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Abstract

This paper analyzes whether or not the econometric methods usually applied to test for abso-
lute convergence have provided this hypothesis a “fair” chance. I show that traditional (absolute
and conditional) convergence tests are not consistent with even the simplest model that displays
convergence. Furthermore, claims of divergence on the grounds of bimodalities in the distribution
of GDP per capita can be made consistent with models in which neither divergence nor twin peaks
are present in the long run.
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1 Introduction

With the possible exception of Mincerian regressions (Mincer, 1974), few sub-
jects in applied economic research have been studied as extensively as the
convergence hypothesis advanced by Solow (1956) and documented by Bau-
mol (1986).1 In simple terms, the hypothesis states that poor countries or
regions tend to grow faster than rich ones. In its strongest version (known as
absolute convergence), an implication of this hypothesis is that, in the long
run, countries or regions should not only grow at the same rate, but also reach
the same income per capita.2 This hypothesis has been tested using different
methodologies and data sets and appears to be strongly rejected by the data.
In view of these results, several modifications of the absolute convergence hy-
pothesis have been advanced and tested. However, they usually lack both
theoretical foundations and econometric rigor and discipline.
This paper analyzes whether or not the econometric methods usually ap-

plied to test for absolute convergence have provided this hypothesis a “fair”
chance. The paper is organized as follows: Section 2 presents a brief review
of some of the tests for convergence advanced in the empirical literature and
documents their shortcomings. Section 3 develops simple theoretical models
that imply absolute convergence. Section 4 discusses how likely would it be
for time series generated from those models to reject absolute convergence.
Finally, section 5 draws some conclusions.

2 Results from the Empirical Literature

This section presents a brief review of the main results of empirical growth
analyses that test the convergence hypothesis.

2.1 Absolute Convergence is Strongly Rejected

The first stylized fact that appears uncontroversial is that whatever the type
of data set used (a cross section of countries or panel data), the data strongly
reject absolute convergence (Barro and Sala-i-Martin, 1995). The simplest
test that can be devised to verify this claim using cross-sectional observations

1An admittedly incomplete list of representative studies of this line of research is Aghion
and Howitt (1997), Barro (1991), Barro and Sala-i-Martin (1992), Mankiw et al (1992),
Durlauf and Johnson (1995), Jones (1995), and Kocherlakota and Yi (1996,1997).

2This interpretation has been challenged by Bernard and Durlauf (1996).

1Chumacero: On the Power of Absolute Convergence Tests



takes the form
gi = ζ + ϑ ln yi,0 + εi, (1)

where yi,t is GDP per capita in period t for country i, and gi is the average
growth rate of GDP per capita in country i; that is:

gi =
1

T

TX
t=1

∆ ln yi,t =
1

T
(ln yi,T − ln yi,0) .

When pooled data are used, tests for absolute convergence usually take the
form

∆ ln yi,t = ζ + ϑ ln yi,t−1 + εi,t. (2)

In both cases absolute convergence is said to be favored by the data if
the estimate of ϑ is negative and statistically different from zero. If the null
hypothesis (ϑ = 0) is rejected, we would conclude that not only do poor
countries grow faster than rich countries, but also that they all converge to
the same level of GDP per capita.
As Table 1 and Figure 1 show, the convergence hypothesis is strongly

rejected by the data.3 In fact, if these results are taken seriously, the evidence
appears to favor divergence instead of convergence. That is, the countries that
grew faster were those that had a higher initial GDP per capita.

Cross-section Pooled Databϑ 0.0047
(0.0014)

0.0048
(0.0010)

Adjusted R2 0.051 0.007
No. of countries 116 85
No. of observations 116 3,219

Table 1: Tests for absolute convergence. Standard errors consistent with het-
eroskedasticity are in parentheses.

A major weakness of these tests is that, given that the null hypothesis
being tested in both cases is that ϑ is equal to zero versus the alternative
that it is negative, equation (2) makes explicit that a test for (no) absolute
convergence is fundamentally related to a test for a unit root on y. That

3All tests using panel data were conducted using the latest version of the Penn World
Tables data set described in Summers and Heston (1991), with data for most variables
ranging from 1960 to 1998. Cross-section regressions were conducted using the data set
described in Sala-i-Martin et al (2004).
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Figure 1: Growth rate from 1960 to 1998 versus 1960 GDP per capita

is, under the null hypothesis of a unit root in y, convergence is rejected. As
abundantly documented elsewhere, these tests not only have nonstandard as-
ymptotic properties, but also lack power. In fact, if a traditional (augmented
Dickey-Fuller) unit-root test on ln y were performed for each country, none
would reject the null at standard significance levels. Moreover, the first-order
autocorrelation coefficient of ln y for each country ranges from 0.610 to 0.999,
with an average value of 0.947. These results suggest that, even if a unit root
were not present, ln y is extremely persistent, and initial conditions would take
a long time to dissipate.

2.2 The Perils of Conditional Convergence

In light of the above results, Barro (1991) considered a modification of equation
(1) in which, even when convergence is still understood as the situation where
poor countries grow faster than rich countries (unconditionally), their growth
rate may be influenced by other factors that may prevent convergence in levels
of GDP per capita. Tests for conditional convergence using cross-sectional
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observations usually take the form

gi = ζ + ϑ ln yi,0 + ϕ0xi + εi, (3)

where x is a vector of k variables that may influence growth. Given that the x
variables are different for each country, even if ϑ were negative, incomes might
never converge.

Cross-section Panel Databϑ −0.0154
(0.0028)

−0.0456
(0.0062)

Adjusted R2 0.811 0.181
No. of countries 79 85
No. of observations 79 2,552

Table 2: Tests for conditional convergence. Standard errors consistent with
heteroskedasticity are in parentheses.

Table 2 presents the results of cross-sectional and panel regressions that
include some of the usual candidates for specifications such as equation (3).4

As noted by Durlauf (2001), serious problems plague this strategy. First, as
economic theory is usually silent with respect to the set of x variables to be
included, empirical studies have often abused in terms of the potential candi-
dates used; Durlauf and Quah (1999) report that, as of 1998, over 90 different
variables had appeared in the literature, despite the fact that no more than
120 countries are available for analysis in the standard data sets. Second,
important biases in the results may be due to the endogeneity of most of the
control variables used (Cho, 1996). Third, the estimated coefficients of the
convergence parameter (ϑ) are rather small, suggesting that, even after con-
trolling for the x variables, ln y continues to be extremely persistent. Fourth,
as a corollary of the previous observation, initial conditions may play a crucial
role in the results. Fifth, the robustness of results in terms of the potential
determinants of long-run growth is subject to debate (see, for example, Levine

4The model that uses cross-sectional observations includes the following x variables
(signs on the coefficients associated with the variables are in parentheses): life expectancy
in 1960 (+), equipment investment (+), years of open economy (+), a “rule of law” index
(+), a dummy variable for Sub-Saharan African countries (-), and the fraction of people that
profess the Muslim (+), Confucian (+), and Protestant (-) religions. The model that uses
panel data was estimated using fixed effects and the following x variables: investment-to-
GDP ratio (+), growth rate of the population (-), ratio of exports plus imports to GDP (+),
ratio of liquid liabilities to GDP (-), inflation rate (-), and ratio of government consumption
to GDP (-).
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and Renelt, 1992; Sala-i-Martin, 1997; and Sala-i-Martin et al, 2004). Sixth,
several of the variables included in the x vector are fixed effects that cannot
be modified; if these variables were actually long-run determinants of growth,
convergence would never be achieved (even with ϑ < 0).5 Finally, the null
hypothesis (ϑ = 0) on equation (3) can be viewed as a unit root test with co-
variates. Although this test has better power than univariate unit root tests,
it still is a unit roots test with added non conventional asymptotic distribution
(Hansen, 1995; Elliot and Jansson, 2003).6

2.3 Clubs

Durlauf and Johnson (1995) suggest that cross-sectional growth behavior may
be determined by initial conditions. They explore this hypothesis using a
regression tree methodology, which turns out to be a special case of a threshold
regression (Hansen, 2000). The basic idea is that the level of GDP per capita on
which each country converges depends on some initial condition (such as initial
GDP per capita) and that, depending on this characteristic, some countries
converge on one level and others on another. A common specification used
to test this hypothesis considers a modification of equation (1) that takes the
form

gi =

½
ζ1 + ϑ1yi,0 + εi if yi,0 < κ
ζ2 + ϑ2yi,0 + εi if yi,0 ≥ κ

, (4)

where κ is a threshold that determines whether or not country i belongs to the
first or the second “club”. In this case convergence would not be achieved if
the whole sample is taken into consideration, but it would be achieved among
members of each group.
If equation (4) were the actual data-generating-process (DGP), results such

as those in Table 1 could be easily motivated, given that if two regimes are
present, with each regime converging to a different state and at a different rate,
estimations based on a single regime might produce a nonsignificant estimate
for the convergence parameter. On the other hand, equation (4) states that
if the threshold variable (in this case, initial GDP per capita) is correlated
with some of the x variables included in equation (3), results such as those
reported in Table 2 are likely to be encountered, even if the x variables are

5A curious example of such a variable is “absolute latitude”, which measures how far a
country is from the Equator. When statistically significant, its coefficient is usually positive,
implying that one way to enhance growth would be for a country to move its population
toward the North or the South Pole.

6I would like to thank one of the referees for pointing out the link between conditional
convergence and these tests.
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not (necessarily) determinants of long-run growth.7 However, equation (4)
has an unequivocal implication in terms of the distribution of GDP per capita
across countries: if the parameters that characterize each regime are different,
a threshold process should be consistent with a bimodal distribution for ln y.
Quah (1993,1997) noticed that relative GDP per capita (defined as the

ratio of the GDP per capita of country i with respect to average world GDP
per capita, represented here by eYi,t) displays such bimodality. He conjectured
that if clubs of convergence were present, even if the unconditional distribution
of initial GDP per capita were unimodal, the existence of such clubs would
imply that countries would not converge to a degenerate distribution in the
long run (as absolute convergence would seem to imply), but that one group
may converge to one level of GDP per capita and another group to another,
in which case twin peaks would arise.
Figure 2 presents kernel estimators of the unconditional density of relative

GDP per capita in 1960 and 1995. Consistent with Quah’s claim, twin peaks
are present in 1995; however, a bimodal distribution also appears to be present
in 1960. If Quah were right, rich countries would converge to one distribution,
while initially poor countries would never be able to catch up and would con-
verge to a distribution with a permanently lower GDP per capita. On the
other hand, Figure 3 presents surface and contour plots of the (log of) relative
GDP per capita, which shows that a bimodal joint density does indeed appear
to be consistent with the data.
A problem with this approach is that, in contrast to equation (4), no formal

test of this theory can be provided with this visual evidence. Quah (1993) tried
to formalize the twin peaks hypothesis by deriving the ergodic distribution of
the transition matrix of relative incomes among countries. Table 3 presents
estimates of the one-year transition matrix of eY and its ergodic distribution.
The results indicate the high persistence of the series, given that the main
diagonal has transition probabilities that always exceed 0.9. More important,
with the sample analyzed, the ergodic distribution does appear to be bimodal
in the sense that (unconditionally) higher probabilities are associated with
countries that have less than one-quarter of average world GDP per capita or
more than twice this average.
However, this distribution is highly nonlinear and extremely noisy (Kre-

mer et al, 2001). The resulting ergodic distribution is sensitive to the choice
of thresholds for each category, the number of years used to compute the
transition matrix, and the variable used to perform the comparisons.8 More

7This would happen if, for example, y is persistent, x is correlated with initial income,
and x is itself persistent (or a fixed effect).

8Kremer et al. (2001) consider that a better choice of variable for constructing the
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Figure 2: Densities of relative GDP per capita

eYt+1 ≤ 1
4

1
4
< eYt+1 ≤ 1

2
1
2
< eYt+1 ≤ 1 1 < eYt+1 ≤ 2 eYt+1 > 2eYt ≤ 1

4
0.973 0.027 0 0 0

1
4
< eYt ≤ 1

2
0.047 0.927 0.026 0 0

1
2
< eYt ≤ 1 0 0.035 0.948 0.017 0

1 < eYt ≤ 2 0 0 0.018 0.949 0.033eYt > 2 0 0 0 0.017 0.983
Ergodic 0.312 0.177 0.133 0.127 0.251

Table 3: One-year transition matrix and ergodic distribution, 1960-1995

fundamentally, given that the initial distribution is also bimodal, it is diffi-
cult to assess whether or not the bimodal distribution obtained is due to the
presence of twin peaks or to the persistence of the GDP per capita level.

transition matrix is the ratio of each country’s GDP per capita to the average GDP per
capita of the five leading countries or the leading country.
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Figure 3: Surface and contour plots of (log of) relative GDP per capita

3 A Simple Model

The representative, infinitely lived household maximizes

U0 = E0
∞X
t=0

βtLθ
t

c1−γt − 1
1− γ

,

where 0 < β < 1 is the subjective discount factor, ct (=Ct/Lt) is consumption
per capita,9 γ > 0 is the Arrow-Pratt relative risk aversion coefficient, and Et
is the expectations operator conditional on information available for period t.
There is no utility from leisure, and the labor force is equal to Lt.10 Utility is
maximized with respect to consumption per capita and the capital stock per

9Lower case letters denote per capita values, upper case totals, and a hat above a variable
denotes that the value is per unit of effective labor.

10The parameter 0 ≤ θ ≤ 1 is included, because this feature allows one to consider
dynastic agents with endogenous fertility decisions (see Barro and Becker, 1989; Becker et
al, 1990; or Razin and Sadka, 1995).
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capita, kt+1, subject to the budget constraint:

Kt+1 + Ct = eztKα
t

£
(1 + λ)t Lt

¤1−α
+ (1− δ)Kt,

where 0 < α < 1 is the compensation of capital as a share of GDP. In this
economy technological progress is labor-augmenting and occurs at the constant
rate λ. Note that production is affected by a stationary productivity shock zt.
It is straightforward to show that capital and consumption per unit of effective
labor, bkt and bct, are stationary.11 In fact, one can transform the above economy
to a stationary economy and obtain exactly the same solutions for bkt and bct.
Such an economy can be characterized by the following maximization problem:

max
{kt+1,ct}

E0
∞X
t=0

£
β (1 + λ)1−γ

¤t
Lθ
t

bc1−γt − 1
1− γ

, (5)

subject to ¡
1 + ηt+1

¢
(1 + λ)bkt+1 + bct = eztbkαt + (1− δ)bkt, (6)

where ηt is the rate of population growth for period t.
Given that this model will be used to compare the dynamics of different

economies, following den Haan (1995), I include a simple channel to induce
correlation between each economy’s income. Specifically, I obtain correlated
incomes by assuming that the law of motion of technology shocks in country
i can be written as

zi,t = ρzi,t−1 + εi,t, εi,t = (1− φ) vt + φwi,t, (7)

where vt and wi,t are independent N
¡
0, σ2j

¢
random variables (for j = v, w).

If φ is equal to zero, all countries face the same aggregate shock; if φ is equal
to one, each country faces only an idiosyncratic shock.
In order for the model to be fully characterized, a stance regarding the

rate of population growth has to be taken. Here I consider the case in which
fertility is exogenous and has the following law of motion:

ln
¡
1 + ηi,t

¢
= η (1− τ) + τ ln

¡
1 + ηi,t−1

¢
+ ni,t, (8)

where ni,t is an independent N (0, σ2n) random variable, η is the long run rate
of population growth and 0 < τ < 1.12

Once values for the preference and technology parameters are chosen, this
dynamic programming problem can be solved using numerical methods to
generate artificial realizations of the variables of interest.

11bkt = kt/ (1 + λ)t and bct = ct/ (1 + λ)t.
12If fertility is endogenous, equation (8) can be ignored, and equation (5) may be used

in order to consider dynastic models as in Razin and Sadka (1995).
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4 Convergence Tests and the Model

The goal is to evaluate whether or not the tests for convergence presented in
section 2 would be robust. That is, if time-series realizations were generated
using a model in which convergence holds, would tests for convergence find
convergence? Simply put, the models that we will discuss imply that

• countries should converge to a stationary distribution,

• countries with initially lower GDP should grow faster, and

• twin peaks should not be present in the long run.

To clarify concepts, I next specialize the model of section 3, describe its
properties, derive the DGP that ln y would obey, and ask whether the tests
discussed in section 2 are really tests for convergence. To understand whether
the tests discussed in Section 2 are useful in testing for convergence, I tailor the
model to instances in which a closed-form expression for the DGP of the log
of GDP per capita is available. This simplification imposes a rigid structure
on the theoretical model and makes it harder for its realizations to present the
features considered signs of rejection of the absolute convergence hypothesis.13

If γ = 1, θ = 1, and δ = 1, the dynamic programming problem max-
imizing the objective function (5) has logarithmic preferences subject to a
Cobb-Douglas constraint (6), in which case an analytical expression for the
capital stock policy function is available and is expressed as

lnbkt+1 = ln (αβ)− ln (1 + λ) + ln byt, (9)

where byt = eztbkαt is GDP per unit of effective labor.
Because ln byt can be expressed as

ln byt = zt + α lnbkt, (10)

we can replace equations (7) and (9) in equation (10) to obtain a simple ex-
pression for byt:

ln byi,t = A+ (α+ ρ) ln byi,t−1 − αρ ln byi,t−2 + εi,t, (11)

13In particular, the parameterization chosen forces the time series representaion of log
GDP per capita to be linear. If this were not the case, linear specifications that test for
convergence would be misspecified and would have less power than the results presented
below.
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where A = α (1− ρ) [ln (αβ)− ln (1 + λ)]. Recalling that byi,t (1 + λ)t = yi,t,
one can use equation (11) to obtain a compact representation of the DGP of
GDP per capita as follows:

ln yi,t = B +Dt+ (α+ ρ) ln yi,t−1 − αρ ln yi,t−2 + εi,t, (12)

where B and D are constants.14

Four features of equation (12) are worth mentioning: First, as is typical
of exogenous growth models, GDP per capita is trend stationary.15 Second,
given that the technology shock follows an AR(1) process, ln y follows an
AR(2) process.16 Third, even without exogenous growth (λ = 0), an AR(1)
process for ln y such as equation (2) is consistent with equation (12) only
if white-noise technology shocks (ρ = 0) are present. Finally, this model
suggests that convergence on growth rates and GDP levels should eventually
be achieved. The type of convergence on GDP levels would depend on the
characteristics of the aggregate and idiosyncratic shocks that are present in
equation (7). In particular, if the only source of variation in technology shocks
is the aggregate shock (φ = 0), all countries should eventually converge on the
same GDP per capita, independent of their initial conditions and independent
of the persistence of z. On the other hand, if at least part of the variation in
technology shocks is due to the idiosyncratic component (φ > 0), GDP per
capita would converge to a nondegenerate distribution that does not display a
mass point. That is, ln y would converge to a normal distribution with positive
variance, in which case the probability of observing identical levels of y would
be zero.
Next, I focus on the implications of two parameterizations of equation (12)

for the convergence tests discussed in section 2.17 For each parameterization
I draw 2,000 artificial samples of time series of GDP per capita for 100 coun-
tries. Each sample begins with a bootstrapped sample (with replacement) of

14More precisely, B = α (1− ρ) ln (αβ) + ρ (1− α) ln (1 + λ) and D =
(1− α) (1− ρ) ln (1 + λ).

15In fact, a case for divergence can only be made when ln y has a unit root. For that
to be the case, either ρ = 1 (a unit root in the technology shock) or α = 1 (a model of
endogenous growth of the AK type) is needed.

16In general, if the productive shocks follow an AR(j) process, ln y follows an AR(j + 1)
process.

17One of the referees rightly considers that a power study should include a richer para-
metrization than the cases analyzed. However, what is important here is to show that even
the simplest parameterizations of the model already provide strong evidence of the lack of
power of the convergence tests of the literature.
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initial GDP per capita as the one observed in 1960.18 Based on these ini-
tial conditions, values of ln yi,t are simulated from equation (12) for a 36-year
period.

4.1 Independently and Identically Distributed Shocks

The only instance in which an absolute convergence test such as equation (2)
is correctly specified is when the technology shocks are independently and
identically distributed (i.i.d.), given that in that case equation (12) reduces to

ln yi,t = α ln (αβ) + (1− α) ln (1 + λ) t+ α ln yi,t−1 + εi,t. (13)

Thus, independent of the initial distribution of GDP per capita and popu-
lation growth rates, bϑ in equation (2) will consistently estimate the coefficient
α− 1, and convergence should occur.19

0
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-0.0284 -0.0282 -0.0280 -0.0278 -0.0276 -0.0274 -0.0272 -0.0270

Figure 4: Distribution of bϑ from absolute convergence tests with i.i.d. shocks.
Estimates obtained from 2,000 artificial samples for 100 countries.

18This allows us to generate artificial realizations of GDP per capita that are consistent
with the initial bimodality observed in 1960 (Figure 2).

19That is, bϑ should be negative and statistically different from zero, provided that 0 <
α < 1. Of course, equation (2) should also include a deterministic trend.
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Figure 4 presents the empirical distribution of bϑ, computed from artificial
samples of countries. For each sample an estimate for ϑ was obtained by run-
ning a regression like equation (1).20 Obviously, the probability of obtaining
estimates of bϑ consistent with the results from section 2 is zero because even
if the distribution of GDP per capita in 1960 is considered as the initial con-
dition, i.i.d. shocks with realistic figures for α are unable to produce enough
persistence in ln y.
Furthermore, the precise nature of absolute convergence will be dictated

by φ. If φ = 0, in the long run countries would converge (in probability) to the
same GDP per capita, whereas if some shocks are idiosyncratic, in the long
run, GDP per capita converges to a nondegenerate distribution.
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Figure 5: Densities of relative GDP per capita with i.i.d. shocks. Empirical
densities for an artificial realization of 100 countries.

Figures 5 and 6 reveal another characteristic of i.i.d. productivity shocks:
even when they begin with a bimodal distribution for initial GDP per capita,
as y is not persistent enough, the bimodality quickly disappears. In fact, after
36 years, GDP per capita would not feature twin peaks.
A main feature of this model is that once initial conditions have dissipated

(which will occur rapidly in this case), ln yi,t will be normally distributed. It
turns out that, in this case, distribution moments can be derived analytically.
In particular, if µt and b represent the limits of the mean and the variance of

20The parameter values for this model were set as follows: α = 0.35, β = 0.96, λ = 0,
φ = 1, and σ2w = 0.05

2.
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Figure 6: Surface and contour plots of (log of) relative GDP per capita for
i.i.d. shocks. Results for an artificial realization of 100 countries.

ln yi,t we have

µt =
α ln (αβ) + (1− α) ln (1 + λ) t

1− α
, b =

σ2ε
1− α2

.

Thus, given that ln yi,t is normal, yi,t will be log-normal with E [yi,t] =
exp (µt + 0.5b). Furthermore, eYi (the ratio between yi and E [yi,t]) will be
unconditionally log-normal, and its first two moments will be

E
³eYi´ = 1, V ³eYi´ = eb − 1. (14)

Obtaining the unconditional (ergodic) probabilities of eYi for each of the
categories described in Table 3 can be accomplished by noticing that

Pr
heYi ≤ j

i
= Pr

h
ln eYi ≤ ln ji = Pr" ln eYi + 0.5b√

b
≤ ln j + 0.5b√

b

#
,

but
ln eYi + 0.5b√

b

D→ N (0, 1) .

Thus, the probability that eYi does not exceed j can easily be computed
by evaluating Φ

³
ln j+0.5b√

b

´
, where Φ (·) is the cumulative distribution function

14



of a standard normal variable. Thus, with i.i.d. shocks, the shape of the
unconditional distribution of eYi and its ergodic probabilities depends solely on
b, which in turn is a function of the volatility of technology shocks and the
persistence of ln yi (which is α, capital’s share of total output).
As Table 3 proves, given the one-year transition matrix estimated with the

available data, the ergodic distribution of eYi appears to be both bimodal and
strongly asymmetric, in the sense that (unconditionally) the median of eYi is
close to 0.5 and not to the mean (which is, by construction, one). Of course,
the log-normal distribution is asymmetric; thus a simple way to verify whether
i.i.d. shocks are able to display such a degree of asymmetry is, given a value
for b, to solve for the value of j that satisfies

Φ

µ
ln j + 0.5b√

b

¶
=
1

2
. (15)

But, as ln j+0.5b√
b

is asymptotically normal, and Φ (0) = 1
2
, the value of j that

solves (15) is

j = exp

µ
− b
2

¶
= exp

µ
− σ2ε
2 (1− α2)

¶
.

Figure 7: Median of eY for different values of α and σε with i.i.d. shocks
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Figure 7 shows that a median close to eY = 0.5 can only be obtained with
extremely volatile technology shocks (σε > 0.3) or an unrealistic capital share
in total GDP (α > 0.7). In conclusion, i.i.d. shocks are inconsistent with the
data, and if actual economies resembled this characterization, the probability
of observing the evidence documented in section 2 would be virtually nil.

4.2 Persistent Shocks

Once we abandon the unrealistic setup of i.i.d. technology shocks, we can
obtain significant persistence for ln y by choosing a value of ρ in (12) close to
one. Persistence of technology shocks is routinely invoked in the Real Business
Cycles literature and is broadly consistent with key stylized facts of modern
economies. Once persistence in ln y is obtained, without having to resort to
unrealistic values of α, the conclusions we reach regarding i.i.d. shocks change
radically.
One immediately notices that convergence tests such as equation (2) are

misspecified. If pooled observations were used in equation (2), we would find
that bϑ p→ ψ − 1 = −(1− α) (1− ρ)

1 + αρ
,

where ψ = (α+ ρ) / (1 + αρ) is the first-order autocorrelation of ln y. This im-
plies that the more persistent the technology shocks, the closer the probability
limit of bϑ will be to zero.
Figure 8 presents an exercise similar to that reported in Figure 4 for the

i.i.d. case. Here we consider exactly the same parameterization, but now we set
ρ = 0.97. The difference is that, even when the model implies convergence, the
results of estimating equation (1) by bootstrapping the initial distribution of
ln y that was observed in 1960 presents a nonnegligible probability (11 percent)
that the estimated coefficient would indeed be positive (implying divergence).
Furthermore, as Figure 9 reveals, persistent technology shocks can replicate

a bimodal joint distribution of the initial (log of) GDP per capita (consistent
with the one observed in 1960) and the figures that would be obtained 35
years later. As initial conditions do not dissipate as fast as in the i.i.d. case,
an initially bimodal distribution would persist even over long periods. Thus
bimodality in the short run is not inconsistent with a model that displays
convergence in the long run.
As this model also displays convergence, ln yi,t will be normal with the

following mean and variance:

µt =
B +Dt

(1− α) (1− ρ)
, b =

σ2ε (1 + αρ)

(1− αρ) (1− α− ρ+ αρ) (1 + α+ ρ+ αρ)
. (16)
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Figure 8: Absolute convergence tests with AR(1) shocks: empirical distribu-
tion of the bϑ coefficients obtained with 2,000 artificial samples for 100 countries.

Figure 9: Surface and contour plots of (log of) relative GDP per capita for
AR(1) shocks. Results for an artificial realization of 100 countries.
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Thus the unconditional distribution of eY will still be log-normal with mean
and variance given by equation (14), but b in this case is given by equation
(16). We can conduct an experiment identical to the one reported in Figure
7, but now we set the value of α to 0.35 and let ρ and σε vary. The results
of this exercise are presented in Figure 10, which shows that the median of
the unconditional distribution of eY can be set close to 0.5 with extremely
persistent and moderately volatile technology shocks.

Figure 10: Median of eY for different values of ρ and σε with AR(1) shocks

In summary, persistent technology shocks can be broadly consistent with
the evidence reported in Section 2, in the sense that, whatever the initial
conditions of the distribution of GDP per capita, they will fade slowly. In
particular, this simple model, which displays convergence to a unimodal dis-
tribution in the long run, will be consistent with twin peaks in the distribution
of GDP per capita, even over relatively prolonged horizons. Furthermore, the
asymmetry in the ergodic probabilities derived from the one-year transition
matrix is characteristic of any log-normal distribution and is not (by itself) a
proof of divergence.

4.3 The Model and Conditional Convergence

Once persistent shocks are allowed, even the simplest of the exogenous growth
models can display several of the features that are considered evidence of
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divergence or club convergence. Thus, given an initially bimodal distribution
of (the log of) GDP per capita, persistence by itself could generate an illusion
of bimodality for prolonged periods.
Furthermore, the models just discussed are among the simplest that can be

generated from our theoretical model. In particular, if θ is different from one,
the population growth rate becomes a determinant of ln y; in such a case, even
if ln η is stationary (a fact supported by the data), its exclusion from growth
regressions could generate results consistent with conditional convergence, pro-
vided that technology shocks and population growth are persistent and that
the x variables chosen correlate with initial conditions. In fact, as stressed
in Section 2, most of the “robust” x variables that are included in growth
regressions are both persistent and strongly correlated with initial conditions.
Of course, if the economy is better characterized using parameters that do

not allow for an analytical solution for the law of motion of ln y, equations (1)
and (2) can at best be viewed as linear approximations. The more nonlinear
the model, the more inaccurate this approximation will be, and any nonlinear
terms omitted may be approximated by any x variable that is correlated with
the initial conditions.
A case for conditional convergence could be made if, for example, distor-

tionary taxes were included. If distortions were persistent (or permanent),
countries with lower distortions would converge to higher income levels. How-
ever, according to this model and contrary to the endogenous growth literature,
if the distortion were lifted, convergence would be achieved.

5 Concluding Remarks

This paper takes issue with the interpretation of cross-country growth models
that contend that the convergence hypothesis is strongly rejected by the data.
It shows that even the simplest exogenous growth model that displays absolute
convergence in the long run can present several features that are argued to be
evidence against convergence. This is so because ultimately, tests against con-
vergence are simply unit root tests, and have the power problems abundantly
documented in the econometrics literature.
In particular, if persistent and moderately volatile productivity shocks are

allowed, exogenous growth models can display features such as bimodality
and asymmetries in the unconditional distribution of relative GDP per capita.
Furthermore, there is a nonnegligible probability that misspecified econometric
models will reject absolute convergence even when it is present.
Nevertheless, persistence of technology shocks is not enough to generate
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these results. In this case persistence implies that initial conditions will even-
tually dissipate, and if bimodality were present in a given period, it would not
dissipate for long periods.
Furthermore, simple (and realistic) variations of the models presented,

which ultimately imply convergence, can be made consistent with conditional
convergence results, provided that the “determinants of growth” chosen are
correlated with initial conditions and that the models being tested are mis-
specified (with an incorrect law of motion of GDP per capita or omission of
nonlinearities).
It is only fair to mention that this paper does not explain the initial bi-

modality that appears to be present in the data. It may well be the case
that apparently relevant policy variables in conditional convergence regres-
sions have something to do with this. In line with McGrattan and Schmitz
(1999), distortionary policies may be behind this, but this model implies that,
if distortions are at fault, convergence to an ergodic distribution of GDP per
capita should be achieved if these policies also converge.
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