Journal of

|Software: Evolution and Process

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2014; 26:386—403
Published online 8 January 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.1576

MDE-based process tailoring strategy

Julio A. Hurtado Alegrl’al’z’*’T, Maria Cecilia Bastam'caz, Alcides Quispe2 and
Sergio F. Ochoa”

YIDIS Research Group, University of Cauca, Popaydn, Colombia
2Computer Science Department, Universidad de Chile, Santiago, Chile

SUMMARY

Defining organizational software processes is essential for enhancing maturity because they cannot be
improved if they are not specified. However, software process definition is hard and still not good for
assuring productivity because the best process depends on the project’s particularities. The process
engineer can define a specific process for each kind of project, but this is expensive, unrepeatable, and
error prone. Moreover, it is difficult to foresee all project scenarios and therefore the appropriate
processes. The most usual situation is to apply always the same software process, although it is known
to be suboptimal. To deal with this challenge, we propose a model-based approach to software process
tailoring that automatically generates project-specific processes on the basis of the organizational process
and project contexts. We still require competent process engineers to define the company’s process, but
once done, our approach is systematic, repeatable, and easy to use. The proposal is applied for tailoring
the requirements engineering process of a medium-size Chilean company. Processes obtained matched
those used in the company for planned project contexts, and they were also reasonable for nonexpected
situations. The company’s process and project engineers agreed that the approach was highly valuable.
Copyright © 2013 John Wiley & Sons, Ltd.

Received 17 March 2012; Revised 13 August 2012; Accepted 19 October 2012

KEY WORDS: software processes; process tailoring; model-driven engineering

1. INTRODUCTION

Different software development life cycles suggest specific activities to be carried out in a particular
order, from traditional models such as the Waterfall to more modern ones such as RUP, Scrum, or
XP. But if a company aims to certify or evaluate its software development process, it should be
rigorously defined as prescribed by most popular models and standards such as CMMI-Dev and
ISO/IEC 12207. This organizational process definition always requires a huge effort [1, 2], and it
still needs to be adapted to satisfy the characteristics of specific project situations [3].

There is no unique good software process for all projects because appropriateness depends on
various organizational, project, and product characteristics [4], and what is even worse, all these
characteristics change continuously. For example, if the company develops a new version of
an old product, prototyping may not be necessary, whereas it would be a requirement for
innovative products. Similarly, an incident project may not need to generate a detailed design
work product, whereas it is a requirement for a new development. Therefore, a one-size fits-all
approach does not work for software development [5]. Each project has its own characteristics
and requires a particular range of techniques and strategies [6], and selecting a set of practices

*Correspondence to: Julio A. Hurtado Alegria, Computer Science Department, Universidad de Chile, Popayan, Chile.
E-mail: ahurtado@unicauca.edu.co

Copyright © 2013 John Wiley & Sons, Ltd.

MDE-BASED PROCESS TAILORING STRATEGY 387

and integrating them into a coherent process should also be aligned with the business context [7].
It has been suggested that the right set of practices for a project can be better found if we
understand the context of the company [8]. We therefore consider that each project context
should dictate the definition of the process that best fits it. Moreover, each particular process
applied should not vary dramatically from the organizational process, so that process knowledge
acquired by the development team could be reused.

Tailoring is the process of configuring a general software process for adapting it to a project’s
particularities [9]. Empirical studies show that process tailoring is difficult because it involves
intensive knowledge generation and deployment [10], and it is also time consuming [11]. Therefore,
it is important to reuse the knowledge involved in tailoring so that processes share the same
tailoring criteria. Encapsulating this knowledge also allows to evolve it.

Model-driven engineering (MDE) [12] is a software development approach in which abstract models
are defined and systematically transformed into more concrete models and eventually into source code.
This approach promotes reuse through a generative strategy. MDE can also be used in software process
engineering [13], for example, using transformations as instantiation strategies [14]. However, care
should be taken in applying MDE because people working in industry are not usually familiar with
this approach.

In this paper, we propose an approach for automatically tailoring organizational processes to particular
project contexts on the basis of MDE techniques so that appropriate processes are achieved rapidly and
with little effort. Tailoring is implemented by means of a series of transformations whose inputs are the
organizational process including variabilities, and a model of the project context, and whose output is
the context-adapted process, as shown in Figure 1. In a previous work [15], we proposed to manually
generate the organizational process model from the organizational process defined by the company’s
process engineer and also to manually transform the adapted process model back into the process
format. These two activities were time consuming and error prone, and the process engineer could
hardly understand the software process when it was in its model format, so the approach has been
enhanced with automatic transformations from the software processes defined by process engineers to
their model version and vice versa. This tailoring strategy is now completely automated in all its steps
as shown in Figure 2.

ke Organizational
e o fe Software Process

4
MDE-based R Lo
Tailoring " el e
]
Y
o

Context-Adapted
Software Process

Project Context
Model

Figure 1. A generative strategy for process tailoring.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403
DOI: 10.1002/smr

388 JULIO A. HURTADO ALEGRIA ET AL.

Organizational
Software Process

: Organizational
. Process Model

Context-Adapted
Process Model

/ -‘
Context-Adapted

Process

Project Context K

Model-to-model Model-to-text/ Text-to-model
transformation transformations

Figure 2. Proposed model-driven engineering approach for process tailoring.

The strategy considers two inputs: the organizational software process and a project context model.
The first one is an XML textual representation of the software process as exported by the Eclipse
Process Framework Composer (EPFC). The second input is an XML Metadata Interchange (XMI)
representation of the context model for a particular project. Provided that the proposed tailoring
approach performs a model-to-model transformation, the textual organizational software process is
automatically transformed to an XMI model by using a text-to-model transformation. Then, the
tailoring transformation, implemented as a set of Atlas Transformation Language (ATL) rules,
obtains an adapted process on the basis of the input models. This model-to-model transformation
produces an XMI model representing the adapted process. Such a model is then transformed back to
an XML representation by using a model-to-text transformation, so that it can be visualized in
EPFC. We formalize metamodels by using Eclipse Modeling Framework (EMF) and implement
model-to-model transformation rules by using ATL’ and text-to-model and model-to-text
transformations by using Textual Concrete Syntax (TCS).*

Using the proposed approach, this paper illustrates the tailoring of the requirements engineering
(RE) process that has been used and evolved for several years in a medium-size Chilean software
company. The process considers variation points according to different context attributes including
the knowledge about the application domain (high, medium, or low), the project type (development,
extension, or reengineering), and size (small, medium, or large), among others.

The paper formalizes the general RE process including its planned variability, and it shows how the
proposed MDE-based tailoring approach is actually able to yield the particular process to be followed
for each specific context. We were also able to achieve appropriate processes by combining tailoring
rules for unanticipated settings. All these results were validated by the company’s process engineers
and project engineers who found it highly valuable. The strategy was particularly successful because
the number of variabilities was not large provided that the process was not large either, so it was
possible for the process engineers to understand how each tailoring decision related the project
context to each variability point in the process, and they could foresee the result of the rule
combination.

The rest of the paper is structured as follows. Section 2 presents some related work. In Section 3, we
describe the tailoring process and the involved models and transformations. The application of the
tailoring approach for the RE case study is presented in Section 4. Finally, Section 5 presents the
conclusions and future work.

*Atlas Transformation Language (ATL): http://www.eclipse.org/atl/
Textual Concrete Syntax (TCS): http://www.eclipse.org/gmt/tcs/

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403
DOI: 10.1002/smr

http://www.eclipse.org/gmt/tcs/

MDE-BASED PROCESS TAILORING STRATEGY 389

2. RELATED WORK

There are several diverse approaches to tailoring processes. The assemble approach [16] enables the
implementation of tailoring decisions about deleting and merging process elements. These proposals
use formalisms that turn process tailoring a very complex task in practice.

The situational method engineering approach focuses on project-specific method construction [17].
During the organizational process definition, an adaptable structure and a guide for process tailoring by
situational knowledge are defined [18]. Nevertheless, in most cases, the effort for tailoring the process
is huge, especially when an assembly approach is carried out at tailoring time [3]. This is a big problem
because process tailoring normally is the responsibility of the project manager but requires the
experience and knowledge of the software process engineer, so a suitable separation between their
roles is not achieved [19].

Some processes such as the Unified Process [20] use an adjustment guide approach where tailoring
rules are defined as recommendations to adapt phases, iterations, and disciplines according to project-
specific situations. These guides are text written so they are subject to interpretation. This was the
approach originally followed in the company where we validated our proposed MDE tailoring
approach and we empirically realized that there were some ambiguities, and even people at the
company did not agree sometimes about the meaning of certain guides.

Agile methods such as XP use an auto-adaptable approach where a project and team-adapted process
results as an emergent entity from a set of principles, values, and practices. However, it is difficult, if
possible at all, to predict the appropriateness of the process that will emerge. Other processes such as
Crystal Methodology [21] follow a template-based approach, where a methodology family with four
members, Clear, Yellow, Orange, and Red, is defined. Commercial processes such as Rational Unified
Process use a framework-based approach or configuration approach [22], where a general process is
defined and a specific configuration is created for each specific project. The framework strategy makes
the process model large and complex, and sophisticated process engineering knowledge is required to
produce a valid configuration each time, whereas in the template strategy, it is difficult to define the
adequate set of templates for satisfying each specific project [23].

A recovery tailoring approach has been proposed using case-based reasoning [24, 25] and neural
networks [26]. In these cases, tailoring is based on an incremental set of previously tailored
processes, so the benefits are achieved after various processes have been adapted. The main
difficulties in this approach are the set-up cost required and the nonplanned change and evolution of
various processes, instead of just one. In this case, monotonic knowledge enriches the decision
making, whereas new facts that contradict previous experience could result in awkward results.

Killisperger [14] proposed an instantiation-based approach. Because the industry has few processes
formalized up to the enactment level, this approach may still result in little benefit in practice, but it is
promising.

Provided that software processes can be considered as software too [27], a Software Process Line
(SPrL) can be considered as a special Software Product Line in the software process engineering
domain [15]. SPrLL shares common features and exhibits variability [28]. Consequently, an SPrL is
an ideal way to define, tailor, and evolve a set of related processes as it is established by the works
on process variability representation [29], SPrL architectures [30], process domain analysis [11], and
SPrL scoping [31]. An SPrL approach facilitates planned reuse, whereas classic tailoring reactively
integrates unanticipated variability in the process model [31].

Our work proposes an MDE tailoring strategy as a production strategy of project-specific processes
in the context of an SPrL.

We use the MDE tailoring strategy using as input an organizational process with variabilities and a
specific context model [15]. In this work, the approach has been enhanced with model-to-text and text-
to-model transformations, improving thus the understandability of the obtained results.

The context of a software process has been researched in previous work, but it has been usually
represented informally. Armbrust et al. [32] defined three dimensions to define the characteristics in
the SPrL scope definition: product, project, and process. The COCOMO II model [33] defines a set
of attributes and dimensions to estimate a project that are useful for representing context models too.
The Incremental Commitment Model Process [34] defines a set of patterns for rapid fielding using

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403
DOI: 10.1002/smr

390 JULIO A. HURTADO ALEGRIA ET AL.

contextualized information. However, these contexts are specific to a process, organization, or research
issue. To help organizations determining their relevant dimensions and context attributes, we have
defined a Software Process Context Metamodel (SPCM) following the initial ideas presented in [35].

3. TAILORING THE SOFTWARE PROCESS

Defining an organizational software process is necessary if a company wants to improve its development
process and completely required to achieve an evaluation or certification such as CMMI or ISO/IEC
12207. Although defining and documenting the process demand an important effort, a general process
is still not the best for all projects, even within the same organization. Moreover, an organization that
usually develops certain type of projects by using a particular process may eventually get engaged in a
different type of project, a new technology, or application domain, and thus the processes that have
always worked fine become inadequate. Defining a customized process for each project is too
expensive because of the amount of resources from the project itself it would consume. Having a set of
predefined processes for a series of different contexts implies a high maintenance cost and still does
not assure to cover all possible contexts. Therefore, tailoring the organizational process presents a
promising trade-off.

In the tools implementing each piece of our approach depicted in Figure 2, we have used EPFC [36]
to represent the processes in a format that end users are more familiar with. The process variability was
defined using a process feature model similar to the one proposed by Kang et al. [37]. These
specifications generate, through a text-to-model transformation, an experimental SPEM (eSPEM)
organizational process model, a process model that is to be tailored through a model-to-model
transformation. Finally, the context-adapted process model is used as input of a model-to-text
transformation back to XML obtaining a context-adapted process that can be displayed and
validated and eventually used by project engineers. So, the MDE tailoring strategy helps achieving a
separation between the process modeling stakeholders and process enactment (project) stakeholders
[19] and hides the complexity by intensively reusing tailoring knowledge within the transformation
chain. Furthermore, the MDE tailoring strategy provides a way to cost-efficiently instantiate a
general software process into project-specific processes where the project manager should only
provide a definition of a specific project context.

We first define the models and metamodels involved in the proposed tailoring approach, and then,
the transformations are presented. Finally, a brief description of the implemented tools is included.

3.1. Models

All elements in the MDE tailoring strategy are described here and extensively illustrated in the
following section.

3.1.1. Organizational software process. Process models are defined using SPEM 2.0 [36], the OMG
standard for process modeling, using the EPFC platform and thus conforming to its UMA metamodel.

Following a general approach for specifying variability in Domain Engineering, we use the feature
models [37] to formalize process variability at a high level of abstraction. We consider software
process features as special kinds of software features, such as process properties (life cycle type,
maturity level, etc.), method elements (method fragments), process elements (process components
and process fragments), process with method elements (chunks), and method plug-in elements
(reusable components, processes, and configurations). We use the feature model proposed by Kang
[37] but using SPEM 2.0 stereotypes.

3.1.2. Organizational process model. We use eSPEM, a subset of SPEM 2.0 that is enough for our
experimental purposes, to model the essential parts of the software process model. eSPEM provides
some primitives for specifying variability as shown in Figure 3. An eSPEM compliant complete
process model is modeled as a Method Plug-in including Process Elements and their linked Method
Content Elements. Method Content Elements specifically correspond to Task Definitions having Work
Product Definitions as input and output, and performed by (or participate with) Role Definitions. An

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403
DOI: 10.1002/smr

MDE-BASED PROCESS TAILORING STRATEGY 391

A B variabilityElement @
0.1 (from MethodPlugin)

© variabilityType : VariabilityType [< Q B Adtivity @
— (from ProcessStructure)
variabilityBasedOnElement /\ S useKind ; ActivityUseKind 7&,
B > 0..1 | usedActivi
<<enumeration> [0.* | processPerformer T rocessEement®@ usedActivity

%’VariabilityTypg B RoleDefinition® 0:L 3&/ O HRoleuse @ from ProcessStructure
(from MethodPlugin) {from MethodContentje " from ProcessStructure,

- na linkRole
= contributes
- extends 1 ox 3 g
- replaces A’ participant .
~ extendsreplaces nestedElement:
performer OB WorksreakDownElement (@
B MethodContentelement @ et | {from ProcessStructure)
(from MethodContent)
0.1
[f B TaskDefinition®| g 1 yAA Q BTaskuse @
from MethodContent from ProcessStructure;
t linkTask
inputs
outputs
0.* 0.*
B WorkproductDefinition & \A, O B WorkProductuse @| g «
(from MethodContent) 0.1 (from ProcessStructure)
linkworkProduct processParameter
A/ Alternative mechanism

o Optional mechanism

Figure 3. Experimental SPEM highlighting where variability is specified.

Activity is a Work Breakdown Element and a Work Definition that define basic work units within a Process
as well as a Process itself. An Activity supports the nesting and logical grouping of related Breakdown
Elements forming breakdown structures. The concrete breakdown structure defined in an Activity can
be reused by another Activity via the used Activity association that allows the second Activity to reuse
its complete substructure. So, Role Use, Task Use, and Work Product Use are Work Breakdown
Elements that refer to activity-specific occurrences of the respective Method Content Element.

A Variability Element is an eSPEM element that can be modified or extended by other Variability
Element of the same kind according to a Variability Type (extends, replaces, contributes, and extends-
replace). So, each Method Content Element (TaskDefinition, RoleDefinition, and WorkProductDefinition)
and the Activity metaclasses are Variability Elements.

We use Variability Elements to implement alternatives (labeled with an alternative symbol similar to
that used in feature models). A set of alternatives can be defined from the same Variability Element
(maybe abstract). So, when a Process Element is linked to the Variability Element, one of these
alternatives could be selected. For example, a Task Use can be linked to one of the many available
and consistent Task Definitions. Additionally, each Work Breakdown Element can be considered as
optional or not according to the isOptional attribute. Optional elements are labeled with a circle.

3.1.3. Project context model. The context of a project may vary according to different project variables
along specific dimensions such as size, duration, complexity, development team size, knowledge about
the application domain, or familiarity with the technology involved. Formalizing these characteristics as
a model enables us to automatically tailor the organizational process according to them. We have
defined SPCM for defining the context model for each project (Figure 4). SPCM is based on three
basic concepts: ContextAttribute, Dimension, and ContextAttributeConfiguration. Every element in
SPCM extends a ContextElement that has a name and a description. A ContextAttribute represents a
relevant characteristic of the process context required for tailoring. The ContextAttribute includes
a priority (used when a trade-off between context attributes is required), and it can take one of a set
of values defined as ContextAttributeValue. An example of a ContextAttribute is the Project
Size. ContextAttributeValue represents a type for qualifying a ContextAttribute. Examples of
ContextAttributeValues for Size ContextAttribute are the ContextAttributeValues (Small, Medium, and
Large). Dimension represents a collection of related ContextAttributes. A Dimension eases the
separation of concerns applied to ContextAttributes. An example of Dimension is Team dimension,
referring to team attributes such as team size or team capabilities. A Context is represented as a
collection of Dimensions. A Context represents the whole context model. To represent possible specific

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403
DOI: 10.1002/smr

392 JULIO A. HURTADO ALEGRIA ET AL.

[ContextElement
= name
= description

[ContextAttributeValue
= value

myContextAttributeValue 0 0.* " posibleValues

myContextAttribute

[l ContextAttributeConfiguration £ ContextAttribute
0.1
contextAttributeConfiguration 0.*
0. myContextAttributes
myContextConfigurations
Di i -
§ Dimension [Context 0. £} ContextConfiguration
0.*
0.1
myDimensions
myContext

Figure 4. Software Process Context Metamodel.

process contexts, Context Configurations can be defined from the context model. A ContextConfiguration
is a collection of ContextAttributeConfiguration that is set to one of the possible ContextAttributeValues
for ContextAttribute. Therefore, a ContextAttributeConfiguration is associated to a ContextAttribute
and to one unique ContextAttributeValue. An example of a ContextAttributeConfiguration is the
ProjectSizeConfiguration for a small project, where its ContextAttribute is Project Size and the
AttributeValue associated is Small.

3.1.4. Context-adapted process model. The context-adapted process model also conforms to eSPEM,
but it cannot have variabilities, so all variabilities identified as part of the organizational process model
must be resolved by the tailoring transformation.

3.1.5. Context-adapted software process. This context-adapted process is displayed back in EPFC
showing the resulting process in the form of an activity diagram.

3.2. Tailoring transformation chain

3.2.1. Injector: text-to-model transformation. The software process is transformed into a model, so it
can be manipulated with model transformation. To do so, an injector is used, that is, a text-to-model
transformation that parses the XML generated by the EPFC tool and syntactically transforms it into
an eSPEM compliant model. This transformation allows the process users, that is, project managers
and software engineers, to deal with graphical representations of the process, which typically are
easier to understand.

3.2.2. Tailoring model-to-model transformation. We use ATL [38], a declarative language, for
defining the tailoring transformation rules. Thus, rules about tailoring the general process model
according to the values of different context dimensions can be composed incrementally. In this way,
we can configure new process models through a generative strategy by recombining partial tailoring
transformation rules and thus reusing the knowledge they embody.

The tailoring transformation is endogenous [39] because its output conforms to the same metamodel
as the input. However, it is not in place because we want to preserve the organizational process model
for future configurations. We use ATLCopier® as a basic template, and we modify it so that only those
elements whose rules evaluate to true are actually copied to the target model.

Matched rules constitute the core of an ATL declarative transformation because they allow us to
specify (i) which target elements should be generated for each source element and (ii) how

SATL Transformation Zoo. http:/www.eclipse.org/m2m/atl/atI Trnsformations/

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403
DOI: 10.1002/smr

http://www.eclipse.org/m2m/atl/atlTrnsformations/

MDE-BASED PROCESS TAILORING STRATEGY 393

generated elements are initialized from the matched source elements. In our tailoring rules, we make
decisions for identified variation points in the process model. Each variation point has an associated
helper called from the matched rule.

Optionality rules are implemented as helper functions. When these rules return false, the element
needs to be removed from the process.

Attribute initialization uses the values in the source process model element. Because we use eSPEM
variability mechanisms, a process element (e.g., TaskUse) could be linked to several variants of method
elements (e.g., Task Definition). Therefore, we define an AlternativeTailoringRule as a rule that returns
the selected method element according to the helper rule. The AlternativeTailoringRule chooses the
most suitable TaskDefinition variant, according to the value of certain context attribute. If there were
more than one variability point, a conjunction of rules would be applied, also specifying priorities to
make trade-offs.

3.2.3. Extractor: model-to-text transformation. Once the adapted process is obtained, it needs to be pretty
printed so that the users can validate it and eventually follow it to develop the project for which it was
designed. To this end, an extractor is used, that is, a model-to-text transformation that takes the process
model as input and syntactically builds a UMA conformant process that can be visualized with EPFC.

3.3. Tool implementation

The tool implementation was developed in EPFC for the organizational software process, EMF 3.4,%* TCS
for implementing projectors, and the ATL plug-in 2.0 for the tailoring transformation. Metamodels were
defined as ecore metamodels in EMF [40], and the transformations were implemented as TCS and ATL
rules. Models could be visualized with Exeed (Extended EMF Editor), the reflective editor of EMF.

4. TAILORING A REAL-WORLD REQUIREMENTS ENGINEERING PROCESS

We have formalized the general RE process used by a medium-size Chilean software company that has
achieved ISO and CMMI compliance. The company is headquartered in Santiago, Chile. It offers
services of web development and design, software development, and consulting in information
technologies focused in the financial industry. Currently, the company has an extensive portfolio of
more than 90 clients. Since 2004, the company is certified in ISO 9001:2000 for the processes of
Development and Software Project Management and Development. Since 2008, it is a CMMI Level
2 certified company, and recently, it was also satisfactorily rated in the following areas of process
level 3: Organizational Process Focus, Organizational Process Definition, and Organizational
Training. This company has provided its organizational process as part of the Tutelkan project [41],
and it is publicly available. "

For illustrating our tailoring approach, we took the RE process, along with its adaptation
guidelines. These guidelines indicate that certain artifacts should or should not be included as part
of the adapted process, according to certain context values. In this way, there are a series of
predefined project types such as large development, small development, maintenance, or incident.
We show how our approach is able to automatically produce the expected process for these project
types. We also show how we are able to produce an appropriate process for an unexpected context
as a maintenance without documentation available. All these results have been analyzed and
validated by the company’s process engineer.

4.1. Organizational software process
In the general RE process, we can identify two main components that are executed asynchronously:

Requirements Development and Requirements Management.

““EMF website http://download.eclipse.org/tools/emf
""Tutelkén: http://www.tutelkan.info.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403
DOI: 10.1002/smr

http://www.tutelkan.info

394 JULIO A. HURTADO ALEGRIA ET AL.

Requirements Development is depicted in Figure 5. Here, the process may take two different forms
depending on the development stage. In the Inception stage, this process is formed by two parallel and
optional activities: Problem Analysis and Environment Specification. In all other stages, this process
is formed by three parallel activities: Requirements Specification, Requirements Analysis and
Validation, and Early Change Management; only the latter is optional. Also the Problem Analysis
is formed by the Preliminary Analysis and the Project and Problem Scope Definition, and this latter
one is also optional.

Requirements Management consists of Requirements Understanding, Requirements Commitment,
and then in parallel Requirements Tracking and Requirements Change Management, as shown in
Figure 6(a). The Requirements Understanding process is detailed in Figure 6(b). It is formed by
three tasks: Identify Requirements Providers, Requirements Review, and Ensuring Common
Requirements Understanding. Notice that the Identify Requirements Providers is marked as optional.
In this case, the task will only be carried out if the project is a new development.

All optionalities in the process can be summarized in a process feature model [37] as shown in
Figure 7. Currently, the organizational software process and its variability are specified separately,
but we are experimenting applying weaving models [42] for automatically generating an integrated
specification of the process and its variability [43].

Figure 8 shows the process model in EMF as the output of the text-to-model transformation.

4.2. Context model

The general RE process model presented in the previous section is applied in different kinds of
projects. Several dimensions and attributes have been identified as relevant by the company for
characterizing projects. Figure 9 shows the context model specified using EMF. The Domain
dimension has three attributes: Application Domain, Development Environment, and Source of
Documentation. The first two may be either known or unknown, and the last one may exist, not
exist, or there may be an expert who may provide information. Similarly, the Team dimension has
two attributes: Team Size and Team Expertise, each one with their corresponding values. The
Management dimension has five attributes: Project Type, Provider, Business, Customer Type, and
Project Duration.

The second column in Table I describes the values of the context variables for a new development
within an unknown application domain, whose documentation does not exist, where the development

Yes Inception? No

v v v

) 5 s 28] 5]
Problem Analysis Eme"cri(f)i:;:izr: Requirements Requirements Analysis Early Change
| & \ Specification and Validation Management

Figure 5. Requirements Development.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403
DOI: 10.1002/smr

MDE-BASED PROCESS TAILORING STRATEGY 395

Requirements
Understanding

i
E3

Requirements
Commitment

Requirements Requirements Change
Tracking Management

()

5o

Identify Requirements
Providers

¥
)

Requirements Review

%
Ensuring Common Requirements
Understanding

(b)

Figure 6. Requirements Management and Requirements Understanding detail.

ga

RD

Early Change

Problem

B &b @

YL TN

Preliminar Problemand Project
Analysis Scope Definition

Productand Product Component
i Constraints Definition i i

Traceability to User

Validation

Productand Product Component i
Requirements Definition Identification

(a)

Generation

REQM

B & h O

Requirements
Change
Management

\ i c Tracking

L

Identify |

Review Record commitments

providers plans change .
Review

Indentification : 9
i i i i Inconsistencies

y StartCorrective Inconsistencies
requirements Assesment Actions Analysis

understanding

Figure 7. (a) Requirements Development and (b) Requirements Management feature models.

environment and costumer type are unknown, the provider is in-house, and the duration is small. In this
case, the tailored process expected would include all the optional tasks, roles, and work products as it is

the most complex situation.

On the other hand, the third column in Table I describes a simple maintenance corrective project,
where the application domain, the development environment, and the costumer type are known, the
documentation exists, the provider is in-house, and the duration is medium.

In this case, a much simpler process is expected to be applied. Figure 10 shows both the
Requirements Development and the Requirements Understanding adapted subprocesses where some

optional tasks have been removed.

Copyright © 2013 John Wiley & Sons, Ltd.

J. Softw. Evol. and Proc. 2014; 26:386-403
DOI: 10.1002/smr

396

JULIO A. HURTADO ALEGRIA ET AL.

4 X platform:/resource/REKIT-SPrL/KI-SPrL.xmi
4 =) Method Library RE-KIT

4)= Method Plugin RE-KIT
4 [Process Package RE-KIT Process Structure

4 [Process Package Requirements Patterns

4 " Process Pattern Requirements Development
9 Activity Start(Requirements Development)
5 Activity Problem Analysis
9 Activity Environment Specification
(53 Activity Requirements Specification
5 Activity Requirements Analysis and Validation
9 Activity Early Change Management
9 Activity End(Requirements Development)

“& Process Pattern Requirements Management

4 =) Method Content Package Requirements Engineering

=, Method Content Package Roles
= Method Content Package Work Products

=) Method Content Package Tasks

Figure 8. Requirements engineering process model.

|X] platform:/resource/KI-SPrL/KI_Context.xmi
4 2 ContextKI - Context
4 —> Dimension Domains

> Dimension Management

4 O Context Attribute Application Domain 4 O Context Attribute Project Type

© Context Attribute Value Know
@ Context Attribute Value Unknow

© Context Attribute Value Know

© Context Attribute Value New Development
Context Attribute Value Maintenance-Enhancement

Context Attribute Value Maintenance-Adaptation

®

4 O Context Attribute Development Environment © Context Attribute Value Maintenance-Correction
o
L]

@ Context Attribute Value Unknow

4 O Context Attribute Source of Documentation

© Context Attribute Value Exist

Context Attribute Value Incidents
Context Attribute Provider
©® Context Attribute Value Outsource

N
C

@ Context Attribute Value Does not Exist © Context Attribute Value In-House

© Context Attribute Value Expert
4 —> Dimension Team

4 O Context Attribute Team Expertise
© Context Attribute Value Low
© Context Attribute Value Medium
© Context Attribute Value High

4 O Context Attribute Team Size
© Context Attribute Value Small
© Context Attribute Value Medium
© Context Attribute Value Large

> Dimension Others

4 O Context Attribute Business

© Context Attribute Value Interrupted

© Context Attribute Value Not Interrupted
4 O Context Attribute Customer Type

© Context Attribute Value Known

© Context Attribute Value Unknown
4 O Context Attribute Project Duration

© Context Attribute Value Small

© Context Attribute Value Medium

© Context Attribute Value Large

Figure 9. Context model.

Table 1. Two project contexts.

Context attribute Novel development Simple maintenance
Project Type New Development Corrective Maintenance
Application Domain Unknown Known

Documentation Does not exist Exist

Provider In-house In-house

Development Environment Unknown Known

Customer Type Unknown Known

Project Duration Small Medium

Copyright © 2013 John Wiley & Sons, Ltd.

J. Softw. Evol. and Proc. 2014; 26:386—403
DOI: 10.1002/smr

MDE-BASED PROCESS TAILORING STRATEGY 397

Inception?
Yes No
PN
I‘ ‘ Lo
Problem Analysis E:ﬁ Ebj Requeriments Review

Requirements Requirements Analysis l

Specification and Validation -
Lo

Ensuring Common Requirements
Understanding

Figure 10. Requirements Development and Requirements Understanding for a simple Maintenance project.

4.3. Tailoring transformation

The tailoring transformation takes the general requirements process and a particular context model and
automatically yields a context-adapted process model. To this end, particular rules are provided so that,
according to particular values in the context dimensions, decisions could be made about all variation
points identified as part of the feature model.

Table II shows some of the directions included in the original adaptation guideline that were taken
as a starting point for building the transformation rules.

It is clear from the table that most common contexts are described, and there is no ambiguity about the
expected adapted process. For example, for Maintenance Correction project type, the Early Change
Management Activity is never required. However, there are certain combinations of attribute values
that are not defined. For example, for Provider in-house, the Problem and Project Scope Definition
Task could be required or not depending on the values of other attributes, but it is not clearly
established. There are still other situations, such as that happening when the Source of Documentation
exists, where there is no clear action to be taken. Moreover, there are situations (not shown in the table)
where the action to be taken does not only depend on the value of one attribute, and if there are two or
more attribute values that yield contradictory actions, priorities should be established. In these cases,
there is an evident need to rely on a tool that is able to make an appropriate decision by combining
partial decisions about different values in the context. In this way, evolvability is also supported
because partial rules could be adjusted over time without affecting others.

Table II. Adaptation guidelines.

Context attribute Value Action

Project Type Maintenance Enhancement Problem and Project Scope Definition Task is required

Project Type Maintenance Correction Early Change Management Activity is not required

Provider In-house Problem and Project Scope Definition Task could be
required

Provider Outsource Problem and Project Scope Definition Task is required

Source of Documentation ~ Does not exist Environment Specification could be required

Source of Documentation Exist No action is suggested

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403

DOI: 10.1002/smr

398 JULIO A. HURTADO ALEGRIA ET AL.

Figure 11 shows an abstract tree of conditions on attribute values for determining the inclusion
of the Environment Specification activity, and the following code shows the ATL implementation
of the rule.

—Rule 2 — Environment Specification activity selection
helper def:activityRule2(elementName:String) : Boolean =
if (elementName = ’Environment Specification’) then
if (thisModule.getValue(’Project Type’) = ’Incidents’) then
false
else
if ((thisModule.getValue(’Project Type’) = ’New Development’) or
(thisModule.getValue(’Project Type’) = ’Maintenance-Enhancement’) then true
else
if (thisModule.getValue(’Source of Documentation’) <> ’Exist’) then true
else false
endif
endif
endif
else true
endif

Let us now consider the case where we have a project context similar to that in the corrective
maintenance (third column in Table I) but now considering that the project does not have documentation
available. Clearly, this is a different case, and there is no definition within the adaptation Table II that
indicates the decisions to be made. In this case, we configure the project context as shown in Table III,
and we apply the rules, in particular Rule 2 just presented.

The obtained process now includes the Environment Specification that was previously not included
provided that the rule indicates that it needs to be included whenever the documentation is not available
(Figure 12). According to the process engineer, this is the expected result even though it was not
explicitly stated in the adaptation guidelines.

(Environment Specification Selection)
ActivityRule2 : Boolean =

Project Type =
New

1 Development

Project Type =
— Maintenance—
Source Of . Enhancement
Documentation
<> Exists

Figure 11. Attribute values for selecting the Environment Specification activity.

Table III. Corrective Maintenance without documentation.

Context attribute Attribute value
Project Type Corrective Maintenance
Application Domain Known

Documentation Does not exist
Provider In-house

Development Environment Known

Customer Type Known

Project Duration Medium

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403

DOI: 10.1002/smr

MDE-BASED PROCESS TAILORING STRATEGY 399

Yes Inception? No

Problem Analysis Environment Requirements Analysis
Specification

Requirements

i and Validation
Specification

2%

Figure 12. Requirements Development process in the case of nonexistent documentation.

4.4. Preliminary results

The MDE-based strategy was evaluated in a 4-h workshop including a business, a process, and a project
management person from the company. Every participant had more than 10 years of experience in the
software development industry. Particularly, the process engineer and the project manager were the
leaders of the organizational software process formalization, and they were familiar with the concepts
involved in process tailoring.

In this workshop, the technical work and a demo of the solution were presented including solutions
of two past projects and two new possible project characterizations. We counted on the organizational
software process already formalized as well as the adaptation rules implemented. In this scenario, the
process tailoring was simply reduced to setting the context attribute values. This activity involved
between 5 and 10 min for each project. Such a time is used mainly to decide which are the right
values for the project context attributes used in the tailoring.

Every possible adapted process was effectively generated and collectively evaluated with the process
engineer of the host company. According to the workshop participants, the generated processes were
correct and suitable for each particular project context. Although the time and effort spent in these
tailoring activities were small, the process engineer highlighted the systematization of the tailoring
process as the most valuable aspect of this technique because it makes such a process repeatable and its
results are consistent along different projects. The most valuable aspect for the project manager was the
fact that he no longer depends on the process engineer to obtain an adapted process for a particular
project. The business manager mentions that she envisions a reduction of the development costs
provided that the development teams will have now a process tailored to the needs of each project.

The organizational process was assumed to be already formalized, as well as the adaptation
guidelines. The effort involved in identifying variabilities in the organizational process was not very
high because it consisted in identifying the process elements affected by the adaptation. However,
manually transforming the process to its model format was considered not usable; this motivated the
inclusion of the injector and the extractor presented in this paper. Defining the context model took
some time and creativity, but defining a particular context only takes a couple of seconds. To make
this task even more user friendly, we have developed an interactive web-based tool for context
model definition and instantiation [44]. Writing the rules was more time consuming mainly because
of the inherent ambiguity in the adaptation guidelines. We are currently experimenting in generating

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403
DOI: 10.1002/smr

400 JULIO A. HURTADO ALEGRIA ET AL.

these rules interactively hiding the complexity of the transformation language as well. Therefore, the
return of investment of the whole approach will become more clear as we integrate all the developed
tools and more projects are executed.

5. CONCLUSIONS AND FUTURE WORKS

This article proposes an MDE-based strategy for automatically generating processes by tailoring a
general process applying a set of transformation rules that consider particularities of project
contexts. Provided that the adapted process will include all and only those process elements that are
required for the particular project context, no extra work will be needed and only the essentially
required effort and resources will be spent. The tailoring process is automatic, and it applies already
validated transformations; therefore, it is expected to achieve a reduction of the development time
and cost, and also better quality products. The tailoring strategy is based on a previous work [15]
where the process was performed manually.

The case study presented in this paper showed that it is possible to apply tailoring transformations
for adapting a general RE process to different project contexts in a planned manner. Being able to
validate the transformations for particular known cases has given us confidence on their validity for
the general case. Therefore, whenever unanticipated scenarios happen, a combination of already
built (and potentially already validated as well) tailoring transformations can be applied, and as a
consequence, an appropriate context-adapted process can be obtained quickly and easily. The
experience has allowed us to conclude that (i) the technique is an effective tool to achieve process
tailoring, (ii) the approach is useful and practical because it was easily implementable by the process
group, and (iii) the prototypical tool became more usable with the text-to-model and model-to-text
transformations added. However, it still represents an important limitation for the definition of the
transformation rules that need to be written for each company. Additionally, process engineers at the
company described in the case study suggested that the triplet (Context Configuration, Tailored
Process, and Productivity Results) could be saved to empirically validate and improve the context
model and the tailoring decisions.

We are currently experimenting with this approach in six other Chilean software companies as part of
ADAPTE,* a large government-funded project. Most Chilean software companies are small or medium
size; this means that they generally serve a market niche, and thus, their process even though is not
necessarily simple, the variations are not many. It remains to be proven that the approach scales for
process including a great number of variation points and several context variables. Because of the
models’ quality relevance in our approach, we have advanced some work designing an analysis
framework on the basis of process blueprints [45].

ACKNOWLEDGMENTS
This work has been partly funded by project Fondef DO911171 of Conicyt, Chile.

REFERENCES

1. Feiler P, Humphrey W. Software process development and enactment: concepts and definitions. Technical Report
cmu/sei-92-tr-004, 1992. Software Engineering Institute.

2. Garcia J, Rimawi Y, Sédnchez M, Amescua A. Ramala: a knowledge base for software process improvement. In Software
Process Improvement, volume 3792 of Lecture Notes in Computer Science, Richardson I, Abrahamsson P, Messnarz R
(eds.). Springer: Berlin/Heidelberg, 2005; 106—117.

3. Mirbel I, Ralyté J. Situational method engineering: combining assembly-based and roadmap-driven approaches.
Requirements Engineering 2006; 11(1):58-78.

4. Armbrust O, Rombach HD. The right process for each context: objective evidence needed. In Raffo et al. [46], 237-241.

5. Firesmith D. Creating a project-specific requirements engineering process. Journal of Object Technology 2004;
3(5):31-44.

HADAPTE project: http://www.adapte.cl

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403
DOI: 10.1002/smr

http://www.adapte.cl

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

MDE-BASED PROCESS TAILORING STRATEGY 401

. Laplante PA, Neill CJ. Opinion: the demise of the waterfall model is imminent. ACM Queue 2004; 1(10):10-15.
. Cusumano MA, MacCormack A, Kemerer CF, Crandall WB. Critical decisions in software development: updating

the state of the practice. IEEE Software 2009; 26(5):84-87.

. Dorr J, Adam S, Eisenbarth M, Ehresmann M. Implementing requirements engineering processes: using cooperative

self-assessment and improvement. /EEE Software 2008; 25(3):71-77.

. Pedreira O, Piattini M, Luaces MR, Brisaboa NR. A systematic review of software process tailoring. ACM SIGSOFT

Software Engineering Notes 2007; 32(3):1-6.

. Rolland C. Method engineering: state-of-the-art survey and research proposal. In Proceeding of the 2009 Conference on

New Trends in Software Methodologies, Tools and Techniques, 10S Press: Amsterdam, The Netherlands, 2009; 3-21.
Ocampo A, Bella F, Miinch J. Software process commonality analysis. Software Process: Improvement and Practice
2005; 10(3):273-285.

Schmidt DC. Model-driven engineering. IEEE Computer 2006; 39(2):25-31.

Breton E, Bézivin J. Model driven process engineering. In Computer Software and Applications Conf., 2001.
COMPSAC 2001, 2001; 225-230.

Killisperger P, Stumptner M, Peters G, Grossmann G, Stiickl T. Meta model based architecture for software process
instantiation. In Trustworthy Software Development Processes, International Conference on Software Process, ICSP
2009, LNCS 5543, 2009; 63-74.

Hurtado JA, Bastarrica MC, Quispe A, Ochoa SF. An MDE approach to software process tailoring. In International
Conference on Software and Systems Process, ICSSP 2011, Raffo D, Pfahl D, Zhang L (eds.). ACM: New York, NY,
USA, 2011; 43-52.

Dai F, Li T. Tailoring software evolution process. In 8™ ACIS Int. Conf. on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing, 2007, 2007; 2:782-787.

Ralyté J, Deneckére R, Roll C. Towards a generic model for situational method engineering. In CAiSE 2003, LNCS
2681, Springer-Verlag: Berlin, Heidelberg, 2003; 95-110.

Aharoni A, Reinhartz-Berger I. A domain engineering approach for situational method engineering. In Proceedings
of the 27™ International Conference on Conceptual Modeling, ER’08, Springer-Verlag: Berlin, Heidelberg, 2008;
455-468.

Bai X, Huang L, Zhang H. On scoping stakeholders and artifacts in software process. In Miinch et al. [47], 39-51.
Jacobson I, Booch G, Rumbaugh J. Crystal Clear: The Unified Software Development Process. Addison Wesley:
New York, NY, USA, 1999.

Cockburn A. A Human-Powered Methodology for Small Teams. Addison Wesley: New York, NY, USA, 2005.
Belkhatir N, Estublier J. Supporting reuse and configuration for large scale software process models. In Software
Process Workshop, 1996. Process Support of Software Product Lines, Proceedings of the 10th International,
1996; 35-39.

Bustard DW, Keenan F. Strategies for systems analysis: groundwork for process tailoring. In Proceedings of the 12th
IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05), IEEE
Computer Society: Washington DC, USA, 2005; 357-362.

Henninger S, Baumgarten K. A case-based approach to tailoring software processes. In 4th International Conference
on Case-based Reasoning, ICCBR 2001, volume 2080 of LNCS, Springer-Verlag: London, UK, 2001; 249-262.
Xu P. Knowledge support in software process tailoring. In Proceedings of the 38th Annual Hawaii International
Conference on System Sciences, HICSS 05, 2005.

Park S, Na H, Sugumaran V. A semi-automated filtering technique for software process tailoring using neural
network. Expert Systems with Applications 2006; 30:179-189.

Osterweil LJ. Software processes are software too. In 9th International Conference on Software Engineering,
ICSE’1987, 1987; 2-13.

Sutton SM, Osterweil LJ. Product families and process families. In ISPW ’96: Proceedings of the 10th International
Software Process Workshop, IEEE Computer Society: Washington, DC, USA, 1996; 109.

Simidchieva BI, Clarke LA, Osterweil LJ. Representing process variation with a process family. In International
Conference on Software Process, ICSP’2007, volume 4470 of LNCS, Wang Q, Pfahl D, Raffo DM (eds.). Springer:
Berlin, Heidelberg, Germany, 2007; 109-120.

Washizaki H. Building software process line architectures from bottom up. In Product-focused Software Process
Improvement, LNCS, Miinch J, Vierimaa M (eds.). Springer: Honolulu, HI, USA, 2006; 415-421.

Armbrust O, Katahira M, Miyamoto Y, Miinch J, Nakao H, Ocampo A. Scoping software process lines. Software
Process: Improvement and Practice 2009; 14(3):181-197.

Armbrust O, Katahira M, Miyamoto Y, Miinch J, Nakao H, Ocampo A. Scoping software process models: initial
concepts and experience from defining space standards. In ICSP’08: Proceedings International Conference on
Software Process: Making Globally Distributed Software Development a Success Story, Springer-Verlag: Berlin,
Heidelberg, 2008; 160-172.

Boehm BW, Clark B, Horowitz E, Westland JC, Madachy RJ, Selby RW. Cost models for future software life cycle
processes: COCOMO 2.0. Annals of Software Engineering 1995; 1:57-94.

Koolmanojwong S, Boehm BW. The incremental commitment model process patterns for rapid-fielding projects. In
Miinch et al. [47], 150-162.

Hurtado JA, Bastarrica MC. Process model tailoring as a mean for process knowledge reuse. In 2nd Workshop on
Knowledge Reuse, KREUSE, Falls Church, Virginia, USA, September 2009.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403

DOI: 10.1002/smr

402 JULIO A. HURTADO ALEGRIA ET AL.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.
46.

47.

OMG. Software process engineering metamodel SPEM 2.0 OMG beta specification. Technical Report ptc/07-11-01,
OMG, 2007.

Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS. Feature-oriented domain analysis (FODA). Feasibility
study. Technical Report CMU/SEI-90-TR-21, Software Engineering Institute, November 1990.

Jouault F, Allilaire F, Bézivin J, Kurtev I, Valduriez P. ATL: a QVT-like transformation language. OOPSLA
Companion, 2006; 719-720.

Czarnecki K, Helsen S. Feature-based survey of model transformation approaches. IBM Systems Journal 2006; 45
(3):621-645.

Budinsky F, Steinberg D, Merks E, Ellersick R, Grose TJ. Eclipse Modeling Framework: A Developer’s Guide.
Addison Wesley: New York, NY, USA 2003.

Valdés G, Astudillo H, Visconti M, Lépez C. The Tutelkan SPI framework for small settings: a methodology transfer
vehicle. In Proceedings of the 1 7" EuroSPI, volume 99, Communications in Computer and Information Science:
Grenoble, France, September 2010; 142-152.

Del Fabro MD, Valduriez P. Towards the efficient development of model transformations using model weaving and
matching transformations. Software and System Modeling 2009; 8(3):305-324.

Simmonds J, Bastarrica MC, Silvestre L, Quispe A. Modeling variability in software process models. Technical
Report TR/DCC-2012-3, Computer Science Dept., Universidad de Chile, March 2012.

Ortega D. Designing and implementing a tool for software process context configuration. Master’s Thesis, Computer
Science Department, Universidad de Chile, 2012.

Hurtado JA, Bastarrica MC, Bergel A. Analyzing software process models with AVISPA. In Raffo er al. [46], 23-32.
Raffo D, Pfahl D, Zhang L (eds.). International Conference on Software and Systems Process, ICSSP 2011, May
21-22, 2011, Proceedings. ACM: Honolulu, HI, USA, 2011.

Miinch J, Yang Y, Schifer W (eds.). New Modeling Concepts for Today’s Software Processes, International
Conference on Software Process, ICSP 2010, July 8-9, 2010. Proceedings, volume 6195 of LNCS. Springer:
Paderborn, Germany, 2010.

AUTHORS’ BIOGRAPHIES:

Julio A. Hurtado Alegria is an assistant professor of computer science at the University
of Cauca, Colombia. In 1997, he obtained his engineering degree from the University of
Cauca, and in 2012, he received his PhD degree from the University of Chile. His re-
search interests are in software engineering, particularly formal methods, model-driven
engineering, and software processes. Dr. Hurtado Alegria has also worked as a process
engineer in several small software companies both in Chile and Colombia.

Maria Cecilia Bastarrica is an assistant professor at the Computer Science Department
at the Universidad de Chile. She coordinates the Model and Transformation Engineering
(MaTE) group since 2007. She received the following degrees: PhD in computer science
and engineering from the University of Connecticut in 2000, Master of Science from the
Catholic University of Chile in 1994, and Bachelor in Engineering from the Catholic
University of Uruguay in 1991. Her main research topics are software engineering, soft-
ware architecture, model-driven engineering, and software product lines. Lately, her
work has focused on applying model-driven techniques for modeling software pro-
cesses.

Alcides Quispe received a degree in systems engineering from the Catholic University
Catdlica Santa Maria of Arequipa, Peru. After that, he worked for about nine years as a
software analyst and software developer in Peru. He is currently a PhD student at the
Computer Science Department in the University of Chile. His research interests are
requirements engineering and software processes focused on small software companies,
object-oriented analysis and design, and object-oriented design patterns.

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403

DOI: 10.1002/smr

MDE-BASED PROCESS TAILORING STRATEGY 403

Sergio F. Ochoa is an associate professor at the Computer Science Department at
the University of Chile. He received his PhD in computer science from the Catholic
University of Chile in 2002. His research interests include computer-supported
collaborative work, mobile and ubiquitous computing, and software engineering.
Dr. Ochoa is a member of IEEE, ACM, and the Chilean Computer Society and sits
on the Steering Committee of the Latin American and Caribbean Collaborative ITC
Research Initiative (LACCIR).

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. 2014; 26:386—403
DOI: 10.1002/smr

