaces for modular reasoning in aspect-oriented
programs. In Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE’11). New Ideas Track.

R. Jagadeesan, A. Jeffrey, and J. Riely. 2006. Typed parametric polymorphism for aspects. Sci. Comput.
Program. 63, 267–296.

R. Khatchadourian, P. Greenwood, A. Rashid, and G. Xu. 2009. Pointcut rejuvenation: Recovering pointcut
expressions in evolving aspect-oriented software. In Proceedings of the International Conference on
Automated Software Engineering (ASE’09). IEEE/ACM, 575–579.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. 2001. An overview of aspectj.
In Proceedings of the 15th European Conference on Object-Oriented Programming (ECOOP’01). J. L.
Knudsen, Ed., Lecture Notes in Computer Science, vol. 2072, Springer, 327–353.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. 1997. Aspect-
oriented programming. In Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP’97). Lecture Notes in Computer Science, vol. 1241, Springer, 220–242.

G. Kiczales and M. Mezini. 2005. Aspect-oriented programming and modular reasoning. In Proceedings of
the 27th International Conference on Software Engineering (ICSE’05). ACM Press, New York, 49–58.

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

Join Point Interfaces for Safe and Flexible Decoupling of Aspects 7:41

R. Laddad. 2003. AspectJ in Action: Practical Aspect-Oriented Programming. Manning Press.
K. Lieberherr, I. Holland, and A. Riel. 1988. Object-oriented programming: An objective sense of style. In

Proceedings of the 3rd International Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’88). N. Meyrowitz, Ed., ACM Press, New York, 323–334.

J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers. 2009. Fabric: A platform for secure
distributed computation and storage. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles (SOSP’09). ACM Press, New York, 321–334.

H. Masuhara, G. Kiczales, and C. Dutchyn. 2003. A compilation and optimization model for aspect-oriented
programs. In Proceedings of the 12th International Conference on Compiler Construction (CC’03). G.
Hedin, Ed., Lecture Notes in Computer Science, vol. 2622, Springer, 46–60.

H. Masuhara, H. Tatsuzawa, and A. Yonezawa. 2005. Aspectual caml: An aspect-oriented functional lan-
guage. In Proceedings of the 10th ACM SIGPLAN Conference on Functional Programming (ICFP’05).
ACM Press, New York, 320–330.

M. Odersky, L. Spoon, and B. Venners. 2008. Programming in Scala: A Comprehensive Step-by-Step Guide.
Artima Inc.

N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren, O. De Moor, and G. Sittampalam. 2006. Adding open
modules to aspectj. In Proceedings of the 5th ACM International Conference on Aspect-Oriented Software
Development (AOSD’06). ACM Press, New York, 39–50.

A. Paepcke, Ed. 1993. Object-Oriented Programming: The CLOS Perspective. MIT Press.
D. Parnas. 1972. On the criteria for decomposing systems into modules. Comm. ACM 15, 12, 1053–1058.
H. Rajan and G. T. Leavens. 2008. Ptolemy: A language with quantified, typed events. In Proceedings of the

22nd European Conference on Object-oriented Programming (ECOOP’08). J. Vitek, Ed., Lecture Notes in
Computer Science, vol. 5142, Springer, 155–179.

J. C. Reynolds. 1983. Types, abstraction, and parametric polymorphism. Inf. Process. 83, 513–523.
M. Robillard and G. Murphy. 2000. Designing robust java programs with exceptions. In Proceedings of the 8th

ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT/FSE’00).
2–10.

F. Steimann. 2006. The paradoxical success of aspect-oriented programming. In Proceedings of the 21st

ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’06). ACM Press, New York, 481–497.

F. Steimann. 2013. Personal communication.
F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner. 2010. Types and modularity for implicit invocation with

implicit announcement. ACM Trans. Softw. Engin. Methodol. 20, 1, 1–43.
M. Stoerzer and J. Graf. 2005. Using pointcut delta analysis to support evolution of aspect-oriented software.

In Proceedings of the 21st IEEE International Conference on Software Maintenance. 653–656.
K. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai, M. Shonle, and N. Tewari. 2010. Modular aspect-

oriented design with xpis. ACM Trans. Softw. Engin. Methodol. 20, 2.
É. Tanter. 2010. Execution levels for aspect-oriented programming. In Proceedings of the 9th ACM Interna-

tional Conference on Aspect-Oriented Software Development (AOSD’10). ACM Press, New York, 37–48.
É. Tanter, K. Gybels, M. Denker, and A. Bergel. 2006. Context-aware aspects. In Proceedings of the 5th

International Symposium on Software Composition (SC’06). W. Löwe and M. Südholt, Eds., Lecture
Notes in Computer Science, vol. 4089, Springer, 227–242.

É. Tanter, P. Moret, W. Binder, and D. Ansaloni. 2010. Composition of dynamic analysis aspects. In Proceed-
ings of the 9th ACM SIGPLAN International Conference on Generative Programming and Component
Engineering (GPCE’10). ACM Press, New York, 113–122.

R. Toledo, P. Leger, and É. Tanter. 2010. Aspectscript: Expressive aspects for the web. In Proceedings of
the 9th International Conference on Aspect-Oriented Software Development (AOSD’10). ACM Press,
New York, 13–24.

M. Wand, G. Kiczales, and C. Dutchyn. 2004. A semantics for advice and dynamic join points in aspect-
oriented programming. ACM Trans. Program. Lang. Syst. 26, 5, 890–910.

Received May 2012; revised January 2013; accepted January 2013

ACM Transactions on Software Engineering and Methodology, Vol. 23, No. 1, Article 7, Pub. date: February 2014.

