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SUMMARY 

 

The purpose of this paper is twofold: on the one hand, to empirically determine the number of 
systematic risk factors modeled in the APT as developed by Ross (1976 a and b), to be 
observed  in the Chilean stock market during the period 1984-1999; and, on the other, to 
investigate which would have been a risk premium other than zero.  
The main results are (a) in the full period there are five pervasive risk factors that make it 
possible to replicate the covariance matrix of 44 security returns (b) only one of such factors 
showed statistically significant risk premia in the full period; and (c) for the sub-period 1991-
1999 we find 11 factors for a larger sample of 79 securities, where again only one of them (but 
not necessarily the same one) features a significant risk premium. 
The paper is organized as follows: Section I briefly reviews the APT and the different methods 
for estimating it; Section II describes the sample and determines the number of factors and 
which of such factors are priced. Finally, Section III sets forth the main conclusions arrived at.   
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I.  The APT Model 

 
Ross (1976 a) makes the assumption that individuals have homogeneous beliefs as to the 

linear stochastic process that generates returns and which would be governed by “k” 

common factors, where k is much smaller than the total number of securities, n:   

 

nibbER ikikiii ,,1;~~~~
11 KK =++++= εδδ    (1) 

Where iR~  is the random return of  the i-th asset;  is the expected return of the i-th asset;  iE

jδ~  is the j-th mean zero (systematic)  common factor that affects returns; b  quantifies the 

sensitivity coefficients of the return of the i-th asset to the movements of common 

factor

ij

jδ~ ; and iε~  is the noise term or idiosyncratic risk component.  

Furthermore, the model assumes that common factors are completely independent between 

themselves, [ ] 0~~
=jiE δδ , not correlated with the noise term [ ] 0~~ =jiE δε , and also 

idiosyncratic risk is independent between securities, [ ] 0~~ =jiE εε .  If the latter assumption is 

not fulfilled, the interdependence between idiosyncratic components would clearly indicate 

the presence of additional common factors.  

The theory states nothing as to the identity of risk factors1; however, if only a few 

systematic components of risk exist, it should be expected that they are related to key 

macroeconomic variables, such as GDP, the interest rate structure or inflation (see Chen, 

Roll and Ross (1986)). 

If no arbitrage opportunities exist, each investment portfolio formed on the basis of “n” 

assets that meeting the conditions that they do not use wealth and have no risk (neither 

systematic nor idiosyncratic) must also have a return equal to zero on average. This implies 

that there will be k+1 constants, ko λλλ ,,1, K  , such that for every I it is fulfilled that 

ikkii bbE λλλ +++= K110   (2) 
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1 Roll and Ross (1980) state that equivalently CAPM does not shed any light that  could explain any 
particular beta either.    



if there is a risk-free asset with a return, , then 0E 00 =jb , for every j, and 00 λ=E , then (2) 

may be written as 

 ikkii bbEE λλ ++=− K110   (2’) 

where represents the rate of return common to all beta zero assets, i.e.,  assets with 

, for every j, and in particular, the risk-free rate of return if such asset does exist. In 

forming investment portfolios that have unit systematic risk for one factor and zero for the 

rest of the factors, each 

0E

00 =jb

jλ  may be interpreted as an excess return or premium for market 

risk for investment portfolios that only have the common factor j of systematic risk, 

.  This is the central equation of  the APT; it is accurate only in the case of a 

large economy (infinite number of securities), and is to be interpreted as an approximation 

in the case of finite economies (see Ross (1976 a and b) and Grinblatt and Titman (1983)). 

0EEj =λ j −

A. Factor determination 

There are three methods for determining common factors: Sensitivity coefficients2, 

consisting in an algorithmic analysis of the estimated covariance matrix of the securities 

(see Roll and Ross (1980), Chen (1983), Lehman and Modest (1988)); Macroeconomic 

Variables, where the researcher, based solely on his judgment, chooses factors3 and then 

estimates sensitivity coefficients and verifies if they explain the cross section of the returns 

(see Chan, Chen and Hsieh (1985), Chen, Roll and Ross (op cit.) and Chen and Jordan 

(1993)); and Firm Characteristics, which resembles the previously mentioned method, 

though resorting to empirical regularities (anomalies) present in the returns, as for instance 

the size effect (see Huberman and Kandel (1987) and Chen (1993)). 

The method that we will use is the Maximum Likelihood Factor Analysis4, which is an 

algorithmic approach and is particularly useful if a strict factor structure, as the one 

modelled by Ross (1976 b), is assumed.  In this structure, the idiosyncratic components of 

the returns of assets are assumed not to be correlated between themselves and their 

                                                 
2 Also known as  “factor loadings” in statistical literature. 
3 For instance, unexpected shocks in the intertemporal structure of the interest rate, in the premium for credit 
risk of the bonds, in inflation expectations, and in the rate of growth of industrial production or the price of 
oil. 
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4 This method was introduced by Gehr (1975) and expanded on at a later date by  Roll and Ross (1980). 



variances are uniformly bounded by some finite values when the number of assets tends to 

infinity.  An alternative method, to be recommended in the case of approximate factor 

structures such as those modeled by Chamberlain and Rothschild (1983)5, would be the 

Asymptotic Analysis of Principal Components. Lehman and Modest (1985) compare 

different methods used in estimating sensitivity coefficients and conclude that the best one 

is Maximum Likelihood Factor Analysis resorting to as many securities as possible. A 

limitation to this method is that —considering that it is computationally more expensive— 

there has been, as stated by Huberman (1994), a trend to use it for subsets of securities; 

however, in our case, given the (small) number of securities the sample, this restriction is in 

no way relevant.  

In what respects the number of priced factors in the USA, Roll and Ross (1980) find at least 

three and, probably, four such factors, while Huang and Jo (1995) record that the number of 

factors priced is one and at the most two, in the case of a later period. With data for shares 

traded on the Chilean stock exchange, Gregoire and Zurita (1987) report five factors  

during the period 1975-1987, though only one of them is priced. 

B. Model Estimation through Factor Analysis  

In principle, the Arbitrage Pricing Theory (APT) involves three hypothesis that can be 

contrasted against the data (a) assuming the returns generating process (1), the valuation 

equation (2) can be proved; (b) in the equation (2’) the intercept is equal to the risk-free 

rate of return or the zero beta rate of return; and (c) no variable unrelated to the model 

(standard deviation, size, etc.) should explain the expected returns  in cross-section.  

Factor analysis aims at determining whether the interrelationships between a set of 

observed variables are explained in terms of a small number of underlying variables (non 

observable variables or factors); it resembles a multiple regression except that the variables 

observed are regressed against non observable factors.  On the basis of the variance-
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5 These authors developed the concept of the approximate factor structure, where idiosyncratic components of 
the returns can be weakly related among themselves. They show that both factor structures (strict and 
approximate) are asymptotically equivalent, where both methods yield consistent estimates of sensitivity 
coefficients when the number of securities is large enough. Subsequently, Grinblatt and Titman (1985) 
confirm this result showing that the economy of Ross and the economy of Chamberlain and Rothschild are 
equivalent in that investors may replicate one economy from the other simply by rearranging their investment 
portfolios.  



covariance matrix of the returns,  factor analysis enables us to determine both the number 

of factors as well as the sensitivity coefficients . ijb

More specifically, since the estimating process standardizes the factors leaving them with 

unit variances (see J Shanken (1987)), the factor process (1) implies that variance of the 

return of stock i is given by 

2
iσ

       (3) i

k

j
iji b φσ += ∑

=1

22

where iφ  is the variance of iε~ (noise term).  The first term to the right is known as the 

“commonality” of the return and it represents the variance shared with other variables 

through the common factors; the second term , iφ , is the so-called specific or unique 

variance. 

Furthermore, the covariance of the returns between the i-th and j-th stock is given by its 

relationships with the common factors (strict factor structure)  

       (4) jl

k

l
ilij bb∑

=

=
1

σ

Equations (3) and (4) may be summed up as follows:  

   V        (5) DBBT +=

where V is the population covariance matrix, ][ ijbB =  is a kN ×  matrix of the sensitivity 

coefficients, TB  is the transposed matrix B and D  is a diagonal matrix of the variances that 

are proper to the returns (where its i-th diagonal element is iφ , which represents the 

variance that is proper to the stock i) under a strict factor structure.  

Unfortunately,  the sensitivity coefficients matrix B is not determined solely by equations 

(1) and (5).   This is easy to ascertain, if we assume that M is an orthogonal matrix of 

order , such that  kk × IMM T = ,  then (5) implies 

   V   (6) DBBMM TT +=

or else, 

   V   (6’)  DBMBM T += ))((

This latter equation implies that if the factors δ~  with their respective sensitivity 

coefficients B  provide an explanation for the observed covariance of the returns, then the 
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factors δ~TM  will also do so,  with the respective sensitivity coefficients BM , for any 

orthogonal matrix M.  For instance, clearly there will be no difference in equation (1) if the 

first two factors are interchanged in places, or if the respective j-th sensitivity coefficients  

and the j-ith coefficient are downscaled by the same constant g given that 





jjij g

bz δδ ~1~




= ijgb ,the distribution of the returns,  will remain unaltered.   

0E

                                                

This indetermination problem in the solution makes it necessary to impose (arbitrary) 

restrictions to the parameters of the model, to ensure a unique solution. An (interpretable) 

solution  consists in transforming sensitivity coefficients  BMB =′ , a process known as 

factor rotation; this is the alternative that we follow in this paper.6 

In order to detect the number of factors present in the variance-covariance matrix V a  

likelihood ratio test is performed. Intuitively, the test that “k” is a sufficient number of 

factors would be equivalent to testing whether the idiosyncratic covariance matrix is 

diagonal under a structure of “k” factors. 

Once the expected returns  and the sensitivity coefficients B have been estimated through 

factor analysis, we can prove the valuation equation (2), resorting to cross-section 

regressions of the form 

iE

    (7) ikkii bbEE ˆˆˆ
110 λλ +++= K

The parameters  and kλλ ,,1 K  are estimated by linear regression.  Given that the factor 

analysis estimation procedure used is a maximum likelihood procedure, in a normal 

multivaried world the estimates are asymptotically consistent.  

Several studies provide evidence of instability in the number of factors present in the  stock 

returns, see Kryzinowsky and To (1988), Dhrymes, Friend, Gultekin and Gultekin (1985), 

Cho and Taylor (1987), Gultekin and Gultekin (1987) and Lehman and Modest (1988). 

Specifically, the number of factors with a premium seems to vary with the number of assets 

and with the length of the time series. By contrast,  Brown (1989), Trzcinka (1986) and  
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6 Another possibility is to require that the matrix G defined by  be diagonal, with its 
elements arranged in a descending order of magnitude. This restriction drives the factors in a manner such 
that the first makes the maximum contribution to the common variance of the returns, the second factor also 
makes its maximum contribution on condition that it is not correlated to the first one, and so forth.  

BDBG T 1−=



Shukla and Trzcinka (1990) find that a dominant factor explains a greater proportion of the 

variability in returns of assets and this result is robust across different sample sizes.  

In addition, Cho and Taylor (1987) and Gultekin and Gultekin (1987) also arrive at the 

conclusion that the empirical tests of the APT model with data of returns of assets are  quite 

sensitive to the anomalies observed in January and in small firms. Connor and Korajczyk 

(1993) find only one or two significant factors in months other than January but from three 

to six factors of returns in January.  

An unstable number of factors makes the application of APT difficult. For instance, 

estimation and inference procedures based on maximum likelihood factor analysis requires 

that the structure of the factors be stable across several subsets of the universe of stocks and 

across several periods of time for the same sample of assets; however, unstable factors do 

not necessarily render the APT invalid.    

On the other hand, the ATP as developed by Ross is not restricted to a specific frequency of 

returns.  Accordingly, it has been estimated on the basis of daily returns [Dhrymes, Friend 

and Gultekin(1984), Dhrymes, Friend, Gultekin and Gultekin (1985), Shanken (1987)], 

weekly returns [Lehman and Modest (1988), Brown (1989) and Shukla and Trzcinka 

(1990)] and monthly returns [Roll (1988), Connor and Korajczyk (1988), Huang and Jo 

(1992)].  In this respect, Huang and Jo (1995) find that the ratios for the total variance 

explained, the number of factors and the number of priced factors are stable across the data 

frequencies (daily, monthly weekly) adjusting the estimation of matrix V by non-

synchronous trading in the case of daily returns.  The results obtained by Huang and Jo also 

show that the number of factors is equal to one or at the most two.  

Finally, and with respect to the number of factors and size of the sample, Roll and Ross 

(1984) contend that it can be expected that there exist as many factors as sets of assets and 

that all of them may be detected with sufficiently powerful tests, and hence the number of 

factors should increase with the size of the sample. But almost all of them are diversifiable, 

and hence the number of non-priced factors in these groups is greater than the number of 

non-priced factors for small groups of stock or samples of a smaller time series. As a 

consequence, the number of real or priced factors in both groups is similar.  
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II. The sample and the estimation of the model 

The sample consists of the weekly stock returns of 44 securities traded on the Santiago 

Stock Exchange (Bolsa de Comercio de Santiago) between January 19847 and March 1999, 

and 79 securities in the sub-period 1991-1999.  The results of the first sample are shown in 

the next section and the results for the broader sample of securities, but for a shorter period, 

are shown in the section that follows.   

A. The period 1984-1999 

During this 775 week period, the stock of 91 firms were listed on the exchange throughout 

the complete period, and 44 of such firms with an average presence of at least 15% on the 

stock exchange were included.8  The choice of the weekly frequency represents a balance 

between the advisability of having a series as long as possible in order to obtain more 

precise estimates of the variance-covariance matrix and the need to minimize problems 

brought about by the lack of stationarity in the series as well as by nonsynchronous trading 

in the series (all the more acute with daily data), affecting the consistency and bias of the 

estimators.  

The estimation of the factor model involves the following steps: (a) estimating the 

covariance matrix for the group of stock under study, on the basis of the sample in time 

series  of the returns of the stock; (b) estimating the number of factors k and sensitivity 

coefficients bij through maximum likelihood factor analysis, for the covariance matrix 

calculated previously, (c) using sensitivity coefficients to explain the variation in cross 

section of the individual returns of the stocks, which also permits (d) estimating the risk 

premia associated to the factors estimated.   

In order to minimize the problem of spurious correlation between the returns of the stock 

and the risk measures and to be able to prove the real strength of the results, most empirical 

researches divide the time interval by two, using the first part for determining the 

sensitivity coefficients  and the second for determining the risk premia.  One alternative is 

                                                 
7 The intention was to begin the sample in January 1981, but the number of firms present in the complete 
period went down considerably.  
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8 Stock exchange presence is reported by the Santiago Stock Exchange (Bolsa de Comercio de Santiago), and 
it corresponds to the quotient between the number of days when the stock was traded and the number of days 
that the stock exchange was open during the period. Some of the 91 stock experienced transitory unlistings, 
trading suspensions or loss of their data.  



to use the data of the returns in  a net-like manner, as in Chen (1983) and Gregoire and 

Zurita (1987). In keeping with this in order to calculate the covariance matrix of the stock 

returns and estimate the sensitivity coefficients the data 1,3,5,7,9… of the net are used, 

while observations 2,4,6,8… of the net are used for calculating the risk premia and their 

statistical significance. The latter alternative is preferable because it minimizes the non-

stationarity problems that may occur in the time interval of the research  

Due to the (large) size of the samples and to computer-related limitations, in several of the 

studies that use sensitivity coefficients, the stock were divided into sub-groups. This was 

not necessary in our study, and therefore maximum likelihood factor analysis9 is applied to 

the complete sample.  

Since the theory is silent with respect to the number of factors, some criterion is needed for 

determining how many factors are suggested by the data.  In this paper we use the Chi 

square test ( )2χ  for large samples associated with maximum likelihood solutions.10   Since 

the theory does not give any prior hypothesis as to the number of factors, a sequential 

procedure is followed in the determination, and which consists in giving “k” different 

values; first, we start with some small value (usually 1), then we estimate the parameters 

using the factor model with the maximum likelihood method. If the U-statistic test is not 

significant, the model with this number of factors is accepted, otherwise k is increased by 

one and the process is repeated, until an acceptable solution is found. If at some stage the 

degrees of freedom end (v = 0) the factor model with the assumption of the linear 

relationship between the variables is debatable.   

Table 1 reports the results of sequentially applying test to our sample of returns, which 

allows to successively reject the hypotheses that at the most 1, 2, 3 and 4 factors generate 

2χ

                                                 
9 Other alternatives include of generalized least squares factor analysis, unbalanced least squares factor 
analysis and other approximate methods; but the maximum likelihood method has the advantage that its 
statistical properties  are better known.  
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10 This test is based on the fact that if k factors are enough to describe the returns, the statistic 
 is distributed asymptotically as a with v degrees of freedom, 

where

( )FMinpU ′= 2χ

kn
3
2)52(

6
1

−+pp 1−−=′ , p the number of observations in the time series, n the number of 

returns (observable variables),  k represents the number of factors, F is the likelihood function, and 

 ( ) ( )knknv +−−=
2
1

2
1 2

 



the weekly returns, with different levels of significance (p-values of 0,000 and 0,00035, 

0,012 and 0,058, respectively). On the other hand, if we continue increasing the number of 

factors, we have that the hypothesis that at the most 5 or 6 factors generate the stock returns 

can no longer be rejected according to their p-values of 0,151 and 0,328, if we consider a 

critical value of significance at 10%. Ultimately, we obtain as a result that five factors are 

enough to explain the returns.11  Similarly, the fact that we have not found “many” factors 

suggests that the initial assumption of a strict factor structure is reasonable.  

 

Table 1.  Test of the Hypothesis that “k” Factors Generate Weekly Stock Returns in the 

Sample Studied.  

2χ

Number of factors (k)  χ2  Value Degrees of 

freedom 

p- values 

1 1123.895 902 .000 

2 1006.380 859 .0003 

3 910.488 817 .012 

4 838.797 776 .058 

5 775.631 736 .151 a  

6 713.094 697 .328  a

 
a not significant at level of 10%  

 

Having estimated both the number of factors and the sensitivity coefficients from data 

1,3,5… in the net of returns, ordinary least squares regressions are run in order to estimate 

the price equation (2) with data 2,4,6… of the net of returns, performing 387 regressions in 

cross section. This results in an estimation of 510 ,,, λλλ K  for each one of the 387 

                                                 
11 It is to be borne in mind that if the  p-value is larger than the critical value the only effect is that some 
redundant factor is being included  and which may be analyzed in the following stage of the test, as it 
operates as a confirming part and will not bring about any major problems in the tests.  
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regressions, obtaining time series for each λ.  With these, we test the null hypothesis that 

the risk premium is zero, through a means t-test.  

Results are reported in Table 2. This table shows that the expected rate of return of the risk-

free asset 0λ is statistically different from zero at 1%, and that only one of the common 

factors (factor 3) has a statistically significant risk premium at 10%.   In what respects its 

amount, 0.65% weekly is equivalent to an average monthly nominal rate of 2.81%.  On the 

other hand, the average monthly inflation rate in the period was 1.1/%, with which the 

intercept would be consistent with an average monthly indexed (to the CPI) rate of interest 

of  2.43%.   This rate does not seem far from the cost of debt in the period, though it is 

higher than the real interest rate on term deposits in the banking system in the period. 

However, it is worth noting that the estimation of λ0 is quite noisy, since it stems from 

simultaneously estimating risk premia for a period in which inflation has featured 

instability from one year to another (with the only exception of the last four years, when it 

has displayed a systematically decreasing trend).  

 

Table 2. t-Test of significance for risk premia obtained using the Fama and MacBeth 

procedure through the regression 

ttttttt bbbbbR ξλλλλλλ ˆˆˆˆˆˆˆˆˆˆˆˆ
55443322110 ++++++=  

 Sampling average t-test Probability 

0λ  0.006482 3,841645 0,0001  a

1λ  0.001999 0.487798 0.6260  

2λ  -0.000100 -0.042789 0.9659  

3λ  0.012344 1.734229 0.0837 b  

4λ  0.009234 1.521045 0.1291  

5λ  0.002083 0.249320 0.8032  

a significant at 99% of confidence. 
b  significant at 90% of confidence. 
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As a final test for the model, we use the standard deviation of the individual returns as an 

explanatory variable additional to the factors, which by null hypothesis should not have any 

explanatory strength. This due to the fact that even in a finite economy but with an 

idiosyncratic vector with sufficient independence, the diversifiable component should be 

eliminated by the formation of investment portfolios and the non-diversifiable part depends 

only on sensitivity coefficients . 

According to Roll and Ross (1980) and Chen (1983) the use of the standard deviation of the 

returns as a variable that could explain the returns of the stock is a particularly good 

alternative in the attempt to reject the APT, because there exists a well documented high 

positive correlation between the standard deviation and the mean sampling returns.12 

The ordinary least squares regression was estimated with the mean returns as a dependent 

variable calculated with data 2,4,6… from the net of returns, against sensitivity coefficients 

estimated in the factor analysis and the standard deviation calculated using data 1,3,5… 

from the net of returns 

   iiiiiiii sbbbbbR ξλλλλλλλ ˆˆˆˆˆˆˆˆˆˆˆˆˆ
655443322110 +++++++=  

In this case we use an ordinary least squares regression because there is no other adequate 

alternative because the standard deviation is not a sensitivity coefficients and therefore it is 

not calculated through factor analysis, thus preventing the use of any other type of 

regression.     

According to Roll and Ross there is the possibility of a spurious effect of the standard 

deviation in the returns brought about by a possible bias in the distribution of the individual 

returns. In line with this, a positive bias may create a positive dependence between the 

sampling mean and the sampling standard deviation and on the other hand a negative bias  

would create a negative dependence between the sampling mean and the standard 

deviation.  

                                                 
12 Dhrymes, Friend, Gultekin and Gultekin (1985) also used residual or specific standard deviation ( jφ ) as 

another possibility to attempt rejecting the APT model, which should not be significant either if the APT were 
valid since the effect of this variable should be eliminated by the formation of investment portfolios.   Due to 
its simplicity, to test the validity of the APT we use the standard deviation of the returns.   
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A procedure that may be of help in solving this statistical problem, brought about by the 

possibility of a bias in the distribution of the returns, is that of simply estimating each 

parameter for a set of different observations. Thus the sampling dependence between the 

estimation of factor loading, mean returns and standard deviation is eliminated if the time 

series from which these parameters are calculated are not correlated temporally.   

However, intertemporal dependence persists in changes of absolute prices or in squared 

changes. This implies that the standard deviation of the returns and the sensitivity 

coefficients are estimated from adjoining days will maintain some sampling dependence. In 

order to overcome this problem, the parameters of different sets of observations isolated at 

least one day must be calculated.  Thus of the 775 weeks that we have for estimating the 

different parameters we will use only 389 weeks, using 130 weeks for estimating each one 

of the parameters.    

Thus, the procedure involves the use of observations 1,7,13…for determining the mean 

returns, observations 3,9,15… for estimating the sensitivity coefficients and finally 

observations 5,11,17 for calculating the standard deviation.    

The results of this test are shown in Table 3, in which we can see that the standard 

deviation does not affect the returns of the stocks (t = 0,788218), whereas the risk-free asset 

appears to be significant at 1% (t= 3,535451), and the remaining factors are not priced.  
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Table 3. Significance Test of Standard Deviation using Different Sets of Observations 

Separated by Isolated Days for Calculating the Parameters   

Factor Risk premium Value of t-test Probability 

 

0λ  

 

0.008594 

 

3.535451 

 

0.0011 a  

 

1λ  

 

-0.004579 

 

-0.765535 

 

0.4488 

 

2λ  

 

-0.001269 

 

-0.200849 

 

0.8419 

 

3λ  

 

0.000634 

 

0.100035 

 

0.9209 

 

4λ  

 

0.000353 

 

0.052937 

 

0.9581 

 

5λ  

 

0.000031 

 

0.004654 

 

0.9963 

 

js  

 

0.011926 

 

0.788218 

 

0.4356 

a Significant at 99% of confidence. 

 

B. Period 1991-1999 

 

In this section we study the number of factors and the price equation of APT in the sub-

period 1991-1999. Since several stocks begin to be listed after 1984, in this period the 

number of securities in the sample increases substantially, and additionally they have 

specific characteristics that question the stationarity of the longer series.13   Applying the 
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13 In this period there was an increase in foreign investment in the Chilean stock market; for the first time 
ADRs were issued on the New York Stock Exchange, with the ensuing arbitrage between that stock exchange 
and domestic stock exchanges,  and pension funds actually begin to invest in Chilean stock. All these factors 
had a significant bearing on the depth and liquidity of the market.  



criterion of requiring stock exchange presence 15% or greater (as in the previous section), 

we obtain a sample of 79 stock and 420 weekly returns.  

Table 4 reports the result of the sequential tests for determining the number of factors, and 

we find that 11 factors are enough to explain the returns at a 10% level of significance.  

 

Table 4.  Test for determining the number of factors needed for sample of stocks in the 

period 1991-1999.   

2χ

Number of Factors 2χ  Degrees of Freedom Significance 

8 2669.759 2477 .004 

9 2560.615 2406 .014 

10 2457.084 2336 .040 

11 2353.637 2267 .100 

12 2257.146 2199 .190 

 

 

Therefore, our results are consistent with those in Dhrymes, Friend, Gultekin and Gultekin 

(1985), in that by increasing the sample of stock for which the factor analysis is performed, 

we  tend to need a greater number of factors to replicate the covariance matrix of the 

returns.   

As a next step the Fama and MacBeth (1973) methodology is used for determining the 

number of priced factors in the sampling period. The results are shown in Table 4, which 

shows that the risk-free rate is significant (t = 2,403800), whereas factor 8 is priced at a 

10% of significance (t= -1,843154), and the rest of the factors are not priced in the sample.  

As to the profitability level of  a zero-risk asset, it appears higher than in the complete 

sample, which is consistent with a very active role in monetary policy played by the 

Chilean Central Bank in the nineties. However, the estimation is noisier (as reflected by the 

fact that the lest is lower, although the coefficient estimated is higher),  for which reason a  

confidence interval that contains the true value would be broader.. 
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Table 5.  t-Test for determining the statistical significance of risk premia for sample of 

stocks in the period from 1991 to 1999 

Factor Premium t-Test Probability 

Rf 0.0113020 2.403800 0.0171 

Factor 1 -0.008105 -0.974631 0.3309 

Factor 2 -0.008334 -1.603739 0.1103 

Factor 3 -0.013002 -1.150789 0.2511 

Factor 4 0.003883 0.448153 0.6545 

Factor 5 -0.00000753 -0.001236 0.9990 

Factor 6 -0.0098 -1.082137 0.2804 

Factor 7 -0.001933 -0.269868 0.7875 

Factor 8 -0.018374 -1.843154 0.0667 

Factor 9 -0.011283 -1.564737 0.1192 

Factor 10 -0.001570 -0.251961 0.8013 

Factor 11 0.007091 1.001522 0.3177 

  

The results obtained in this part of the research are consistent with prior results arrived at in 

other economies. For instance, Roll and Ross (1980) argued that although factor analysis 

calls for a greater number of factors to replicate the covariance matrix, when we increase 

the sample of stock with which we work, the number of factors tends to remain stable, with 

only the number of factors that are not priced increasing.14   Additionally, the fact that in a 

previous study conducted by Gregoire and Zurita (1987) for the Chilean economy in the 

period 1975-1987, and in the two periods considered in this paper only one priced factor 

was to be found, is consistent with the observation made by Brown (1989), Trzcinka (1986) 

and Shukla and Trzcinka (1990), who report a dominant factor that explains most of the 

variability in the returns of the assets, regardless of sample size. Finally, in the 

aforementioned study carried out by Gregoire and Zurita (op cit.) monthly returns were 

used, while in this study weekly returns are used for a different sample of securities, 
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14 However, the priced factor is not necessarily the same as the one found with the original sample of 44 
securities, owing to the orthogonal rotation of factors performed in both cases.  



obtaining in both cases only one priced factor; this result is consistent with Huang and Jo 

(1995), who found that the number of priced factors are stable across the frequency of the 

observations, and with the result of the same author that the number of priced factors in the 

economy of the USA is one or at the most two.  

As a final exercise, we divided this broader sample of stocks into two sub-groups of 39 and 

40 securities each, arranged alphabetically, with a view to compare our results with the 

results in the first part. In this case we obtain that the number of factors stabilizes at 8 and 5 

factors, respectively, at levels of significance of 10%, that is, we find that the number of 

factors is more related to the number of securities in the sample than to the period itself. 

Furthermore, in the first group only the risk-free rate is significant (at 10%), and no risk 

factor is, while in the second group the risk-free rate keeps significant (at 1%) and factor 5 

is priced (at 10%).  

 

III. Conclusions 

In this paper we investigate the number of pervasive factors that would allow replicating 

the covariance matrix of Chilean securities in the periods 1984-1999 and 1991-1999, and 

which according to the APT theory could be priced in the capital market. The results show 

that only one factor is priced, both in the complete period as well as in the decade of the 

nineties, even though the number of factors detected through factor analysis increases with  

the number of securities in the sample, which goes up from 44 to 79 in the sub-period.  

These results obtained with weekly returns are consistent with research conducted in the 

USA and at earlier date in Chile for a previous period.  

The intercept parameter, which in the APT represents the mean return of an asset free of 

systematic risk, is significant in all cases, and in the complete period is of an order of 

magnitude similar to the rate of interest on term deposits in the banking system. On the 

other hand, in the nineties, the estimated value of this rate in all likelihood represents the 

more active character of the monetary policy of the Chilean Central Bank, autonomous 

since the 1989 macroeconomic adjustment, and which affected the first part of the nineties.  

Additionally, by including the variance in the APT price equation, this is not significant (as 

predicted by theory ).  
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Summing up, our results are consistent with the APT model, in which one factor is priced. 

An evident suggestion for forthcoming research work is to seek to identify such factor, 

correlating it with macroeconomic variables, and  establishing whether it is the same 

variable which has explained the returns over time. 
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