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a b s t r a c t

We analyze the possibility of the simultaneous presence of two key features in price-taking
sequential economies: collateralized credit operations and effective additional enforce-
ment mechanisms, i.e. those implying payments besides the value of collateral guarantees.

We show that these additional mechanisms, instead of strengthening, actually weaken
the restrictions that collateral places on borrowing. In fact, when collateral requirements
are not large enough in relation to the effectiveness of the additional mechanisms, lenders
anticipate payments exceeding the value of the collateral requirements. Thus, by non-
arbitrage, they lend more than the value of these guarantees. In turn, in the absence of
other market frictions such as borrowing constraints, agents may indefinitely postpone the
payment of their debts, implying the collapse of the agent’s maximization problem and of
such credit markets.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In modern financial markets, collateral guarantees play an important role in enforcing borrowers not to entirely default
on their financial promises. These guarantees are used in several credit operations, from corporate bonds to Collateralized
Mortgages Obligations,1 allowing markets to reduce credit risk and increase portfolio diversification. However, to protect
investors from the excess of losses induced by large negative shocks in the value of collateral guarantees, financial markets
may create and implement additional enforcement mechanisms against default. In this paper, we focus on the theoretical
effects of such a policy on the agent’s maximization problem and, consequently, on the price-taking credit market.

In the infinite horizon context, the incentives provided by the collateralization of financial contracts are mostly addressed
when the only enforcement mechanism against default is the seizure of the associated guarantees.2 Particularly, for incom-
plete market economies, Araujo et al. (2002) prove the existence of equilibrium independent of the choice of collateral

� Previous versions of this article circulated under the following titles “Does collateral avoid Ponzi schemes?” and “With additional enforcement
mechanisms, does collateral avoid Ponzi schemes?”.
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1 That is, derivative assets secured by pools of individual mortgages, each of which is backed mostly by real estates.
2 Related literature. The inclusion of collateralized debt in a general equilibrium framework was originally studied by Geanakoplos (1997) and Geanakoplos

and Zame (2002). These seminal two-period models were extended to more general securitization structures by Steinert and Torres-Martínez (2007), and
to sequential economies with infinite lived agents by Araujo et al. (2002). Kubler and Schmedders (2003) analyze Markovian economies, proving the
existence of stationary equilibria and providing an algorithm to approximate such equilibria numerically. Recently, the role of collateralized assets in
sequential economies where agents have uncertain lifetimes was addressed by Seghir and Torres-Martínez (2008).
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guarantees. One important consequence is that such simple financial structure keeps the credit market from collapsing.
Essentially, since agents default only when the value of the collateral requirements is smaller than that of the respective
financial promise, the net payoff of lending is always less than or equal to the one associated to holding the amount of the
required collateral. Therefore, by the absence of arbitrage, the value of any loan has to be less than the value of the respective
collateral, precluding agents to become leveraged and eliminating Ponzi schemes.

However, Páscoa and Seghir (2009) have shown that the results above may not hold when linear utility penalties for
default act as an additional enforcement mechanism besides the seizure of collateral guarantees.3 They provide examples
of deterministic economies where sufficiently harsh penalties induce agents to fully honor their debts, paying more than
the depreciated collateral, which, by non-arbitrage, may lead the value of collateral requirements to be persistently lower
than that of the loan. In such a context, given any budget feasible plan, agents may improve their utilities by taking new
loans, constituting the associated collateral guarantees and increasing their consumption. Therefore, there is no individual’s
optimal plan and we cannot define a credit market.

In this paper, we analyze how the interaction between collateral guarantees and generic additional enforcement mecha-
nisms can extend the result from Páscoa and Seghir’s particular examples to more general economies. Doing so, we identify
the effectiveness of these additional mechanisms as an important economic concept responsible for the result. Additionally,
we argue that two new features of our approach enable us to reach further conclusions than the ones already presented in the
literature. First, instead of using a general equilibrium framework, we only analyze the decision problem of one agent. Second,
we work with a reduced form approach to model the inclusion of additional enforcement mechanisms against default.

Focusing on the maximization problem of a price taker agent in an economy analogous to that studied by Araujo et al.
(2002), we introduce effective additional enforcement mechanisms, i.e. mechanisms enforcing payments besides the value of
the collateral guarantees. We represent these additional mechanisms by their effectiveness on enforcing payments besides
the value of the collateral requirements. Thus, we do not intend to explicitly model how the market imposes additional
payments on borrowers besides the value of collateral guarantees. However, with this reduced form approach, we can
concentrate on the pricing and market effects of these additional mechanisms. In fact, we derive an explicit relationship
between the primitives of the economy, such as the effectiveness and collateral requirements, implying the collapse of the
agent’s maximization problem.

Essentially, we only need one agent to reach conclusions about asset pricing in competitive credit markets. Additionally,
with the reduced form approach for the additional mechanisms against default such pricing becomes well tractable. Then, as
we include enforcement mechanisms in addition to the seizure of collateral requirements, lenders may expect sufficiently
large payments for their loans besides the value of the these requirements. In such situation, these additional mechanisms,
instead of strengthening, actually weaken the restrictions that collateral places on borrowing. In fact, lenders anticipate that,
even in case of default, they still receive more than just the value of the collateral guarantees. Thus, by non-arbitrage, they
lend more than the value of these guarantees. On the other hand, borrowers have the incentive and the possibility to take
new credits in order to pay their older ones, since there is no debt constraints or monitoring precluding agents to incur in a
Ponzi scheme. Their behavior, then, leads to the non-existence of a physical feasible solution for the agent’s problem.

Regarding the relationship found between the primitives of the economy, we may view it from two different perspectives.
From the first one, given a level of effectiveness of the additional mechanisms, we show that there are strictly positive
upper bounds for collateral requirements under which agents have incentives to indefinitely postpone their debts through
new credits, leading to the non-existence of an optimal utility maximizing plan. Therefore, the market choice of collateral
guarantees becomes relevant. From the second one, we provide theoretical foundations to the examples given by Páscoa
and Seghir (2009). That is, given collateral requirements, we show that any sufficiently effective additional enforcement
mechanism implies the non-existence of physical feasible individuals’ optimal plans. Hence, it is the effectiveness of these
mechanisms that brings the main result, not any mechanism per se.

The remainder of the paper is organized as follows: Section 2 presents an infinite-horizon economy with assets subject
to default and with effective enforcement mechanisms in addition to collateral repossession. In Section 3 we show our main
result. Some extensions are discussed in Sections 4 and 5.

2. Model

Consider a discrete-time infinite-horizon economy with uncertainty and symmetric information. Let S be the set of states
of nature and Ft the information available at period t ∈ T := N ∪ {0}. Ft is a partition of S, and if t′ > t, make Ft′ finer than Ft .
Summarizing the uncertainty structure, define an event-tree as D = {(t, �) ∈ T × 2S : t ∈ T, � ∈Ft}, where a pair � := (t, �) ∈D
is called a node and t(�) := t is the associated period of time. For simplicity, at t = 0 there is no information, that is F0 := {S}
and, therefore, there is only one node, which is denoted by �0.

A node �′ = (t′, ′) is a successor of � = (t, ), denoted by �′ ≥ �, if t′ ≥ t and ′ ⊆  . Given � ∈D, the set of its successors is
given by the subtreeD(�) := {�∈D : � ≥ �}. Also, for each � /= �0, since Ft(�) is finer than Ft(�)−1, there is only one predecessor,
�− ∈D. We say that �∈D is an immediate successor of � when it is in the set �+ := {�′ ∈D : �′ ≥ �, t(�′) = t(�) + 1}.

3 Páscoa and Seghir’s model is an extension of Zame (1993) and Dubey et al. (2005) two-period equilibrium models with default and utility penalties, to
allow for infinite horizon and collateralized debt.
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At each node � ∈D there is a non-empty and finite set of commodities, L. These commodities may be traded in a com-
petitive market at unitary prices p� = (p(�,l))l∈ L ∈RL+ by a non-empty set of consumers. Also, at any node � > �0, there is
a technology represented by a matrix with non-negative entries, Y� := ((Y�)l,l′ ; (l, l′) ∈ L × L), which transform commodity
bundles consumed at �−, allowing for durable commodities. Thus, for each (l, l′) ∈ L × L, (Y�)l,l′ is the amount of commodity l

obtained at � if one unit of commodity l′ is consumed at �−. Also, letW� ∈RL+ be the aggregate physical resources up to node
�, whileW = (W�)� ∈D is the plan of such resources.

There is a finite set of real assets J(�) at each node � ∈D. Each j in J(�) is short-lived, has promises A(�,j) ∈RL+ at each node
�∈ �+, and is traded in competitive markets by a unitary price q(�,j) ∈R+. Since assets are subject to credit risk, borrowers are
burdened to constitute physical collateral guarantees in order to limit lenders’ losses. Particularly, for every unit of an asset
j∈ J(�) sold, borrowers must establish—and may consume—a bundle C(�,j) ∈RL+ \ {0} that is seized by the market in case of
default. For the sake of notation, let J(D) := {(�, j) ∈D× ∪�∈DJ(�) : j∈ J(�)} and J+(D) := {(�, j) ∈D× ∪�∈DJ(�) : (�−, j) ∈ J(D)}.

Furthermore, additional default enforcement mechanisms may exist. We allow generality in the type of additional
enforcement mechanisms assuming that, for each unit of asset j∈ J(�), borrowers pay, and lenders expect to receive, a
fixed percentage of the remaining debt, �(�,j) ∈ [0,1]. More formally, for every unit of asset j∈ J(�), each borrower pays at
each node �∈ �+ an amount

F(�,j)(p�) := min{p�A(�,j), p�Y�C(�,j)} + �(�,j) [p�A(�,j) − p�Y�C(�,j)]
+,

where �(�,j) ∈ [0,1] is the effectiveness of additional enforcement mechanisms on asset j at node�, and, for any z ∈R, [z]+ :=
max{z,0}.

Our approach allows us to include in our analysis economic (i.e. those induced by legal contracts) and non-economic (e.g.
moral sanctions, loss of reputations) default enforcement mechanisms, provided that these mechanisms may be summarized
by a family of parameters of effectiveness, (�(�,j))(�,j) ∈ J+(D). However, this last requirement do not induce loss of generality,
since traders perfect foresee asset payments. In fact, we can always normalize financial payments as done above.

Definition. Given (�, j) ∈ J+(D), additional enforcement mechanisms are effective on asset j at node � when �(�,j)A(�,j) is
a non-zero vector. Enforcement mechanisms are persistently effective in a subtree D(�), if for any � > �, there is j∈ J(�−) on
which additional enforcement mechanisms are effective at �.

Definitions above not only depend on parameters (�(�,j))(�,j) ∈ J+(D), but also on the non-triviality of the original promises.
Thus, effective additional enforcement mechanisms means that, in the case of default, a strictly positive amount of resources
is seized besides the depreciated collateral value.

In contrast to any equilibrium model, we focus in the non-existence of a physically feasible solution for the individual’s
problem. For this reason, it is sufficient to study a decision model where there is an infinitely lived agent, namely i, who
perfectly foresees both market prices and the effectiveness of additional enforcement mechanisms.

Agent i has physical endowments (wi
�
)
� ∈D ∈RD×L

+ and preferences represented by a utility functionUi : RD×L
+ → R+ ∪ {+∞}.

As commodities may be durable, we denote byWi
�

the cumulated endowments of agent i up to node �, which are recursively

defined by:Wi
�

= wi
�

+ Y�Wi
�− , when � > �0, andWi

�0
= wi

�0
, otherwise. Also, we assume that, for any � ∈D,Wi

�
≤W� .

Let x� ∈RL+ be a bundle of autonomous consumption at node � (i.e. non-collateralized commodities). Also, define �(�,j) and

ϕ(�,j) as quantities of asset j∈ J(�) purchased and sold at the same node. Given (p, q) ∈	 := RD×L
+ × RJ(D)

+ , a plan

(x, �,ϕ) := ((x�, �(�,j), ϕ(�,j)); (�, j) ∈ J(D)) ∈E := RD×L
+ × RJ(D)

+ × RJ(D)
+

is budget feasible for agent i at prices (p, q) when

p�0
(x�0

−wi�0
) + p�0

∑
j∈ J(�0)

C(�0,j)ϕ(�0,j) +
∑
j∈ J(�0)

q(�0,j)(�(�0,j) − ϕ(�0,j)) ≤ 0, (1)

p�(x� −wi�) + p�
∑
j∈ J(�)

C(�,j)ϕ(�,j) +
∑
j∈ J(�)

q(�,j)(�(�,j) − ϕ(�,j))

≤ p�Y�x�− +
∑
j∈ J(�−)

(p�Y�C(�−,j)ϕ(�−,j) + F(�,j)(p�)(�(�−,j) − ϕ(�−,j))), ∀ � > �0. (2)

Also, (x, �,ϕ) ∈E is physically feasible if x� +
∑

j∈ J(�)C(�,j)ϕ(�,j) ≤W� , for any � ∈D. Finally, given (p, q) ∈	, the objective

of agent i is to maximize the utility of his consumption, Ui
(

(xi
�

+∑j∈ J(�) C(�,j)ϕ
i
(�,j))� ∈D

)
, choosing a budget feasible plan

(xi, �i, ϕi) ∈E.
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3. Enforcement mechanisms and the size of collateral bundles

In this section, we prove our main result: in contrast to the polar case studied by Araujo et al. (2002), the market choice
of collateral bundles becomes relevant when there are persistently effective additional enforcement mechanisms besides
collateral repossession. To achieve our objective, we impose the following hypotheses.

Assumption A1. For any � ∈D,Wi
�

� 0.

Assumption A2. Given z = (z�) ∈RL×D+ , Ui(z) =
∑

� ∈D u
i
�
(z�), where for any � ∈D, the function ui

�
: RL+ → R+ is concave,

continuous and strictly increasing. Also, Ui(W) is finite.

Given �∈D, let 
(�) be the set of assets j∈ J(�) on which additional enforcement mechanisms are effective at some
node �∈�+. Note that, given a subtree D(�) in which additional enforcement mechanisms are persistently effective,

(�) /= ∅, ∀�∈D(�).

Theorem. Under Assumptions A1 and A2, suppose that additional enforcement mechanisms are persistently effective in a
subtree D(�). Independently of the prices (p, q) ∈	, there are strictly positive upper bounds (��)�∈D(�) such that, if collateral
bundles satisfy

min
j∈
(�)

∑
l∈ L
C(�,j,l) <��, ∀�∈D(�),

then agent i’s problem does not have a physically feasible solution. �

Proof. Assume that, for some (p, q) ∈	, there is a physically feasible solution for agent i’s problem, denoted by (xi, �i, ϕi) ∈E.
It follows from Lemma 1 (see Appendix A) that there are, for every �∈D, multipliers �i� ∈R++ and super-gradients

vi� ∈ ∂ui�
(
xi� +

∑
j∈ J(�)C(�,j)ϕ

i
(�,j)

)
such that,4 for each asset j∈ J(�), the following asset pricing conditions hold,

�i�p� ≥ vi� +
∑
�∈�+

�i�p�Y�, (3)

�i�q(�,j) ≥
∑
�∈�+

�i�F(�,j)(p�). (4)

Also, the family of multipliers (�i�)
�∈D can always be constructed to satisfy (see Lemma 1)

�i�p�W
i
� ≤
∑
�∈D

ui�(ci�) ≤
∑
�∈D

ui�(W�), (5)

where ci� := xi� +∑j∈ J(�)C(�,j)ϕ
i
� is the consumption bundle chosen by agent i at node � (the last inequality above follows

from Assumption A2 jointly with the physical feasibility of agent i’s consumption).
Using these properties, it is possible to find lower and upper bounds for deflated commodity prices. In fact, Assumption

A1 and inequalities (5) ensure that, given (�, l) ∈D× L,

�i�p(�,l) ≤ �i�
∑
l′ ∈ L

p(�,l′) ≤ �̄� := Ui(W)

min
l′ ∈ L

Wi
(�,l′)

.

On the other hand, given (�, l) ∈D× L, it follows from inequality (3) that

2�i�p(�,l)W(�,l) = �i�p�((ci� + 2W(�,l)
el) − ci�) ≥ vi�((ci� + 2W(�,l)
el) − ci�)
≥ ui�(ci� + 2W(�,l)
el) − ui�(ci�) ≥ min

0≤c≤W�
(ui�(c + 2W(�,l)
el) − ui�(c))> 0,

where the last inequality follows from the strictly monotonicity of function ui� and, given l∈ L, the vector 
el ∈RL is defined
by: 
e(l,l′) = 1 if l′ = l, and equal to zero in other case.

Thus, for any (�, l) ∈D× L,

�i�p(�,l) ≥ �(�,l) := 1
2W(�,l)

min
0≤c≤W�

(ui�(c + 2W(�,l)
el) − ui�(c))> 0.

4 Given a concave function f : X ⊂ Rn → R ∪ {−∞} and x∈X , the super-differential of f at x, ∂f (x), is defined as the set of points p∈X , called super-gradients,
such that f (y) − f (x) ≤ p(y− x), ∀y∈X .
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For any �∈D, define �� = (�(�,l); l∈ L). Under the assumptions on the statement of the Theorem, it follows that, for each
�∈D(�), the number

ϒ� := min
j∈
(�)

∑
�∈�+

�(�,j)��A(�,j)

is strictly positive. Therefore, suppose that, at each �∈D(�),

min
j∈
(�)

∑
l∈ L

C(�,j,l) <�� := ϒ�
�̄�
.

With this upper bound over unitary collateral bundles we conclude that, at every node �∈D(�) there exists j∈
(�) such
that

�i�(p�C(�,j) − q(�,j)) ≤ �i�p�C(�,j) −
∑
�∈�+

�i�F(�,j)(p�)

≤ ��
∑
l∈ L
C(�,j,l) −

∑
�∈�+

�(�,j)�
i
�p�A(�,j)

< ϒ� −
∑
�∈�+

�(�,j)��A(�,j) ≤ 0.

Finally, using the Lemma 2 in Appendix A, we conclude that agent i’s problem does not have a solution, contradicting the
optimality of (xi, �i, ϕi) ∈E under prices (p, q) ∈	.

The result above has two properties that are worth being highlighted.

About upper bounds (��)�∈D(�). Regarding the upper bounds on collateral, we can see that, by construction, they depend
only on the primitives of the economy and, for computational objectives, can be easily found. Additionally, these upper
bounds may converge, when the time period goes to infinity, to any non-negative real number. We illustrate this property
with the following example.

Consider an economy satisfying Assumptions A1 and A2, where there are only two commodities and there exists a plan
(Wt)t≥0 ∈RN++ such that, for any � ∈D,W� =Wt(�)(1,1) andWi

�
= �W� , with � ∈ (0,1). In other words, aggregate endowments

are not affected by the uncertainty and agent i maintain along the event-tree a fixed portion of aggregate physical wealth. Also,
there is only one asset at each node � ∈D, and its promises at nodes�∈ �+ are given by a constant bundleA = (a1, a2) ∈R2++, i.e.
it is a real promise that keep the consumption purchase power along the event-tree. Finally, agent i has additively separable
utility with preferences at each node� ∈D characterized byui

�
(x1, x2) = ˇt(�)�(�)(x1 + √

x2), where the intertemporal discount

factor ˇ belongs to (0,1), the probability to reach a node �, �(�), satisfies �(�) =
∑

�∈ �+ �(�), with �(�0) = 1.

In this context, if additional enforcement mechanisms have a constant effectiveness of �∈ (0,1) in a subtree D(�̄), then

�� = � �

2Ui(W)

Wt(�)

Wt(�)+1
ˇt(�)+1

(
2a1Wt(�)+1 + a2

(√
3Wt(�)+1 −

√
Wt(�)+1

))
, ∀�∈D(�̄).

Since ˇ∈ (0,1), if the sequence (Wt)t≥0 is bounded from above and away from zero, then�� goes to zero as t(�) goes to
infinity. On the other hand, assume that (Wt)t≥0 decreases along the time following the recursive rule

Wt = W0

ˇ2
ˇϑ(t), ∀t ≥ 0,

whereϑ(0) = ϑ(1) = 2 and, for any t ≥ 2,ϑ(t) =
∑t−1

k=12k(t − k) + 2t . Then, for any t ≥ 1,ϑ(t + 1) = 2(ϑ(t) + t), which implies
thatWt+1 = 1

W0
ˇ2t+2W2

t , ∀t ≥ 1. Therefore,�� converges, when t(�) goes to infinity, to

�(W0, a2) := ��a2

√
W0

2Ui(W)
(
√

3 − 1).

Since

Ui(W) =
∞∑
t=0

ˇt(Wt +
√
Wt) = W0

ˇ2

∞∑
t=0

ˇt+ϑ(t) +
√
W0

ˇ

∞∑
t=0

ˇt+(ϑ(t)/2).
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it follows that,

�(W0, a2) := a2
(
��(

√
3 − 1)ˇ2

)(
2

(√
W0

∞∑
t=0

ˇt+ϑ(t) +
∞∑
t=0

ˇt+(ϑ(t)/2)+1

))−1

.

Thus, the equation z = �(W0, a2) has a solution for any z ∈R++ and, therefore, �� may converge, as the period of time
goes to infinite, to any positive real number.

Bounds on effectiveness. For convenience of notations, given �∈D, define 
+(�) = {j∈ J(�−) : �(�,j) > 0}. Thus, for any
� ∈D: (∃�∈ �+ such that j∈
+(�)) ⇔ j∈
(�).

Given collateral requirements, we can find lower bounds for the effectiveness on a subtree D(�), (��)
�>�

, such that, if

(�(�,j))�>�,j∈
+(�) satisfy

min
j∈
+(�)

�(�,j) > ��, ∀� > �,

then, independently of prices, and for any enforcement mechanism inducing such effectiveness, there is no physical feasible
solution for the agents’ problem.5 These lower bounds are informative, i.e. �� ∈ (0,1), only for collateral requirements that
are not high enough. In fact, for larger collateral requirements there is no default and, therefore, the market price of collateral
requirements is always greater that the loan value.

4. On endogenous effectiveness

A key feature of our model is that we assume that the amount of payments besides the collateral guarantees is independent
of the borrowers and does not depend on the history of default. This assumption allowed us to identify sold with purchased
assets. Implicitly, we pool the debt contracts into derivatives following a trivial securitization, that is, by identifying prices
and payments of debt markets with those of investment markets. However, our analysis may be extended for equilibrium
models in which the effectiveness of payment enforcement mechanisms is an endogenous and personalized variable.

For instance, we may suppose that the access to credit markets depend on previous payments. That is, consider a dynamic
infinite horizon general equilibrium model in which, at any state of nature, and for every agent, the access to credit securities
depend on the history of default. Thus, in this new framework, for default penalties sufficiently restrictive on the access of
credit markets, there may be endogenous incentives inducing borrowers to deliver payments larger than the depreciated
value of collateral requirements. Also, suppose that financial markets still preserve some features from our original model.
That is, each type of credit contract is securitized into only one derivative, primitive and derivative prices are identified,
and lenders perfectly foresee the payments of derivatives. Specifically for this last feature, suppose that, in case of default,
agents advance any payment in addition to the depreciated collateral as a percentage of the remaining debt, facing payment
functions with an analogous specification of our (F(�,j))(�,j) ∈ J+(D).

In this new context, under hypotheses on individual’ characteristics analogous to Assumptions A1 and A2, there are two
conditions under which our Theorem still holds:

(i) For any plan of prices, individual optimal allocations satisfy inequalities analogous to (3)–(5);
(ii) At the moment of the credit operation, borrowers are only required to constitute the associated collateral requirements.

In fact, assume that additional enforcement mechanisms are persistently effective in a sub-event-tree. If there is a physical
feasible optimal allocation, using the same arguments of the proof of our theorem, condition (i) implies that if collateral
requirements are not high enough, then unitary loan prices persistently exceed the associated collateral value. Thus, by
condition (ii), the agent may improve his respective utility increasing borrowing along the event-tree. A contradiction.

Therefore, a natural question arises. When does an economy satisfy conditions (i) and (ii)? Regarding condition (i), it
follows from Lemma 2 that any convex model satisfies it.6 However, some enforcement mechanisms may induce non-
convex budget sets. Even in these cases, condition (i) still holds if these non-convexities involve only the borrowers’

5 Using the same arguments in the proof of the Theorem, it is sufficient to take, for each �∈�+ , with � ≥ �,

�� :=

�̄� min
j∈
(�)

∑
l∈ L

C(�,j,l)

min
j∈
(�)

∑
�′ ∈�+

�̄�′A(�′, j)
.

6 We mean that a model is convex when agents’ objective functions are concave and, for each vector of prices, budget sets are convex.
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deliveries.7 On the other hand, condition (ii) holds unless there is some restriction on the short sales in addition to collateral
requirements.

5. Other extensions

5.1. Long-lived and infinite-lived real assets

Our analysis also holds when long-lived real assets are available for trading. Essentially, non-arbitrage conditions asso-
ciated to individual’s problem (Lemma 1 in Appendix A) are still valid (see Araujo et al., 2008 for detailed arguments).

5.2. About persistent effectiveness

In our main result, we assume that additional enforcement mechanisms are effective in a subtree D(�). However, it is
possible to weaken this assumption, requiring only effectiveness in a infinite path along the event-tree. For this, we need
some definitions.

Given k∈N ∪ {+∞}, a path of uncertainty is a set (�n;n∈N, n ≤ k) ⊂ D in which every �n+1 is an immediate successor of
�n, for each n < k. A set B ⊂ D does not have finite paths when for any �∈B there exists �∈B such that �∈�+. Additional
enforcement mechanisms are persistently effective in a path of uncertainty �, if for any �∈�, there is j∈ J(�−) on which
additional enforcement mechanisms are effective at �. For any path of uncertainty � := (�n;n∈N) in which additional
enforcement mechanisms are persistently effective, define Eff(�) ⊂ D(�1) as the maximal connected set containing� and
having, at each�∈ Eff(�), at least one j∈ J(�−) on which additional enforcement mechanisms are effective at�.8 Note that,
given a path of uncertainty�, in which additional enforcement mechanisms are persistently effective, if Eff(�) does not have
finite paths, then 
(�) /= ∅, ∀�∈ Eff(�). Thus, Lemma 2 holds when additional enforcement mechanisms are persistently
effective only in a path of uncertainty�, provided that Eff(�) does not have finite paths.9

Therefore, our main theorem holds when additional enforcement mechanisms are persistently effective in a path of
uncertainty� for which Eff(�) does not have finite paths.
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Appendix A.

Lemma 1. Let (p, q) ∈	 and fix a budget and physically feasible plan zi := (xi, �i, ϕi) ∈E. Under Assumptions A1 and A2, if zi is
an optimal allocation for agent i’s problem at prices (p, q), then for every �∈D, the function ui� is super-differentiable at the point

ci� := xi� +
∑

j∈ J(�)C(�,j)ϕ
i
(�,j), there are multipliers �i� ∈R++ and super-gradients vi� ∈ ∂ui�(ci�) such that, for each j∈ J(�),

�i�p� ≥ vi� +
∑
�∈�+

�i�p�Y�, (6)

�i�q(�,j) ≥
∑
�∈�+

�i�F(�,j)(p�). (7)

Also, the plan of multipliers (�i�)
�∈D satisfy

�i�p�W
i
� ≤
∑
�∈D

ui�(ci�). (8)

7 Technically, in this case, the arguments in the proof of Lemma 1 can be remade by redefining the truncated problem (Pi,T ) in such form that, for any
�∈DT , variables ϕ� are fixed and equal to the optimal choices ϕi� .

8 A set B ⊂ D is connected when, for each pair (�,�) ∈B× B, such that� ≥ �, the only path of uncertainty connecting � to� is contained in B. Given � ∈D,
a set B ⊂ D(�) is maximal relative to a property A when there is no other subset of D(�) containing itself and satisfying A.

9 In fact, if for any �∈ Eff(�), there exists j∈ J(�) for which p�C(�,j) − q(�,j) < 0, then agent i may increases his borrowing at the first node of � paying
his future commitments either using new credit at the nodes in which there is effectiveness or delivering depreciated collateral guarantees for the nodes
� /∈ Eff(�) such that �− ∈ Eff(�).
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Proof. Given T ∈N, define DT = {�∈D : t(�) = T} and DT =
{
�∈D : �∈⋃T

k=0Dk

}
. For any �∈D, let Z(�) = RL+ × RJ(�)

+ × RJ(�)
+ .

For convenience of notations, let z�−
0

:= 0 ∈ Z(�−
0 ), where Z(�−

0 ) := RL+. Consider the optimization problem:

(Pi,T )

max
∑
�∈DT

i
u
�

⎛
⎝x� +

∑
j∈ J(�)

C(�,j)ϕ(�,j)

⎞
⎠

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z� := (x�, ��,ϕ�) ∈ Z(�) ∀�∈DT,
gi�(z�, z−� ;p, q) ≤ 0, ∀�∈DT,
x� +

∑
j∈ J(�)

C(�,j)ϕ(�,j) ≤ 2W�, ∀�∈DT,

z� ∈ [0, zi�], ∀�∈DT .

where the inequality gi�(z�, z−� ;p, q) ≤ 0 represents the budget constraint at node �, that is, inequality (1) or (2), and given
(x, y) ∈Rm × Rm, the interval [x, y] := {z ∈Rm : ∃a∈ [0,1], z = ax + (1 − a)y}. It follows from the existence of an optimal indi-
vidual plan at prices (p, q) that there exists a solution for (Pi,T ), namely (zi,T� )

�∈DT .10

Given �∈D, define the concave function �i� : RL × RJ(�) × RJ(�) → R ∪ {−∞} as

�i�(z�) =

⎧⎪⎨
⎪⎩
ui�

⎛
⎝x� +

∑
j∈ J(�)

C(�,j)ϕ(�,j)

⎞
⎠ if x� +

∑
j∈ J(�)

C(�,j)ϕ(�,j) ≥ 0;

−∞ otherwise.

,

where z� = (x�, ��,ϕ�). It follows that, for any T ≥ 1,
∑

�∈DT �
i
�(zi,T� ) ≤

∑
�∈D�

i
�(zi�).11

For each �∈D and �� ∈R+, define Li�(·, �;p, q) : Z(�) × Z(�−) → R as

Li�(z�, z�− , ��; p, q) = �i�(z�) − �� gi�(z�, z�− ;p, q).

Given T ∈N, for each �∈DT−1, define the set �T (�) as the family of allocations (x�, ��,ϕ�) ∈ Z(�) that satisfies x� +∑
j∈ J(�)C(�,j)ϕ(�,j) ≤ 2W�. Also, for any �∈DT , let �T (�) be the set of allocations (x�, ��,ϕ�) ∈ Z(�) that satisfies both

x� +∑j∈ J(�)C(�,j)ϕ(�,j) ≤ 2W� and (x�, ��,ϕ�) ∈ [0, zi�]. Let�T :=∏�∈DT �
T (�).

It follows from Rockafellar (1997, Theorem 28.3), that there exist non-negative multipliers (�i,T� )
�∈DT such that the

following saddle point property holds,∑
�∈DT

Li�(z�, z�− , �
i,T
� ; p, q) ≤

∑
�∈DT

Li�(zi,T� , z
i,T
�− , �

i,T
� ; p, q), ∀(z�)�∈DT ∈�T, (9)

and �i,T� gi�(zi,T� , z
i,T
�− ;p, q) = 0.

10 In fact, define a new problem (P̃i,T ),

(P̃i,T )

max
∑
�∈DT

i
u
�

(
x� +
∑
j∈ J(�)

C(�,j)ϕ(�,j)

)

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z� := (x�, ��, ϕ�) ∈ Z(�) ∀�∈DT ,
gi�(z�, z�− ;p, q) ≤ 0, ∀�∈DT ,
x� +
∑
j∈ J(�)

C(�,j)ϕ(�,j) ≤ 2W�, ∀�∈DT ,

z� ∈ [0, zi�], ∀�∈DT ,
Ifq(�,j) = 0 then �(�,j) = 0.

Under Assumption A2 the objective function on (P̃i,T ) is continuous, and the set of admissible allocations is compact in
∏

�∈DT Z(�). Note that, to ensure

this it is necessary to have non-zero collateral requirements, otherwise, long and short positions are unbounded.
Thus, there is a solution (zi,T� )

�∈DT . Moreover, this solution for (P̃i,T ) is also an optimal choice for (Pi,T ). Essentially, the existence of a finite optimum at

prices (p, q) for the agent i’s problem ensure that, when q(�,j) = 0, the payments F(�,j)(p�) must be equal zero, for each�∈�+ . Thus, when q(�,j) = 0, choosing
positives amounts of �(�,j) does not induce any gains.

11 Note that, otherwise, agent i improve his utility in D choosing the allocation (zi,T� )
�∈DT in the sub-tree DT , without making any (physical or financial)

trade after the nodes with date T.
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Claim. For each �∈D, the sequence (�i,T� )
T≥t(�) is bounded. Moreover, given T > t(�), for any plan a� ∈�T (�) we have that

�i�(a�) − �i�(zi�) ≤

⎛
⎝�i,T� ∇1g

i
�(p, q) +

∑
�∈�+

�i,T� ∇2g
i
�(p, q)

⎞
⎠ · (a� − zi�) +

∑
� ∈D\DT−1

�i�(z
i
�),

where, for any �∈D, the vector (∇1gi�(p, q),∇2gi�(p, q)) is defined by

∇1gi�(p, q) = (p�, q�, (p�C(�,j) − q(�,j))j∈ J(�)),

∇2gi�(p, q) = (−p�Y�, (F(�,j))j∈ J(�), (p�Y�C(�,j) − F(�,j))j∈ J(�)).

Proof. Given t ≤ T , substitute the following allocation in inequality (9)

z� =
{

(Wi
�,0,0), ∀�∈Dt−1,

(0,0,0), ∀�∈DT \ Dt−1.

We have∑
�∈Dt

�i,T� p�W
i
� ≤

∑
�∈DT

�i�(zi,T� ) ≤
∑
�∈D

�i�(zi�). (10)

Assumption A1 ensure that, for each �∈D, minl∈ LWi
(�,l) > 0. Also, Assumption A2 implies that

∑
l∈ Lp(�,l) > 0, guaranteing

that, for each �∈D, the sequence (�i,T� )
T>t(�) is bounded.

On the other hand, given (z�)�∈DT ∈�T , using (9), we have that∑
�∈DT

Li�(z�, z�− , �i,T� ;p, q) ≤
∑
�∈D

�i�(zi�).

Thus, fix �∈DT−1 and a� ∈�T (�). If we evaluate inequality above in

z� =
{
zi�, ∀� /= �,
a�, for� = �,

we obtain

�i�(a�) − �i,T� gi�(a�, zi�− ;p, q) −
∑
�∈�+

�i,T� g
i
�(zi�, a�;p, q) ≤ �i�(zi�) +

∑
�∈D\DT

�i�(zi�). (11)

Since functions (gi
�
(· ;p, q); � ∈D) are affine, we have

gi�(a�, zi�− ;p, q) = ∇1gi�(p, q) · a� − p�ωi� + ∇2gi�(p, q) · zi�−
gi�(zi�, a�;p, q) = ∇1gi�(p, q) · zi� − p�ωi� + ∇2gi�(p, q) · a�, ∀�∈�+.

Also, budget feasibility of (zi�)
�∈D at prices (p, q), jointly with monotonicity of preferences, ensure that,

−p�ωi� + ∇2gi�(p, q) · zi�− = −∇1gi�(p, q) · zi�,
∇1gi�(p, q) · zi� − p�ωi� = −∇2gi�(p, q) · zi�, ∀�∈�+.

Therefore,

�i,T� g
i
�(a�, zi�− ;p, q) +

∑
�∈�+

�i,T� g
i
�(zi�, a�;p, q) =

⎛
⎝�i,T� ∇1g

i
�(p, q) +

∑
�∈�+

�i,T� ∇2g
i
�(p, q)

⎞
⎠ · (a� − zi�).

Using (11), we conclude the proof.
Since D is countable and, for any node �, the sequence (�i,T� )

T≥t(�) is bounded, using Tychonoff Theorem (see Aliprantis

and Border, 1999, Theorem 2.57), there is a common subsequence (Tk)k∈N ⊂ N and non-negative multipliers, (�i�)
�∈D, such

that, for each �∈D, limk→∞�i,Tk� = �i� and

�i� g
i
�(zi�, z

i
�− ;p, q) = 0,
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where, as we said above, the last equation follows from the strictly monotonicity of ui�. Moreover, taking the limit as T goes
to infinity in inequality (10) we obtain that

∑
�∈Dt

�i�p�W
i
� ≤
∑
�∈D

�i�(zi�), ∀t ≥ 0. (12)

Therefore, Eq. (8) follows.
Since for any �∈D, �s1 (�) = �s2 (�) when min{s1, s2}> t(�), it follows from the inequality in the statement of Claim

above, taking the limit as T goes to infinity, that

�i�(a�) − �i�(zi�) ≤

⎛
⎝�i�∇1g

i
�(p, q) +

∑
�∈�+

�i�∇2g
i
�(p, q)

⎞
⎠ · (a� − zi�), ∀a� ∈�t(�)+1(�). (13)

Thus,⎛
⎝�i�∇1g

i
�(p, q) +

∑
�∈�+

�i�∇2g
i
�(p, q)

⎞
⎠ ∈ ∂

(
�i� + ıZ1(�) + ıZ2(�)

)
(zi�),

where the functions ıZh(�) : RL × RJ(�) × RJ(�) → R ∪ {−∞}, h∈ {1,2}, satisfy

ıZ1(�)(x�, ��,ϕ�) =
{

0, if (x�, ��,ϕ�) ∈ Z(�),
−∞, otherwise.

ıZ2(�)(x�, ��,ϕ�) =

⎧⎨
⎩

0, if x� +
∑
j∈ J(�)

C(�,j)ϕ(�,j) ≤ 2W�,

−∞, otherwise.

where z� = (x�, ��,ϕ�) ∈RL × RJ(�) × RJ(�). Since the plan (zi�)
�∈D is physically feasible, there exists a neighborhood V of zi�

such that ıZ2(�)(b) = 0 for every b∈V . Then, we have that ∂ıZ2(�)(zi�) = {0}. Also, it follows by Theorem 23.8 and 23.9 in
Rockafellar (1997), that there exists vi� ∈ ∂ui�(ci�) and �i� ∈ ∂ıZ(�)(xi�, �

i
�, ϕ

i
�) such that

�i�∇1g
i
�(p, q) +

∑
�∈�+

�i�∇2g
i
�(p, q) =

(
vi�,0, (C(�,j)vi�)

j∈ J(�)

)
+ �i�. (14)

Notice that, by definition, for each z� ≥ 0, �∈ ∂ıZ(�)(z�) ⇔ 0 ≤ �(y− z�), ∀ y ≥ 0, therefore, �i� ≥ 0. Thus, the inequalities
stated in the lemma hold from Eq. (14). On the other hand, strictly monotonicity of function ui�, ensure that vi� � 0 and,
therefore, it follows from (6), that �i� is strictly positive. �

In a context of collateralized assets and linear utility penalties for default, (see Remark 3.1 in Páscoa and Seghir (2009))
show that Ponzi schemes could be implemented if there exists a subtreeD(�) such that, for every node� ≥ �, there is always
some asset j∈ J(�) whose price exceeds the respective collateral value, p�C(�,j) − q(�,j) < 0 (see Remark 3.1 in Páscoa and
Seghir, 2009). In such event, the individual’s problem does not have a finite solution. In our context, the same result follows
by analogous arguments.

Lemma 2. Assume that, given x∈RL×D+ , if Ui(x) is finite, then Ui(y)> Ui(x) for any y > x. Also, suppose that additional
enforcement mechanisms are persistently effective in a subtree D(�) such that, for any �∈D(�), there exists j∈ J(�) for which
p�C(�,j) − q(�,j) < 0. Then, agent i’s individual problem does not have a finite solution, otherwise, Ponzi schemes could be imple-
mented. �

Proof. Assume there is a budget feasible plan for agent i, (xi, �i, ϕi), that gives a finite optimum. Under the monotonicity
condition stated in the Lemma, p� � 0 for every node �∈D(�). For each �∈D(�), let J1(�) = {j∈ J(�) : p�C(�,j) − q(�,j) < 0}.
Now, consider the allocation (x�, ��, ϕ�)� ∈D, with

((
x�, ��,ϕ�

)
;
(
��,ϕ(�,j)

))
�/∈D(�), �∈D(�)

=
((
xi�, �

i
�,ϕ

i
�

)
;
(
�i�, ϕ

i
(�,j)

))
�/∈D(�), �∈D(�)

, ∀j∈ J(�) \ J1(�)
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and

ϕ(�,j) = ϕi(�,j) + ı�, ∀�∈D(�), ∀j∈ J1(�),

x(�,l) = xi(�,l) + 1
(#L)p(�,l)

∑
j∈ J1(�)

(q(�,j) − p�C(�,j))ı�, ∀l∈ L, if the node� = �,

x(�,l) = xi(�,l) + 1
(#L)p(�,l)

∑
j∈ J1(�)

(q(�,j) − p�C(�,j))ı� − 1
(#L)p(�,l)

∑
j∈ J1(�−)

p�A(�,j) ı�− , ∀� > �, ∀l∈ L,

where the plan (ı�)�∈D(�) is chosen in such form that the following conditions hold,∑
j∈ J1(�)

(q(�,j) − p�C(�,j))ı� > 0, (15)

∑
j∈ J1(�)

(q(�,j) − p�C(�,j))ı� >
∑

j∈ J1(�−)

p�A(�,j) ı�− , ∀� > �. (16)

It follows that (x�, ��, ϕ�)� ∈D is budget feasible at prices (p, q). Moreover, equations above show that Ponzi schemes are

possible at prices (p, q). In fact, agent i increases his borrowing at � and pays his future commitments by using new credit.
It follows that (x�, ��, ϕ�)� ∈D improves the utility level of agent i, contradicting the optimality of (xi, �i, ϕi). �
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