
An Ad-Hoc Wireless Network Architecture for
Face-to-Face Mobile Collaborative Applications

Gustavo Zurita1 and Miguel Nussbaum2

1 Universidad de Chile, Departamento de Sistemas de Información y Auditoria,
Escuela de Economía y Negocios, Diagonal Paraguay 257, Santiago 9227, Chile

gnzurita@facea.uchile.cl
2 Pontificia Universidad Católica de Chile, Departamento de Ciencia de la Computación,

Escuela de Ingeniería, Casilla 306, Vicuña Mackena 4860, Santiago 22, Chile
mn@ing.puc.cl

Abstract. An architecture for building an ad-hoc wireless network is presented
in which various face-to-face, peer-to-peer collaborative applications function
simultaneously and the interconnections between group members are highly
dynamic and self-organizing. To illustrate how the architecture implements
communication, examples of client-server and point-to-point communication
are given. An interconnection architecture of a Mobile Computer Supported
Collaborative Learning (MCSCL) environment is analyzed in detail. Its com-
munication protocols are showed with sequence diagrams. The paper concludes
with an evaluation of the architecture’s performance.

1 Introduction

An ad-hoc network [8] is a transitory or permanent association of nodes or mobile
devices that do not depend on any fixed support infrastructure to establish intercom-
munication among them [1]. Connection and disconnection is controlled by the dis-
tance among nodes and the face-to-face requirements of the implemented peer-to-peer
(p2p) application, which may be educational [3], commercial [7], [11] or collabora-
tive [13].

According to [6], a mobile p2p system inherits many of the features of ad-hoc net-
works. Specifically, it will be (a) self-organizing: as a side effect of the movement of
devices within a limited physical space, the topology of a mobile p2p system con-
stantly adjusts itself, discovering new communication links and managing various
ad-hoc sub-networks as required by the application; (b) fully decentralized: each peer
is equally important and no central node exists; and (c) highly dynamic: communica-
tion endpoints can move and change frequently and independently of one another.

The mobile nodes in these systems can function in any location and change their con-
figuration and/or membership in various sub-networks within a single network to adapt
to the face-to-face social interactions that users engage in and that the network must
support. The disadvantages of wireless data transmission systems are that they have
relatively less bandwidth, more latency, less connectivity stability, and less predictable
availability [2]. Additional constraints are a) decentralized control, to have synchroniza-
tion even when a node fails, b) fault tolerant, when a node fails the other have to be op-
erational, and c) dynamic reconfiguration, sub-networks are formed on demand.

 An Ad-Hoc Wireless Network Architecture

 This study presents an architecture for building an ad-hoc wireless network in
which various face-to-face, peer-to-peer collaborative applications function simulta-
neously and the interconnections between group members are highly dynamic and
self-organizing.

2 MCSCL Communication Support (MCSCL-CS)

A face-to-face Mobile CSCL (or MCSCL) environment enables several small groups
(3 to 5 members) to work collaboratively while moving around freely with handhelds
[12], [13]. This capability facilitates flexibility in social interactions and easy man-
agement of group composition.

When an MCSCL environment is used in a setting such as a school classroom, the
ad-hoc network must not only interconnect all of the collaborative workgroups, but
must also simultaneously maintain various sub-networks for each of the
3-to-5-member groups, which function in different collaborative activities that at any
given moment are at varying stages of completion.
 The proposed ad-hoc network architecture is intended for use with any
MCSCL-type p2p application, and enables the interchange of group members in real
time. The scenario described here is an environment in which each student in the
classroom has a handheld which is used as a support tool for performing collaborative
activities together with fellow group members. As well, this environment allows
dynamic reconfiguration of the groups.

2.1 Specification of the Proposed Architecture

The specifications of the proposed architecture are:

− Mobility. The application must function anywhere.
− Ad-hoc Network. The network does not depend on any infrastructure beyond that

formed by the handhelds themselves. Within a single ad-hoc network, various
other sub-networks may be created as required for establishing interconnections
between members of the collaborative groups.

− Social and Technological Network. Users can communicate not only over the tech-
nological (ad-hoc) network, but also through the “social” network, that is,
face-to-face communication between peer groups.

− Configurable. Applications may need to configure different types of interconnec-
tion between nodes. In other words, they may need to establish various ad-hoc
sub-networks simultaneously as well as configure a variety of intercommunication
topologies between nodes, such as client-server, point-to-point, one-to-many or
many-to-one.

− Dynamic reconfiguration. The environment must permit reconfiguration of
sub-networks in real time.

− Extensible. This feature is necessary to enable the addition of applications not
contemplated when the architecture was originally designed.

G. Zurita and M. Nussbaum

− Efficient. The architecture’s level of performance must be sufficient for the appli-
cation, meaning that communication times will be undetectable by the user.

− Manageable. Within the same ad-hoc network, one of the handhelds (the teacher’s)
must be able to reconfigure and manage in real time.

2.2 General Architecture

MCSCL Communication Support (hereafter MCSCL-CS) is derived from DACIA
[10] and includes certain aspects of its group communication design. Thus, collabora-
tive groups are defined as closed groups because they develop activities independ-
ently of those of the other groups and so do not need to be aware of the latter’s
external messages. Communication has been modeled as a hierarchical group, which
does not limit the different forms of communication a particular activity may be re-
quired to establish so that group members can carry out the roles that activity defines.
As for membership control, this is handled inside the group. The management of the
collaborative groups has therefore only one point of access, making possible the Dy-
namic Reconfiguration of Groups (DRG). Maintaining consistency of the messages
exchanged by different groups hosts is accomplished through a consistent ordering,
given a hierarchical structure that facilitates message management, thus rendering
global ordering unnecessary. Finally, as regards the scalability of the system, it must
be ensured that the system works independently of the number of groups created and
the number of group members. Since the scalability of distributed systems can be
negatively affected by design decisions that tend to centralize them, MCSCL-CS was
conceived for use in classrooms, whose numbers of system users are known and fi-
nite, thereby reducing the adverse impact of the groups’ hierarchical structure.

MCSCL-CS is made up of a variable number of components referred to as
Comp-CS that provide the necessary functionality for performing an MCSCL activity,
which requires diverse structures and models of intercommunication (Fig. 1). Each
Comp-CS combines the Display of the user interface and the logic of the collaborative
activity (Application’s logic). In Fig. 1, each system application is composed of n
Comp-CS’s, one for each node used by a specific peer.

Communication among Comp-CS’s is carried out at two levels. Among compo-
nents residing in the same host it is executed using an adaptation of the design pattern
Events Notifier [5]. Thus, a component is subscribed to the events that other compo-
nents publish, connecting and disconnecting the components of the p2p system.
Communication among components, which is necessary for the collaborative per-
formance of the activity, occurs via the exchange of messages through ports. The
components can dynamically request a number of variable ports in real time. All the
ports activated in a host are administered by an Operator that resides in each client
application. Each application’s Comp-CS has n associated ports to communicate with
n remote components (Fig. 1).

Communication among hosts within the collaborative group and the connections
between pairs of components that reside in different hosts is administered by a Coor-
dinator (which may reside in any handheld). In similar fashion to the telephone sys-
tem, the Coordinator is responsible for the wireless connections among the members
of a given group of users (sub-network). That is, the Operator of a given node asks
the Coordinator to establish a connection with another node Operator (Fig. 1).

 An Ad-Hoc Wireless Network Architecture

Application
Comp-CS 1

Display

Application's
logic

Comp-CS n

Display

Application's
logic

po
rt

1

po
rt

N

po
rt

N

po
rt

1

Application
Comp-CS 1

Display

Application's
logic

Comp-CS n

Display

Application's
logic

po
rt

1

po
rt

N

po
rt

N

po
rt

1

Application
Comp-CS 1

Display

Application's
logic

Comp-CS n

Display

Application's
logic

po
rt

1

po
rt

N

po
rt

N

po
rt

1

Coordinator

Network

Connections
wireless network connection

wireless network connection

Operator

Network

Operator

Network

Operator

Network

Student 1 Student 2 Student n

wireless network connection

Fig. 1. Generic architecture of a system based on MCSCL-CS

2.3 Architecture Examples: Client-Server and Point-to-Point Communication

The architecture described above is general enough to be able to implement any type
of communication. In what follows, two basic types of communication are presented:
client-server and point-to-point.

Scenario A of Fig. 2 is an example of client-server communication with three cli-
ents, one of them acting as the server and each having its own application logic. The
server application has as many ports (named PStudent 1, PStudent 2 and PStudent 3)
as there are clients in the group (including its own client), and provides communica-
tion service to the other clients. To communicate with the server (PortStudent 3) the
clients only need one port. If, for example, Student 1 wants to communicate through
its Comp-CS Client with Student 2, the requirement is sent through PortStudent 3
ports that have been established by the Server Comp-CS (resident in Student 3).

Client Application Client Application Client / Server Application

Comp-CS
Server

Display

Application's
Logic

Comp-CS
Client

Display

Application's
Logic

Comp-CS
Client

Display

Application's
Logic

Comp-CS
Client

Display

Application's
Logic

Client Application

Comp-CS
Client

Display

Application's
Logic

Client Application

Comp-CS
Client

Display

Application's
Logic

Client Application

Comp-CS
Client

Display

Application's
Logic

Operator
Network

Operator
Network

Operator
Network

Operator
Network

Operator
Network

Operator
Network

Coordinator

Network

Connections
Coordinator

Network

Connections

SCENARIO A SCENARIO B

PStudent 3

PStudent 1

PStudent 2

PortStudent 3 PortStudent 3 PortStudent 3

P
or

ts

P
or

t PortStudent 3PortStudent 2 PortStudent 3PortStudent 1 PortStudent 3PortStudent 1

Student 2Student 1 Student 3 Student 2Student 1 Student 3

Fig. 2. Architectures for client-server (A) and point-to-point communication (B)

G. Zurita and M. Nussbaum

In scenario B of Fig. 2, an example of point-to-point communication is shown.
Here, each Comp-CS component will need as many ports as there are partners in the
group (excluding itself) in order to communicate with the others, which in this case
are two. So, for example, when student 1 wants to communicate with student 2 (using
his/her Client Comp-CS) s/he does so through student 2’s port (PortStudent 2).

3 Design of an MCSCL Environment

In an MCSCL environment there are two types of actors, teachers and students. The
teacher’s handheld (MCSCL-Tch) configures and manages the p2p collaborative
group activities. The students’ handhelds (MCSCL-Stu) run the collaborative educa-
tive activities, communicating through the ad-hoc network [12], [13] and [14]. Inter-
connections and communication must be established with the students’ applications
so that they can form collaborative groups, start the activity and, when necessary,
modify the group configurations.

The specific requirements of the MCSCL-Tch application are: a) management and
selection of students’ handhelds during the MCSCL activity; b) management and
configuration of the groups that develop the activity; and c) management and configu-
ration of the specific MCSCL activity. The requirements for the MCSCL-Stu applica-
tion are: a) student handhelds assignment information; b) student group assignment
information; and c) Rules and roles for the MCSCL activity.

3.1 Architecture of the System

Fig. 3 shows an MCSCL-Tch teacher’s application and three groups with a total of
nine MCSCL-Stu student’s applications, the latter represented by solid-line circles
each with an Operator component. The Operator of the MCSCL-Tch application

Teacher Handheld
 MCSCL-Tch application

Operator
(Handheld)

Coordinator

Group

MCSCL environment in classroom

MCSCL application
of Group 1

MCSCL application
 of Group 3

 MCSCL application
 of Group 2

Student Handheld
MCSCL-Stu application

ad-hoc
sub-network

ad-hoc
sub-networkad-hoc

sub-network

ad-hoc network

Fig. 3. Characteristics of an MCSCL environment

 An Ad-Hoc Wireless Network Architecture

creates the three classroom groups containing the students, and through the group
Coordinator (see hexagon inside pentagon) invites the Operators of each
MCSCL-Stu application to form a part of the specific groups. Once the students are
identified, the MCSCL-Tch application configures and manages three components
from the nine MCSCL-Stu applications (in the ad-hoc network), that contain a Coor-
dinator (the handhelds with a pentagon) which in turn configure and manage two
other MCSCL-Stu applications, to form three ad-hoc sub-networks: Group 1, identi-
fied by a square; Group 2, by a triangle; and Group 3, by an ellipse.

The lines without arrowheads joining all the circles (handhelds) constitute the
ad-hoc network’s interconnections. Each of the dotted circles corresponds to an
ad-hoc sub-network, whereas the dotted square represents the ad-hoc network. In each
sub-network the same or some other application may be executed. The MCSCL-Tch
application and one of the MCSCL-Stu applications in each group has a Coordinator
component that is responsible for establishing communication between MCSCL-Tch
and each group formed in order to coordinate activity development in the latter.

3.2 MCSCL-Tch Application

Fig. 4 shows the MCSCL-Tch application. The Connection Manager component
establishes the links with the classroom group Coordinator and with each Coordina-
tor of the students’ collaborative groups (in one of the group’s handhelds). When the
application is executed, each component is created and performed, as are the applica-
tion Operator and the group Coordinator in the classroom. Finally, the Operator is
subscribed to this group, as explained in section 2.2

Comp-CS
Handheld

Administration

Display

Application's
Logic

Comp-CS
Student

Administration

Display

Application's
Logic

Comp-CS
Group

Administration

Display

Application's
Logic

Comp-CS
Activity

Administration

Display

Application's
Logic

Comp-CS
Connection

Administration

Display

Application's
Logic

Coordinator Classroom

Network

Connections

Coordinator Group n

Network

Connections

Coordinator Group 1

Network

Connections

Operator

Network

MCSCL-Tch

Fig. 4. Scheme of the MCSCL-Tch application architecture

3.3 Group Formation

The system’s networking is exclusively p2p. This means that all users will have the
same program running on their handhelds and there is no central service. The program
recognizes the presence of other participants and establishes a secure communication

G. Zurita and M. Nussbaum

with them in order to transfer data for synchronizing the applications. This is done via
multicasting, peer discovery and synchronization via point-to-point data communica-
tion. Group formation is a basic function of the p2p MCSCL application. It is com-
posed of three clearly distinguished stages:

− The Operator of the MCSCL-Tch sends connection invitations to the Coordinator
so that connections are established with the Operators of the MCSCL-Stu applica-
tions residing in the students’ handhelds.

− The Operator of the MCSCL-Tch application requests its Coordinator to create a
new Coordinator among the MCSCL-Stu student application Operators that were
previously connected.

− A group must be formed with the Coordinator just created. This Coordinator re-
ceives the connections from the Operators of the MCSCL-Stu application of each
student that belongs to the group. The messages indicating that those Operators are
to connect again to the new Coordinator are sent to the Operator of the MCSCL-
Tch application through the teacher Coordinator.

op1 : Operator : Coordinator op2 : Operator newOp : Operator

CmdInviteNewOp()
connect()

connected()

CmdSubscribe()

CmdSetGroupInfo()

CmdJoinGroup()

CmdSetNewOp()
CmdSetNewOp()

newOp : Operator

connected()

CmdSubscribe()

CmdSetGroupInfo()

CmdJoinGroup()

CmdSetNewOp()

CmdSetNewOp()

CmdSetNewOp()

CmdInviteNewOp()

op1 : Operator : Coordinator op2 : Operator

CmdCreateRemoteGroup()

CmdCreateCoordinator()
create()

: Coordinator

Group
invited

Group
Coordinator
created

connect()

Professor Student 1 Student 2 Student 3

Fig. 5. Sequence diagram for connecting three students

Fig. 5 is a sequence diagram illustrating how the teacher connects three students
and asks each one to create a group Coordinator. The op1:Operator of the
MCSCL-Tch application sends a CmdInviteNewOp() command connection invitation
to its Coordinator to establish a connection with a new Operator of the MCSCL-Stu

 An Ad-Hoc Wireless Network Architecture

student application (NewOp:Operator). As can be seen in Fig. 5, op2:Operator (of
Student 1) is already connected to the teacher’s Coordinator, and two new Operators
corresponding to students 2 and 3 are in the process of being connected. Once all the
students’ Operators have been connected (Fig. 5, the teacher’s op1:Operator asks its
Coordinator by means of a CmdCreateRemoteGroup() command to create a Coordi-
nator among of the three Operators that were connected. The decision as to who will
be the Operator that creates the new Coordinator is made by the MCSCL-Tch appli-
cation; in Fig. 5, op2:Operator of Student 1 is chosen. The teacher’s Coordinator
asks op2:Operator through the CmdCreateCoordinator() command. Each group
formed has a group Coordinator, and the MCSCL-Stu applications of each student
who has joined a group have an Operator connected to that group Coordinator and to
the Coordinator defined by the teacher.
 Fig. 6 is the sequence diagram showing how the teacher’s Operator and Coordina-
tor and the students’ Coordinator and Operators form a three-member collaborative
group. The Operators created in Fig. 6 are now called op3:Operator and
op4:Operator, corresponding to students 2 and 3. The communication is established
through the teacher’s Coordinator and the group Coordinator of the three connected
students.

connect()

connected()

CmdJoinGroup()

CmdSubscribe()

CmdSetGroupInfo()

connect()

connected()
CmdJoinGroup()

CmdSubscribe()

CmdSetGroupInfo()

CmdCmdConnectCoordinator()

connect()

connected()
CmdJoinGroup()

CmdSubscribe()

CmdSetGroupInfo()

CmdSetNewOp()

CmdSetNewOp()

CmdSetNewOp()

connect()

connected()

CmdJoinGroup()

CmdSubscribe()

CmdSetGroupInfo()

CmdSetNewOp()
CmdSetNewOp()

CmdSetNewOp() Group connected
to its Coordinator

op1 : Operator : Coordinator op2 : Operator Op3 : Operator Op4 : Operator: Coordinator

CmdCmdConnectCoordinator()CmdConnectCoordRemote()

CmdConnectCoordRemote()

CmdConnectCoordRemote()
CmdConnectCoordinator()

Fig. 6. Sequence diagram for forming a group

G. Zurita and M. Nussbaum

To form a group of students, the teacher must send the applications to each mem-
ber of the group. For example, in order to add student 1 to the group, the teacher’s
Operator asks its Coordinator for that application through a CmdConnectCoordRe-
mote() command. The teacher’s Coordinator then asks student 1’s op2:Operator by
means of a CmdConnectCoordinator() command to include Student 1 in the collabo-
rative work. The Student 1 Operator asks the group Coordinator (in this case, con-
tained within itself) for a connection, and the Coordinator then joins CmdJoinGroup()
and subscribes CmdSubscribe() Student 1 to the group.

In the scenario illustrated in Figs. 5 and 6, the teacher connects and forms a group
of three members only. The procedures followed to connect more students and create
new collaborative work groups are similar.

3.4 Starting and Sending Messages

Once the group is formed, a protocol based on the logic of the collaborative activity
must be established for communicating among the group members. The sequence
diagram in Fig. 7 shows the establishment of communication under a client-server
protocol. This protocol, as requested of the collaborative group Coordinator by the
teacher’s Operator, must start (CmdStartComp()) and update (CmdUpdate-
CompInfo()) with the ClientMCSCL information component of the MCSCL applica-
tion for each member of the group, including the teacher’s Operator. A new
ServerMCSCL component of the MCSCL-Stu application must then be created. This
way, neither the ClientMCSCL component nor the ServerMCSCL component knows
that they reside in the same place, which allows any MCSCL-Stu application to start
that component. Finally, the group Coordinator requests and creates communication
ports among all the ClientMCSCL and ServerMCSCL components.

Once communication between the ports is established, each member of the collabo-
rative group is ready to send and/or receive information.

CmdStartCompGroup()

CmdStartComp()
CmdStartComp() Client MCSCL

 started

CmdUpdateCompInfo() CmdUpdateOpInfo()

CmdUpdateOpInfo()
CmdUpdateOpInfo()

Server
started

CmdStartComp()

start()

CmdConnectPortOp() CmdSolicitatePort()

CmdPortSolicitated()

CmdSetConnect ion()
CmdSetConnect ion()

connectPuertoOp()
CmdSolicitatePort()

CmdPortSolicited()

CmdSetConnection()
CmdSetConnection()

Ports connected
between server
and clients

op1 : Operator : Coordinator op2 : Operator Op3 : Operator Op4 : Operator: Coordinator

CmdStartComp()

CmdStarCompOp()

Fig. 7. Sequence diagram for communication between ports under server protocol

 An Ad-Hoc Wireless Network Architecture

CmdSendMsg()
CmdReceiveMsg()

CmdSendMsg()
CmdReceiveMsg()

CmdSendMsg()
CmdReceiveMsg()

CmdReceiveMsg()

CmdSendMsg()
Messages
sended

op1 : Operator : Coordinator op2 : Operator op3 : Operator op4 : Operator: Coordinator

Fig. 8. Sequence diagram for the delivery of messages among the members of a collaborative
group

The sequence diagram in Fig. 8 is an example of how the Student op4:Operator
sends a message (CmdSendMsg() command) to the op2:Operator, who then forwards
the same message (or a different one) to the other two students op3:Operator and
op4:Operator. Note that the request to send a message is delivered to the group Coor-
dinator, who redirects it to the Operator that needs the information (CmdRe-
ceiveMsg() command). The MCSCL-CS architecture is such that this procedure is
independent of the logic and requirements of the MCSCL collaborative activity.

Any other communication protocol that an MCSCL activity might require can be
designed based on the described functionality of MCSCL-CS, which demonstrates its
flexibility, extensibility and adaptability.

3.5 Dynamic Group Reconfiguration (DRG)

For a DRG to be carried out, there must be at least one group to be reconfigured. Fig. 9
shows the sequence diagram for dismantling (disarming) the group formed in Fig. 6.
The student group Coordinator is eliminated by the delete() command. After this op-
eration, the students remain connected to the group defined by the teacher (Fig. 5).

To execute a DRG, the teacher chooses the new members of the collaborative
groups who are to work on a given activity through the MCSCL-Tch application.
Once all the members of the groups have been selected, the teacher’s Operator
(op1:Operator in the case of Fig. 5) must create the new Coordinators for each col-
laborative group again. In the case shown in Fig. 5 the Coordinators should be started
again since the students are already connected to the teacher’s Coordinator, the only
remaining task then being to create a new group Coordinator and connect the stu-
dents’ Operators to it. Recall that Fig. 5 shows the case of one teacher and only three
students; if there were more students connected, the DRG would choose other com-
ponents of the MCSCL-CS as group Coordinators in the students’ handhelds.

CmdDeletedGroup()

CmdDeletedGroup()

CmdDeletedGroup()

op1 : Operator : Coordinator op2 : Operator Op3 : Operator Op4 : Operator: Coordinator

CmdDeletedGroup()
CmdDeletedGroup()

delete()
Group
Disarmed

Fig. 9. Sequence diagram to dismantle a three-student group already formed

G. Zurita and M. Nussbaum

Finally, the MCSCL groups must be formed with their respective Coordinators.
An example of this may be seen by referring back to Fig. 6, which shows the se-
quence diagram for creating a three-student collaborative group.

4 MCSCL-CS Performance Evaluation

The architecture proposed here has been employed with the MCSCL applications
discussed in [12], [13] and [14], and implemented on the eMbedded Visual Basic
(eVB) Runtime for Windows Mobile-based Pocket PC 2002 platform. The applica-
tions are executed over a wireless p2p Wi-Fi network and TCP/IP on Compaq iPAQ
handhelds. For the permanent storage of configurations and results of the groups,
Microsoft SQL Server CE 2.0 was used. TCP Sockets from the WinSock 3.0 eVB
library provided the necessary elements to create, eliminate, connect and manage the
socket connections established among the handhelds [4]. Since the eVB development
environment is only a subgroup of Visual Basic, it cannot support dynamic object
creation, i.e., at runtime. To solve this problem for the applications developed here,
the socket-time creation was simulated based on a defined number of static objects
created in implementation time. In this way, the objects needed at runtime were han-
dled as an array of objects.

To measure the architecture’s performance, the teacher’s handheld (MCSCL-Tch
application) interconnection delay before formation of the defined groups
(MCSCL-Stu applications) was timed. MCSCL-Tch will form an ad-hoc network
with MCSCL-Stu, which in turn will form ad-hoc sub-networks for each group. The
group formation evaluation was conducted on a teacher’s handheld for 1, 2, 9, 12 and
15 groups, each group consisting of 3 handhelds, thus forming ad-hoc networks of up
to 45 students (the typical Chilean classroom size). For each of the five different
quantities of groups, time performance was evaluated for delivery of 3 different in-
formation package sizes: 128 bytes, 256 bytes 512 bytes (MCSCL applications trans-
fer small volumes of information).

As shown in Fig. 10 the time taken for all the groups to form their ad-hoc
sub-networks depends on how many groups there are. According to the protocol, this
time should be independent of their number, but the more groups there are the more
acknowledgements must be sent to their handhelds, all of whom share the same band-
width. Furthermore, time is needed to form the groups’ ad-hoc network (controlled by
MCSCL-Tch) once they have all created their ad-hoc sub-networks.

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Number of groups

T
im

e
(s

ec
on

ds
)

Total time for ad-hoc
groups formation

Ad-hoc Network
formation

Ad-hoc sub-networks
formation

Fig. 10. Formation time of ad-hoc network and sub-networks

 An Ad-Hoc Wireless Network Architecture

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Number of groups

T
im

e
(s

ec
on

ds
)

512B

256B

128B

Fig. 11. Time taken for sending packages of various sizes (512B, 256B, 128B) to different
number of groups (1, 3, 9, 12 and 15)

The chronometers measured only the time the teacher’s handheld took to form the
groups plus the time taken to send the information through the communication ports
to all members of the group. In both cases, the MCSCL-Tch application receives
acknowledgments of group formation (ad-hoc sub-networks) and of sent information
for each group.

Fig. 11, shows the time taken for sending packages of various sizes to different
numbers of groups. Sending time increases as the number of groups to which informa-
tion is sent thought the ports increases. This occurs because each sub-network repli-
cates the information, thereby overloading the wireless interconnection. In Fig. 10 the
results obtained with the different numbers of groups reveals how group formation
times increase linearly as the quantity of groups to be formed increases. The chro-
nometers measured only the time the teacher’s handheld took to form the groups and
the ad-hoc network. This does not mean that all the collaborative groups wait for that
number of seconds before continuing with their activity; rather, the number refers to
the time the MCSCL-Tch application takes to execute the last phase of the protocol
for the last group serviced. For example, with 15 collaborative groups, at worst each
one will have to wait an average of 9.102/15 seconds to receive 512 bytes of text
information before being able to return to its activity. The total number of 9.102 is
explained by the fact that MCSCL-Tch must wait until the last group acknowledge-
ment of information received has arrived and the information has been replicated to
the group’s ad-hoc sub-network. Once the ad-hoc network and the ad-hoc
sub-networks of each of the groups have been formed, the sending and/or receiving of
information does not result in heavy loads on the environment because the communi-
cation ports between group members, and the ports between them and the teacher’s
handheld, have already been created.

5 Final Remarks

When an MCSCL environment is used in a setting such as a school classroom, the
ad-hoc network must not only interconnect all of the collaborative workgroups, but
must also maintain various sub-networks, which function in different collaborative
activities at various stages of completion at any given moment. The proposed ad-hoc
network architecture is intended to be used with any MCSCL-type p2p application,

G. Zurita and M. Nussbaum

and enables the interchange of group members in real time necessary to achieve high
levels of student communication and motivation [9], [13], [14], necessary to achieve
learning objectives.

Initially the MCSCL environment recognizes the presence of other participants and
establishes a fault tolerant communication to transfer data for synchronizing the ap-
plications. This is done via multicasting, peer discovery and synchronization via
point-to-point data communication.

Using the MCSCL-CS architecture that has been proposed here, the number of
ad-hoc network nodes in a p2p collaborative system can vary up to 45 or more with-
out causing network instability.

With MCSCL-CS, a teacher’s handheld can (a) manage all other ad-hoc
sub-networks, (b) configure the formation of new network nodes without having to
reboot, (c) simultaneously maintain sub-networks working with different collabora-
tive applications, (d) maintain sub-networks with 3, 5 or more nodes per collaborative
work group, and (e) reboot and reconnect a collaborative work group when a group
node crashes.

Once initiated by the teacher’s handheld, each ad-hoc sub-network can function in-
dependently while always maintaining an open interconnection with the teacher in
case rebooting or a change in the membership of a work group is necessary.

Acknowledgements

This work was supported by FONDECYT #1050601.

References

1. Bartram, L., Blackstock, M.: Designing Portable Collaborative Networks. Colligo
Networks, ACM Queue 1(3) (2003) 41-49

2. Buszko, D., Lee, D., Helal, A.: Decentralized ad-hoc groupware API and framework for
mobile collaboration. GROUP 2001 (2001) 5-14

3. Danesh, A., Inkpen, K.M., Lau, F., Shu, K., Booth, K.S.: GeneyTM: Designing a
Collaborative Activity for the PalmTM Handheld Computer. Proceedings of the Conference
on Human Factors in Computing Systems (CHI 2001) Seattle, USA (2001) 388-395

4. Grattan, N.: Pocket PC Handheld with Microsoft embedded Visual Basic. NJ: Prentice
Hall PTR (2001)

5. Gupta, S., Hartkopf, J.M., Ramaswamy, S.: Event Notifier, a Pattern for Event
Notification, Java Report, SIGS Publications 3(7) (1998) 19-36

6. Kortuem. G.: Proem: A Peer-to-Peer Computing Platform for Mobile Ad-hoc Networks. In
Advanced Topic Workshop—Middleware for Mobile Computing, Heidelberg, Germany,
Nov. 2001. Banavar, G. Editor. Retrieved on December 2005 from http://www.cs.
rizona.edu/mmc/10%20Kortuem.pdf

7. Malloy, A., Varshney, U., Snow, A.: Supporting mobile commerce applications using
dependable wireless networks. Mobile Networks and Applications archive 7(3) (2002)
225 - 234

 An Ad-Hoc Wireless Network Architecture

8. Murphy, A.L., Roman, G.C, Varghese, G.: An Exercise in Formal Reasoning about
Mobile Communications. Proceedings of the Ninth International Workshop on Software
Specifications and Design, IEEE Computer Society Technical Council on Software
Engineering, IEEE Computer Society Ise-Shima Japan (1998) 25-33

9. Pintrich, P.R., Schunk, D.H.: Motivation in education: Theory, research, and applications,
Prentice Hall Merrill, Englewood Cliffs NJ (1996)

10. Radu, L.: Providing Flexibility in Distributed Applications Using a Mobile Component
Framework. Ph.D. dissertation, University of Michigan, Electrical Engineering and
Computer Science, Sep. 2000. Retrieved on December 2005 from http://www.eecs.
mich.edu/~aprakash/papers/radu/dissertation_radu.pdf

11. Tarasewich, P.: Designing mobile commerce applications. Communications of the ACM.
SPECIAL ISSUE: Mobile commerce opportunities and challenges, 46(12) (2003) 57 - 60

12. Zurita, G., Nussbaum, M.: A Constructivist Collaborative Learning Environment
supported by Wireless interconnected handhelds. Journal of Computer Assisted Learning,
20(4) (2004) 235-243

13. Zurita, G., Nussbaum, M.: Computer Supported Collaborative Learning using Handheld
Computers. Computer & Education, 42 (2004) 289-314

14. Zurita, G., Nussbaum, M. Sharples: Encouraging face-to-face collaborative learning
through the use of handheld computers in the classroom. Human Computer Interaction
with Mobile Devices and Services. Springer, Verlag Lecture Notes in Computer Science
2795 (2003) 193-208.

	Introduction
	MCSCL Communication Support (MCSCL-CS)
	Specification of the Proposed Architecture
	General Architecture
	Architecture Examples: Client-Server and Point-to-Point Communication

	Design of an MCSCL Environment
	Architecture of the System
	MCSCL-Tch Application
	Group Formation
	Starting and Sending Messages
	Dynamic Group Reconfiguration (DRG)

	MCSCL-CS Performance Evaluation
	Final Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

