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An Interpretation of An Affine  
Term Structure Model for Chile*
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Abstract

This paper attempts to provide an economic interpretation of the factors that 
drive the movements of interest rates of bonds of different maturities in a 
continuous-time no-arbitrage term structure model for Chile. The dynamics of 
yields in the model are explained by two latent factors, namely the instantaneous 
short rate and its time-varying central tendency. The model estimates suggest 
that the short end of the yield curve is mainly driven by changes in first latent 
factor, while long-term interest rates are mainly explained by the second latent 
factor. Consequently, when examining movements in the term structure, one 
should think of at least two forces that hit the economy: temporary shocks that 
change short-term and medium-term interest rates by much larger amounts 
than long-term interest rates, causing changes in the slope of the yield curve; 
and long-lived innovations which have persistent effects on the level of the 
yield curve. 

Resumen

Este artículo intenta ofrecer una interpretación económica a los factores latentes 
que determinan los movimientos del retorno de bonos de diferente plazo en un 
modelo de la estructura de tasas de interés en tiempo continuo y con ausencia 
de arbitraje para Chile. En el modelo, dos factores latentes explican la dinámica 
de las tasas de interés, la tasa de interés instantánea y su tendencia central 
estocástica. Los resultados sugieren que el tramo corto de la estructura de 
tasas de interés se explica primordialmente por cambios en el primer factor, 
mientras que el segundo factor explica el tramo más largo de la estructura de 
tasas. Por lo tanto, si uno considera los factores que explican los movimientos 
de la estructura de tasas de interés, debería pensar en al menos dos tipos de 
innovaciones presentes en la economía: innovaciones temporarias que provocan 
cambios en las tasas de interés de corto y mediano plazo, mucho mayores que los 
experimentados por tasas de interés de largo plazo, e innovaciones persistentes 
que tienen efectos sobre el nivel de la estructura de tasas.
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1.	 Introduction

Affine no-arbitrage dynamic term structure models are “the model[s] of choice 
in finance” (Diebold, Piazzesi, and Rudebusch 2005). These models employ a 
structure that consists of a small set of factors that characterize the yield curve, 
providing a parsimonious representation of the yield curve. At the same time they 
impose restrictions to ensure that yield dynamics are consistent in the cross-sec-
tion and in the time series dimension (Dai and Singleton 2000, Piazzesi 2003). 
Even though these models provide a useful statistical description of the yield 
curve, they offer little insight of what the latent factors are, their relationship to 
macroeconomic variables, or the forces that drive its movements.

In this paper I attempt to provide an economic interpretation of the factors 
that drive the movements of interest rates of bonds of different maturities in a 
continuous-time no-arbitrage term structure model. Following Jegadeesh (1996) 
and Balduzzi (1998), the model I use in my analysis assumes the existence of a 
stochastic discount factor, which is governed by two latent factors with a proper 
economic interpretation. The first latent factor is the instantaneous short-term 
interest rate, and the second factor is the time-varying stochastic mean of the 
instantaneous short rate, capturing the notion that short rates display short-lived 
fluctuations around a time-varying rest level. This model generalizes the continu-
ous-time term structure model presented in Vasicek (1977), but it is nevertheless 
solvable in closed form. Under this framework, bond yields are linear or affine 
functions of the latent factors, with restrictions on the cross-sectional and time-
series properties of the yield curve that rule out arbitrage strategies.

While most of the related literature has focused on the analysis of the U.S. 
economy, little attention has been paid to emerging markets. I estimate the 
proposed model using monthly information on index-linked securities issued 
by the central bank and traded in the Chilean bond market from January 1990 
through March 2006. Compared to developed economies, the Chilean fixed-
income bond market is not underdeveloped, and Central Bank bonds are by far 
the most traded as well as the most liquid fixed-income securities (see Braun 
and Briones 2006). Nevertheless, the analysis of an emerging economy comes 
along with several estimation challenges. Most studies use zero-coupon yields 
that are estimated from prices of coupon bonds using one of the interpolation 
methods proposed by Fama and Bliss (1987) and McCulloch and Kwon (1993). 
Typical implementation of these methods requires a rich set of bond prices with 
different maturities, which are unavailable in many emerging markets where 
there is a substantial number of ‘missing bond yields’. To overcome this problem, 
I rely on an extended version of the Kalman filter and maximum-likelihood 
to estimate the unobservable state variables and the model parameters using 
cross-sectional/time-series data of zero-coupon and coupon bond prices. Using 
this approach, I am able to estimate the zero-coupon term structure even for 
days where bonds with only few maturities are traded, while at the same time 
the Kalman filter allows the state variables to be handled correctly as unobserv-
able variables.�

�	 Babbs and Nowan (1999) provide a generalization of the Kalman filter to estimate 
generalized Vasicek term structure models, and Cortázar, Schwartz and Naranjo (2003) 
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The model estimates suggest that the instantaneous rate is more volatile 
and exhibits short-lived deviations from its time-varying mean, while the time-
varying central tendency exhibits a weak reversion to its long-run value and a 
volatility less than half that of the short rate. According to the factor loadings 
implied by the estimated parameters, the very short end of the yield curve is 
driven by the first latent factor, but as the term to maturity increases the central 
tendency starts driving the movements in the yield curve, playing an important 
role at explaining the evolution of long-term interest rates. Consequently, a 
shock to the first latent factor increases short-term and medium-term interest 
rates by much larger amounts than the long-term interest rates, so that the yield 
curve becomes less steep (i.e., experiences a decrease in its slope). Thus, it is 
reasonable to interpret this short-lived shock as a temporary positive shock to 
the economy which increases temporarily production possibilities. On the other 
hand, a shock to the time-varying mean translates into an increase in short-term 
and long-term yields, changing the level of the yield curve. Therefore, a second 
source of shocks that moves the yield curve can be related to long-lived innova-
tions which will induce a persistent change in the level of the yield curve, like 
a persistent (almost permanent) positive shock to productivity.

My work is more closely related to recent economics and finance papers 
exploring the macroeconomic determinants of the unobservable factors, and to 
macro-finance modeling which explicitly incorporates macroeconomic variables 
into multi-factor yield curve models. For instance, Wu (2001) and Piazzesi (2005) 
relate monetary policy shocks to temporary changes in the factor that influences 
the slope of the yield curve (slope factor), since monetary policy surprises affect 
short rates more than long ones. Ang and Piazzesi (2003) examine the influ-
ences of macroeconomic variables and latent factors that jointly determine the 
term structure of interest rates. They find that inflation and real activity have a 
significant impact on medium-term bond yields (up to a maturity of one year), 
but most of the movements in long-term yields are still accounted for by the 
unobservable factors. While most of these papers agree on the effects of mac-
roeconomic variables on the slope of the yield curve, there are still conflicting 
results when explaining the movements of the level of the yield curve. Diebold, 
Rudebusch and Aruoba (2006) obtain more favorable results using a Nelson-
Siegel model combined with a VAR-model for the macroeconomy. They find 
that inflation is closely related to the factor that influences the slope of the yield 
curve, while the factor that changes the level of the yield curve (level factor) 
is highly correlated with real activity. Using different modeling strategies, 
Rudebusch and Wu (2004) and Dewatcher and Lyrio (2006) interpret the slope 
factor as the cyclical response of the central bank to changes in the economy. 
While Rudebusch and Wu (2004) argue that the level factor reflects market 
participants’ view about the inflation target of the central bank, Dewatcher and 
Lyrio (2006) link this factor to long-run inflation effects.

The early literature investigating the term structure of interest rates in Chile 
has relied on the parametric model proposed by Nelson and Siegel (1987) (Herrera 
and Magenzo 1997, Zuñiga and Soria 1998 and Lefort and Walker 2000), however, 

present an application of this methodology for a market with low-frequency transactions, 
namely Chile.
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this type of model does not acknowledge that bond yields need to be consistent, 
giving rise to term structure estimates which allow arbitrage opportunities. The 
studies of Parisi (1998, 1999) and Zuñiga (1999b) go further and investigate the 
ability of one-factor no-arbitrage models in explaining the short-term interest rate, 
while Zuñiga (1999a) and Cortázar et. al. (2003) provide estimates of multi-factor 
models. They find that no-arbitrage models outperform parametric specifications 
(Cortázar et. al. 2003) and more simple autoregressive models (Parisi 1999). 
Fernandez (2001), on the other hand, uses a semi-parametric specification of 
a one-factor no-arbitrage model to study the empirical properties of the term 
structure of interest rates. More recently, Morales (2005) analyzes the impatc of 
macroeconomic variables on the term structure of interest rates using a Nelson-
Siegel model augmented by macroeconomic variables. His findings suggest that 
economic activity as well as monetary policy shocks impact the yield curve. In 
contrast to the previous literature for Chile, I don’t only present estimates of the 
term structure of interest rates, but also attempt to give an economic interpreta-
tion to the model estimates. Moreover, I characterize the way in which shocks to 
the factors behind the movements of the term structure change interest rates of 
different maturities, and provide a possible interpretation to this innovations in a 
internally consistent model using model-based impulse-response functions. 

The rest of the paper unfolds as follows. In Section 2 I present the continu-
ous-time no-arbitrage term structure model. In Section 3 I present the state space 
formulation of the model and the estimation of the parameters by means of the 
Kalman filter. I also present an interpretation of the estimated parameters and 
discuss the reliability of the model-based yield curves obtained. In Section 4 
I use impulse-response functions implied by the affine term structure model 
to discuss the sources of shocks that move the yield curve and their possible 
economic interpretation. Section 5 concludes.

2.	 A model of the term structure

Here I introduce the framework that I use for modeling the term struc-
ture of interest rates. First, I present several important relationships on asset 
pricing. Then, I present the solution to the no-arbitrage term structure model 
governed by two latent factors. Are two factors enough? Even though the work 
of Litterman and Scheinkman (1991) finds that almost all of movements in 
various US Treasury bond yields are captured by three unobservable factors, 
the study of Diebold, Rudebusch and Aruoba (2006) find that two factors may 
suffice to capture the time-series variation in yields at a monthly frequency, 
since the first two principal factors account for almost 99% of the movements 
of yield-curve variation. The third factor is found unimportant since it is related 
to heteroskedasticity, and yields exhibit little heteroskedasticity at monthly 
frequency. The third factor is more important at daily and weekly frequencies 
(Ang, Piazzesi, and Wei 2006).

 
2.1	B ackground issues on asset pricing

Let P(t, T) denote the price at time  t of a zero-coupon bond maturing at 
time T. Assuming, without loss of generality, that the bond has a face value 
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equal to one and its yield to maturity with continuous compounding is equal to  
R(t, T), its price can be written as, 

(1)	 P t T T t R t T( , ) = [ ( ) ( , )]exp − −

and the yield to maturity on this zero-coupon bond is equal to, 

(2)
	

R t T
P t T

T t
( , ) =

( , )−
−

log

Using these results, one can define the instantaneous short rate as, 

(3)
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Similarly, the price of a coupon bond paying t coupons until the maturity 
date can be written as a portfolio of t zero-coupon bonds, 

(4)
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where t = T–t is also the time to maturity of the coupon bond (see Campbell, 
Lo, and MacKinlay 1997).

2.2	 An affine term structure model

In an arbitrage free-environment and with a positive stochastic discount 
factor equal to Lt, the price at date t of a zero-coupon bond paying one unit of 
account at time T can be expressed as,

 

(5)	 P t T t
T

t

( , ) = E
Λ
Λ








where Et is the expectation taken conditional on time-t information. Following 
the standard asset-pricing theory, I assume that the stochastic discount factor 
is governed by the following process, 

(6)	 d r dt dt t t t
'

tΛ Λ Λ= − − λ W

where l = [l1, l2]’ is a vector containing the market prices of risk which are 
assumed to be constant over time.
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Following the work of Jegadeesh and Pennacchi (1996) and Balduzzi, Das, 
and Foresi (1998), I assume that the short rate rt  reverts toward a time-vary-
ing mean mt, whose dynamics is described by the following set of stochastic 
differential equations,

 
(7)	 dr r dt dWt t t t= ( )1 1 1κ µ s− +

(8)	 d dt dWt t tµ κ q µ s= ( )2 2 2− +

where κ1, κ2, s1, and s2 are constants, and Wt = [W1t, W2t is a two-dimensional 
Brownian motion with a correlation coefficient equal to r . The coefficients κ1 and 
κ2 measure the speed of mean reversion of the two variables to their respective 
means, mt and q, r measures the covariance between these two variables, while 
s1 and s2 are the volatilities of the short-term interest rate and the stochastic 
mean, respectively. This model generalizes the continuous-time term structure 
presented in Vasicek (1977) by letting the short-rate revert toward a time-varying 
stochastic mean, and captures the notion that short-term rates display short-lived 
fluctuations around a time-varying rest level, or central tendency.�

Under the above assumptions and using It ô ’s lemma, the price of a bond is 
characterized by the following partial differential equation,�
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subject to the boundary condition P(T, T)= 1. As shown in Langetieg (1980) 
and Cochrane (2005), the solution for the fundamental valuation equation is an 
exponentially linear function of the two latent variables, rt and mt, taking the 
following exponential-affine form,

 

(10)	 P t T A B r Bt t( , ) = [ ( ) ( ) ( ) ]1 2exp t t t µ+ +

where t = T–t is the time to maturity of the bond and A(t), B1(t) and B2(t)  
are functions of the maturity, the parameters of the model and satisfy the  
no-arbitrage condition in the bond market.

�	 The Vasicek (1977) model is of the form, 
dr r dt dWt t t= ( )1κ µ s− +

	 where the instantaneous interest rate converges to a target level m that is constant over 
time. Jegadeesh and Pennacchi (1996) and Balduzzi, Das, and Foresi (1998) show that 
a model with a time-varying target level outperforms the Vasicek model.

�	 The details of the model solution are spelled out in Appendix A.
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Equations (9) and (10) determine the solution for the functions A(t), B1(t) 
and B2(t) in terms of a set of ordinary differential equations, which have a 
solution equal to,

B
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Using equation (2) and (10) we can write the yield of a bond maturing t 
periods ahead as,
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where a(t)= –A(t)/t, b1(t)= –B1(t)/t and b2(t)= –B2(t)/t. In this model, bond 
yields are linear functions of the state variables, rt and mt. Therefore, it belongs 
to the family of affine term structure models, in which zero-coupon bond yields, 
their physical dynamics and their equivalent martingale dynamics are all affine 
(constant-plus-linear) functions of an underlying vector of state variables.�

Using equation (3), one can see that the instantaneous short rate is given by, 

(12)	 lim
t

t
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+
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( , ) =R t t rt

and the long-term rate is equal to the mean of the stochastic time varying long-
term factor θ adjusted by risk premia, 
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Notice that the time-varying mean of the first latent factor, mt, does not 
affect the short end of the yield curve, since its loading starts at zero for the 
instantaneous interest rate (i.e., lim

t
t

→0 2 ( ) = 0B ). However, it does affect yields 
of longer maturities, influencing the long-end of the term structure. 

�	 See Piazzesi (2003) for a review of affine models of the term structure.
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3.	 Estimation

 
3.1	 Data

In this paper I use three types of instruments to estimate the yield curve; 
pure discount bonds, which make a single fixed payment at the maturity date; 
coupon bonds which make coupon payments at equally spaced intervals until 
the maturity date, in which the face value is also paid and, coupon bonds paying 
both, the face value and the coupon rate, in each coupon payment.

I use end-of-month price quotes for index-linked instruments issued by the 
Central Bank of Chile, which have both their coupon and principal payments 
linked to the Unidad de Fomento (UF), from January 1990 through March 
2006. The UF is a unit of account that varies according to past inflation, and is 
not perfectly correlated with current inflation. For short-maturity instruments, 
UF-linked yields cannot be considered real yields, but as the maturity of the 
instrument increases these yields approximate real interest rates more closely 
(see Chumacero 2002).

The database contains 4,472 observations on pure-discount bonds (Pagare 
Reajustable del Banco Central), and semi-annual amortizing coupon bonds 
(Pagare Reajustable con Cupones and Bonos del Banco Central de Chile). Over 
the sample period, each month contains an average of twenty seven observa-
tions. In early years, however, the number of index-linked bonds outstanding 
is very small, resulting on a median of 8 monthly observations over 1990 and 
1991. During these first two years, the maturity of coupon bonds, as well, is 
confined to values that range from fifteen to twenty semesters and zero-coupon 
bonds which have maturities of less than one year. As we move forward in time, 
the maturity of traded coupon bonds diversifies ranging from 1 month to 40 
semesters (see Figure 1).

Figure 1
End-of-month available discount and coupon bonds over the 

sample period. A point represents a bond available for the corre-
sponding maturity and time period.
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3.2	 State space specification

To estimate the affine term structure model presented in section 2, I first 
derive the discrete-time dynamics implied by the continuous-time model in 
order to match the observation frequency data. Then, using the discrete-time 
equivalent model I present the state space model formulation of the term struc-
ture model.

Note that the two stochastic differential equations (7) and (8) that describe 
the state variables can be expressed as,
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or more compactly, 

(14)	 d dt dt t tX AX b C B= ( )+ +

where Bt is a standardized Brownian motion with a covariance matrix equal to 

CC' '= srs . Using the methods presented in Langetieg (1980) and Bergstrom 
(1984), the equivalent discrete-time for this process is obtained from the solution 
to the system of stochastic differential equations (14). This solution implies the 
following equivalent discrete-time,
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The coefficients of this VAR(1) process, Φ( )ψψ ψψand c( ) , and the distribution 
of the innovation εt

k
 depend on the parameters describing the exponential-

affine model.�

�	 A derivation of specific expressions for the matrices Φ( )ψψ ψψ ψψ, c V( ) and ( )  describing 
the transition equation is presented in Appendix A.
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To complete the state space representation of the model, I present the mea-
surement equation which relates the theoretical yields and the latent factors 
describing the model. At time tk, the data is comprised by Nk bond prices of 
different maturity denoted by 

Pt
k

k k N
k

P P P= ( , , , )1 2 K
 for k=1, K, T. The set  

of instruments contains both, zero-coupon and coupon bonds with maturities that 
vary over time. I assume that there are discrepancies between observed prices 
and their theoretical counterparts explained by exogenous factors such as non-
synchronous trading, rounding of prices, and bid-ask spreads. Therefore, in the 
presence of measurement errors we need to distinguish between the theoretical 
term structure given by (10) and observed prices. Assuming that measurement 
errors are additive and normally distributed, theoretical and observed prices 
are related by,
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when the i–th bond is a zero-coupon bond and equal to, 

Q , X B Xi t
k j

i

ij
'

t
k

C A j j( ) = [ ( ) ( ) ]
=1

ψψ
t

∑ +exp

when the i–th bond is a coupon bond paying ti coupons until the maturity.

The measurement equation (16) plus the transition system describing the state 
variables form the non-linear state space model describing the term structure 
of interest rates.

3.3	 Extended Kalman Filter

Even though the conventional Kalman filter cannot be used in the presence 
of non-linear measurement and/or transition equations, an approximate filter 
can be obtained by linearizing the non-linear measurement equation and then 
applying the extended Kalman filter presented in Harvey (1990). The original 
non-linear measurement equation (16) can be approximated using a Taylor 
expansion around the conditional mean of the state variables,
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where X
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k k
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is the conditional mean of the state variables given the information 
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Using the linear approximation of the measurement equation (17) and the 
transition equation (15), the parameters of the model can be estimated using the 
extended Kalman filter algorithm discussed in Harvey (1990). This algorithm 
consists of a sequence of two steps, a prediction and an update step. The predic-
tion step yields the estimator of the state variables given by,
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where the expectation is based on the available information up to time tk–1  
represented by Ξt

k −1
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In the update step, we use the additional information given by Pt
k

 to obtain 
a more precise estimator of Xt

k
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Once we obtain estimates of the state variables (i.e., Xt
k

)  using informa-
tion about the observed bond prices, we can evaluate the likelihood function 
using the prediction error decomposition (see Harvey 1990 for details). Then, 
the log-likelihood function is given by, 
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3.4	 Estimation results

I estimate the term structure model using the extended Kalman filter algorithm 
and assuming that prices are observed with an error. I aggregate bonds into 
five categories to obtain a parsimonious covariance matrix of the measurement 
errors. Each group is assumed to have the same measurement error, therefore, 
the covariance matrix of the measurement errors Hk (ψ) is a diagonal matrix 
with five different elements characterizing the variance of each group, hi. The 
first group contains discount bonds which have maturities less or equal to one 
year. The remaining four groups comprise coupon bonds with maturities up 
to five years, between six and ten years, between eleven and fifteen years, and 
above sixteen years, respectively.

Unlike the standard practice, I treat the factors r and m as unobservables, 
and do not approximate the instantaneous rate using an observed short-term 
interest rate or the time-varying mean using observed yields as in Chan et al. 
(1992), Longstaff and Schwartz (1992), and Balduzzi et al. (1998). While ap-
proximating latent factors with observable yields is convenient, note that yields 
of any finite-maturity depend on both factors, r and m, as well as on the model 
parameters we are trying to identify.

Table 1 presents the estimation results. With exception of the coefficient 
capturing the market price of risk of the central tendency, l2, all parameter 
estimates are significant at conventional values. Both, the instantaneous interest 
rate and the time-varying central tendency present statistically significant rever-
sion toward its central tendency. However, the mean reversion and the volatility 
of the instantaneous rate are considerably higher than the coefficients estimated 
for its time-varying mean. Therefore, the short-term rate is more volatile and 
returns faster to its time-varying mean, while the central tendency exhibits a 
weak reversion to its long-run value and a volatility less than a half that of the 
short-rate. The mean-reversion parameters imply a half-life of about 1 year for 
the short-rate, while the estimated half-life for the time-varying mean is 14.83 
years (see Figure 3).

These results suggest that the time-varying mean can be interpreted as the 
level of interest rate that would prevail after ongoing temporary imbalances 
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in the economy –those that are expected to dissipate over the short-run– work 
themselves through. In contrast, fluctuations of the first latent state variable rt 
around its time-varying mean reflect shorter-lived shocks. The model-based 
equilibrium real interest rate, which abstracts from both short-lived and long-
lived shocks, is equal to R∞ = 2.47 percent in semestral base or R∞ = 4.94 percent 
in an annual base. The estimate of θ, the steady-state value of the short-rate 
and the central tendency, is statistically significant and equal to 2.95 percent 
in semestral base or 5.92 percent in annual terms.

The estimated loadings of the two factors driving the yield curve provides 
an insight on how each factor dynamics translates into movements of the yield 
curve. In order to give an interpretation of the estimated factor loadings, note 
that one can rewrite equation (11) as,

R t t a R b r bt t( , ) = ( ) ( ) ( ) ( )1 1 2+ ∞ + +t t t t µ

where R R t t( ) = ( , )∞ +
→∞

lim
t

t . Figure 2 depicts the loadings on the long-term 
interest rate a1(t), on the short-term interest rate b1(t), and on the time varying 
long-term rate b2(t) along different maturities, calculated using the estimates 
presented in Table 1. The very short end of the yield curve is driven by the first 
latent factor rt. The loading associated to the short-term interest rate b1(t) starts 
at 1 and decays monotonically as the term to maturity increases reaching a value 
close to zero at long maturities. In contrast, as the term to maturity increases, 
the central tendency mt becomes a central factor behind the movements of the 
long end of the yield curve as well as intermediate maturities.

Figure 2 
Estimated factor loadings in the affine term structure model, 
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Table 1
Maximum Likelihood Estimates (1990:01-2006:03)

Parameter Estimate Parameter Estimate

κ1 0.2959 h1 0.01645
(0.0195) (0.0040)

s1 0.0090 h2 0.5808
(0.0006) (0.0298)

l1 –0.2686 h3 0.7498
(0.1566) (0.0254)

κ2 0.0265 h4 0.0793
(0.0031) (0.0064)

s2 0.0040 h5 1.9466
(0.0002) (0.1280)

l2 0.0140
(0.0232)

r –0 .1480
(0.0856)

θ 0.0295
(0.0058)

Half-life r 1.0046 years R(∞)  0.0247

Half-life m 14.8333 years

Note: The table reports maximum likelihood estimates of an affine term structure 
model described by, 

dr r dt dW

d dt dW
t t t t

t t t

= ( )

= ( )
1 1 1

2 2 2

κ µ s
µ κ q µ s

− +

− +

using monthly data on zero and coupon bonds for the 1990:01-2005:03 period. The 
estimates of the measurement equation error covariance matrix hi are multiplied by 
102. The time unit t is expressed in semesters, therefore the model-based yields are in 
semestral base. 

These characteristics of the model produce model-based yield curves that 
are capable to reproduce some important stylized facts. The higher volatility 
and lower persistence of the instantaneous short rate compared to that of the 
central tendency translates into a higher volatility at the short end than at 
the long end of the yield curve, plus more persistent long interest rates than 
short interest rates (see Table 2). The dynamics of the factors behind the 
term structure and the estimated parameters also produce yield curves with 
a variety of shapes over time, including downward sloping, upward sloping, 
and hump-shaped, and at the same time produces yields that rule out arbi-
trage possibilities between bonds of different maturities (see Figure 4). Even 
though the model imposes restrictions on the cross-sectional and time-series 
properties of the yield curve in order to rule out arbitrage possibilities, the 
model fits quite well the observed yield-to-maturity of zero and coupon bonds 
(see Figure 5).
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Figure 3
Estimated latent factors rt and mt in annual base over 1990:01-2006:03

Table 2
Yield curve estimates descriptive statistics (1990:01-2006:03)

Maturity Mean Std. dev. Minimum Maximum Vt+12

1 month 4.863 3.026 –2.594 12.159 1.797

6 months 4.921 2.882 –2.069 11.794 1.796

1 year 5.021 2.637 –1.157 11.161 1.792

2 years 5.177 2.275 0.2367 10.193 1.812

3 years 5.293 2.03 1.227 9.512 1.839

4 years 5.382 1.858 1.74 9.349 1.862

5 years 5.453 1.731 1.838 9.346 1.887

6 years 5.509 1.633 1.937 9.325 1.904

7 years 5.556 1.555 2.034 9.291 1.916

8 years 5.594 1.49 2.118 9.249 1.93

9 years 5.625 1.434 2.203 9.2 1.937

10 years 5.651 1.384 2.286 9.147 1.949

15 years 5.723 1.193 2.666 8.848 1.968

20 years 5.738 1.053 2.977 8.539 1.979

Note: Descriptive statistics for model-based monthly yields at different in annual 
base. 
The last column presents the variance ratio defined as, V

k

var y y

var y yt
t t

t t
+

+

+

−
−12

12

1

=
1 ( )
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The model estimates also produce an average yield curve that is increasing 
and concave (see Figure 6). To understand why, note that the market price of 
risk of the short-term interest rate imply the following risk premia for a discount 
bond maturing in t periods,�

	

λ
s

λ s
κ t

κ1
1

1 1
1

1

=
1 ( )

P

P

r

∂
∂

−
− −





exp

The sign of the risk premium es equal to minus the sign of the respective 
market price of risk, and the magnitude of the premium is an increasing function 
of bond maturity. The estimate of l1, the market price of risk of the short-term 
interest rate, is negative and statistically significant. This implies that a bond’s 
interest rate risk premium is positive and increasing with bond’s maturity, sug-
gesting that the yield curve is usually upward sloping.

Figure 4
Yield curves in annual base estimated using the estimates of an 

affine term structure model for the 1990:01-2006:03 period

Finally, the correlation between changes in the short rate and its time-vary-
ing mean r is negative and statistically significant. The correlation might be 
interpreted as a link between agents expectation of future economic conditions 
and changes in the short-rate. The intuition is straightforward. Suppose the 
economy is in a growth stage, and the monetary authority increases the short-
term interest rate in an effort to avoid an overheating of the economy. Then, if 
movements in the short rate are pro-cyclical and agents believed that a hike in 
the short rate signals future adverse economic conditions, there is an incentive 
to sacrifice today’s consumption to buy long-term bonds that pays off in the bad 

�	 See Pennacchi (1991) and Jegadeesh and Pennacchi (1996) for a derivation.
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times. This increase in the demand for long-term bonds will bid up their price 
and lower long-term yields, resulting in a negative correlation between r and m. 
The model also implies that a downward sloping yield curve not only indicates 
good times today, but bad times tomorrow. Therefore, when agents expect a 
recession, short-term rates will increase, while long rates will decrease.�

Figure 6
Model-based average yield curve in annual base  

for the 1990:01-2006:03 period

�	 See Harvey (1988), Estrella and Hardouvelis (1991), Plosser and Rouwenhorst (1994), 
Kamara (1997), Chapman (1997), Estrella and Mishkin (1998), Hamilton and Kim 
(2002), Berardi and Torous (2005) and Ang, Piazzesi, and Wei (2006) for a more detailed 
explanation of the information content of the shape of the term structure about economic 
activity.

Figure 5
Model-based yield to maturity (continuous line) and the observed 

yields of traded instruments (circle points) in annual base

(a) Yield-to-maturity on September, 1993	 (b) Yield-to-maturity on March, 2002
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4.	 Movements in the yield curve

The yield curve might move due to changes in announcements of unemploy-
ment or inflation, changes in market participants’ risk aversion aroused from 
perceived changes in the prospects for continued economic growth, or due to 
changes in other economic variables (Bliss 1997). In the model presented above 
changes in the instantaneous interest rate and the its time-varying central ten-
dency drive changes in interest rates of different maturities to varying degrees. 
Therefore, it is reasonable to think that these latent factors should capture the 
economic factors influencing interest rates and the changes in the underlying 
determinants of the term structure of interest rates. Here, I discuss how the term 
structure of interest rates changes in response to new information about rt and 
mt using impulse-response functions implied by the affine term structure model. 
Additionally, I attempt to provide an economic interpretation of these shocks.�

Let me start by analyzing the effect of one standard innovation of the instan-
taneous interest rate and how it translates into movements of the yield curve. 
The first two panels of Figure 7 exhibit the response of the instantaneous short-
rate rt and its time-varying mean mt to an innovation in the first latent factor. 
Figure 8 presents the impulse-response functions of selected yields, the term 
structure at its initial value, and one month and 5 years after a one standard 
deviation of rt. The results show that the instantaneous rate rt increases imme-
diately after the shock and decays monotonically returning to its initial value. 
On the other hand, the central tendency m decreases slightly due to the negative 
correlation between the two state variables, but the confidence intervals indicate 
that this response is not statistically significant. As the loadings of each factor 
suggest, the shock to the instantaneous interest rate increases short-term and 
medium-term interest rates by much larger amounts than long-term interest 
rates. Consequently, the yield curve initially becomes less steep, presenting 
a decrease in its slope. The yield curve returns back to its initial position five 
years after the shock initiated (see Figure 8).

The movements in yields in response to this shock have an intuitive explana-
tion. To better understand the following discussion, recall that the basic asset 
pricing model predicts that the price of a discount bond maturing in t periods 
is given by, 

(21)	 P t T
U c

U ct
t

t

( , ) =
( )

( )
βt tE

′
′









+

where ′U ct( )  is the marginal utility of consumption, 0 < β < 1 denotes the 
subjective discount factor, and Et is the expectation conditional on information 
available at time t. Under this framework, interest rates reflect the rate at which 
people are willing to trade consumption today for consumption tomorrow (Altug 
and Labadie 1994).

�	 Appendix B contains the analytical derivation of the model-based impulse-response 
functions and their respective standard errors.
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Figure 7
Estimated impulse-response functions of the instantaneous short 
rate and the central tendency (solid line) along 95 percent confi-

dence bands (dotted lines)

(a) Response of rt to a one std. dev. of rt	 (b) Response of mt to a one std. dev. of rt

(c) Response of rt to a one std. dev. of mt	 (d) Response of mt to a one std. dev. of mt

A shock that temporarily increases short-term and medium-term yields can 
be interpreted as a temporary positive shock to the economy which increases 
production possibilities. Intuitively, after the realization of this shock agents 
will face an increase in their consumption, but considering that this gain will 
eventually die out, economic agents will save part of the output and invest into 
capital in order to smooth their consumption (de Haan 1995). Therefore, the 
expected growth rate of consumption is expected to be positive in the short-term 
and medium-term, implying an initial increase in the slope of the yield curve. 
However, as agents start to dissave, interest rates will fall back to their long-
term level and consumption growth will return to its steady-state level. This 
result is consistent with the results of Rendu de Lint and Stolin (2003) who find 
that a temporary productivity shock in a simple production stochastic growth 
model increases the one-period interest rate more than the t-period interest rate, 
increasing the slope of term structure of interest rates.

The last two panels of Figure 7 exhibit the response of the two latent factors 
to an innovation to the central tendency, while Figure 9 depicts the impulse-re-
sponse functions of the six-month, 5-year and 20-year yields as well as the term 
structure of interest rates at its initial level, and one month and 5 years after the 
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Figure 8
Estimated impulse-response functions of selected yields and the 

yield curve to a one standard deviation of rt (solid line) along with 
95 percent confidence bands (dotted lines)

(a)	 Response of 6-month yield to a one standard 
deviation of rt

(b)	 Response of 5-year yield to a one standard 
deviation of rt

(c)	 Response of 10-year yield to a one standard 
deviation of rt

(d)	 Response of 20-year yield to a one standard 
deviation of rt

	

(e)	 Original yield curve (t0) and the yield curve 
one month (t1) and 5 years (t60) after a one 
standard deviation of rt
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Figure 9
Estimated impulse-response functions of selected yields and the 

yield curve to a one standard deviation of mt (solid line) along 
with 95 percent confidence bands (dotted lines)

(e)	 Original yield curve (t0) and the yield curve 
one month (t1) and 5 years (t60) after a one 
standard deviation of mt

(a)	 Response of 6-month yield to a one standard 
deviation of mt 

(b)	 Response of 5-year yield to a one standard 
deviation of mt

(c)	 Response of 10-year yield to a one standard 
deviation of mt

(d)	 Response of 20-year yield to a one standard 
deviation of mt
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shock to mt. An innovation to the central tendency increases immediately the 
time-varying mean mt, which reduces monotonically and slowly as one would 
expect given the estimated high persistence of this factor. The instantaneous 
interest rate rt increases quickly to catch up the new level the central tendency 
reached after the shock. After reaching a value near the central tendency, the in-
stantaneous rate decreases slowly following the path of the central tendency.

This shock translates into an initial increase in medium-term and long-term 
yields, while short-term interest rates initially remain muted. As the instantaneous 
rate increases to catch up its time-varying mean, short-term interest rates start to 
increase, while long-term interest rates start to slowly fall as the long-run time 
varying mean falls back to its equilibrium level. As a consequence, initially 
the slope of the yield curve increases, but rapidly the term structure of interest 
rates exhibits a change in its level. Five years after the innovation, yields of all 
maturities change by almost identical amounts (see Figure 9). Slowly, the term 
structure of interest rates will move toward its initial position as the effect of the 
shock dies off. However, the high persistence of the time-varying mean makes 
this effect look as permanent, despite the fact that this variable is stationary.

In this case, this shock can be interpreted as a persistent (almost permanent) 
positive shock to productivity. To understand why, suppose that the economy 
faces a shock that has no initial impact, but eventually grows to a permanent 
technology shock, whose path is perfectly anticipated by agents. A positive 
innovation permanently increases the level of expected future consumption, 
thereby the high expected levels of future consumption makes long-term bonds 
less attractive driving prices down and driving yields up.� As the impact of the 
innovation materializes, agents will require a higher return as an inducement 
to save, leading to an increase in yields of all maturities.

5.	 Final remarks

I show that when thinking about movements in the term structure, one 
should think in changes in at least two type of forces that hit the economy. First, 
shocks that are short-lived, which change the slope of the yield curve. Second, 
long-lived shocks that influence yields of all maturities and shift the level of 
the term structure of interest rates.

However, two questions remain unanswered. Is it reasonable to relate the 
effects of the short-lived shocks to the effects of inflationary pressures or 
monetary policy surprises as in Piazzesi (2005) or Wu (2001)?. Furthermore, 
can the long-lived innovations be related to changes in household consumption 
preferences, or perceptions about future economic prospects?. A second unan-
swered question is whether one can improve the understanding of the factors 
that lie behind the movements of the term structure by including macroeconomic 
variables explicitly to the model presented in the paper.

The findings from the estimated model might also be useful for building an 
equilibrium model of the economy. Labadie (1994) shows that the assumption 
about the persistence of the shocks is very important when evaluating the asset 

�	 Again, this results is consistent with the equilibrium condition 
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pricing implications of the representative agent framework. She argues that the 
dichotomous results that arise about the behavior of the yield curve depending 
on whether endowment shocks are temporary or permanent, are the natural 
outcome of assuming that there is a single shock to the economy. As previously 
argued by Christiano and Eichenbaum (1990), the results obtained here sug-
gest that instead of using one type of shock over the other, the best strategy is 
probably to cast a model with both types of shocks.

A.	 Model solution and state space representation

 
A.1	 Model solution

As shown in Cochrane (2005), the partial equation that characterizes the 
price of a discount bond of maturity t is given by,
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I assume that there is a solution for this fundamental valuation equation 
that is represented by, 

(23)	 P t T A B r Bt t, = ( ) 1 2( ) + ( ) + ( ) exp t t t µ

Obtaining the partial derivatives of the solution and replacing them back 
into the partial differential equation that characterizes the price of a discount 
bond one obtains, 
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Collecting terms and knowing that must hold for all rt and mt we obtain the 
following system of ordinary differential equations,
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With boundary initial conditions, B(0)= 0 and A(0)= 0, the solution to this 
system of ordinary differential equations is equal to, 

B

B

1
1

1

2
2

2

( ) =
1

( ) =
1

t
κ t
κ

t
κ t
κ

exp

exp exp

−( ) −

−( ) −
−

−κκ t κ t
κ κ

t s s
t

1 2

1 2

0 1
2

1
2

2
2

2( ) =
1

2

( ) − −( )
−

+∫

exp

A B B 22
1 2 1 2 1 1 1 2 2 2 2 2+ − − +







B B B B B dss s r λ s λ s κ q

which are the equations presented in the text. 

A.2	 State space representation

The equivalent discrete-time for the process () is given by, 
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B.	 Model-based impulse-response functions and their standard errors

 
Using the discrete-time process describing rt and mt given by , one can obtain 

the following VAR(1) model,10

( ) = ( )( 1 )X X X Xt
k

t
k

t− − − +Φ ψψ ε

where, X I c V= [ ( )] (0, ( ))1− −Φ ψψ ψψ, and εt : .N

This model can be written in vector MA(∞) form as, 

X X G Gt
k

t
k

t
k

t
k

= 1
1

2
2

+ + + +
− −

ε ε ε L

where , , and in generalG G G G G1 2 1 1= = =Φ Φ∗ −s s ∗∗ Φ.

The consequence for Xt
k s+

 of new information about rt beyond 

that contained in Xt
k−1

 is given by, 

∂ 



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∂
+ −

E r

r

t
k s

t
k

t
k

t
k

X X| ,
1

To calculate this magnitude note that one can write the variance-covari-
ance matrix of et as the product of a lower triangular matrix with ones along 
the principal diagonal, and a diagonal matrix with positive entries along the 
principal diagonal,

V = ADA’

with,

A D=
1 0

1
, =

0

021 11
1

11

22 21 11
1

1
V V

V

V V V V− −





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



 − 22













The orthogonalized impulse response function is given by,

10	 The results here are obtained using the methods described in Hamilton (1994).
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where Aj is the j-the column of matrix A. The Cholesky decomposition of the 
matrix the variance-covariance matrix of et is given by V = PP’. Using this 
expression the impulse-response function is given by,
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Since yields are an affine function of the vector of latent factors, the impulse 
response functions for a yield of maturity t is given by,
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The impulse-response functions are a nonlinear function of the parameters 
of the model y, therefore the standard errors for hj,s and zj,s can be calculated 
using the delta expansion of the asymptotic distribution of y, obtaining,
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To calculate this derivatives recall that, Gs = Gs–1 * Φ then the derivative 
of the non-orthogonalized impulse-response with respect to the scalar ψi  
denoting some particular element of y is equal to,
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In the case of the Cholesky decomposition one obtains,
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Similarly, for the impulse-response functions of the yields the partial de-
rivative is equal to,
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