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R&D AND PRODUCTIVITY: THE UNFINISHED BUSINESS®

Zv1 GRILICHES

Abstract

Recent work on the relationship of productivity growth to expenditures on R&D
is discussed with special reference to “unfinished business”: unsolved concep-
tual and econometric problems. The standard “R&D as a capital” model raises
a number of difficult conceptual issues, especially the meaning and measure-
ment of the depreciation of “knowledge” and of the associated economic rents
created by it. In addition, empirical implementations of this model have to
struggle with the possibility of simultaneity and reverse causality and the impli-
cation of imperfect markets for knowledge-based products. An empirical ex-
ample of some of these issues is presented using data from a panel of U.S.
R&D-performing firms, showing both the difficulties alluded to above and evi-
dence for the continued importance of the R&D process for the growth of pro-
ductivity.

Resumen

En este articulo se discuten los trabajos recientes respecto a la relacion entre el
gasto en investigacion y desarrollo (I1&D) y el crecimiento de la productividad,
con especial énfasis en problemas conceptuales y econométricos que no han
sido resueltos. El modelo estdndar “I&D como un capital” tiene varios
problemas conceptuales complejos, especialmente con relacion al significado
y medicion de la “depreciacién” del conocimiento y de las rentas econdmicas
creadas por este. Ademds, las aplicaciones empiricas de este modelo tienen
que lidiar con la posibilidad de simultaneidad y causalidad inversa, y con las
implicancias de mercados imperfectos por productos basados en “el
conocimiento”. Se presenta un ejemplo empirico de estos temas usando datos
de un panel de firmas (que hacen 1&D) en EE.UU. y que muestra las dificultades
sefialadas antes y también la importancia del proceso de 1&D para el crecimiento
de la productividad.

*  Paper presented at the conference on Global Agricultural Science Policy for the Twenty-
first Century, Melbourne, Australia, August 26-28, 1996. Iam indebted to Jacques Mairesse
for helpful comments on an earlier draft, to Steve Bond and Bronwyn Hall for providing
me with the panel data update. to Chorching Goh and Aviv Nevo for able research assis-
tance. and to the Mellon and National Science Foundations for financial support.
Department of Economics, Harvard University, Cambridge, MA 02138, U.S.A.
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1. INTRODUCTION

Current work on the role of public and private research in productivity growth
has deep roots in the early work of agricultural economists. The first micro
production function estimates (Tintner 1944), the first detailed total factor pro-
ductivity calculations (Barton and Cooper 1948), the first estimates of returns
to public R&D expenditures (Schultz 1953, Griliches 1958), and the first pro-
duction function estimates with an added R&D variable (Griliches 1964) all
originated in agricultural studies. Other original contributions to applied econo-
metrics by agricultural economists include Waugh (1929) on hedonics, Nerlove
(1958) on distributed lags, and Hoch (1955) and Mundlak (1961) on panel data
econometrics.'

The specific subfield I want to discuss today, the impact of R&D on produc-
tivity, has expanded enormously from its modest beginnings. Given the large
number of recent surveys of this field, I will not review it here again, having just
done it in Griliches (1995), except to note that one of the best surveys, Austra-
lian Industry Commission (1995, Vol. 3, App. QA), lists 27 studies estimating
the returns to R&D at the firm level, 28 at the industry level, 10 at the country
level, and 20 studies for agriculture alone.?

Major progress was made in the last 30 years in this field: new data bases
were developed at the firm, business unit, and project levels, and other mea-
sures of innovation were added, especially observations on patents. Still I am
not entirely happy. As progress was made, it became clearer how much we still
don’t know and how thin are our data.

I will divide my remarks into three parts:

1. puzzles about the current results in this field,

2. conceptual problems with the “central” R&D capital model,

3. econometric problems: simultaneity, heterogeneity, and spillovers.

2. RECENT RESULTS AND PUZZLES

The major framework for the analysis of the relationship between R&D and
productivity has been the “R&D Capital in the Production Function™ model
(see Griliches 1973 for an early exposition): @ = AX” K7, where Q is output,
X is an index of conventional inputs including physical capital, K is the “stock
of knowledge” (or R&D), A is the level of disembodied technology, and B and
v are the paramaters of interest. The focus in such analysis is on estimating v,
the elasticity of output with respect to R&D capital. Recent studies using 1980’s
data have raised the possibility that y may have declined over time. The issue is
important substantively and needs further investigation. Is it a temporary phe-
nomenon? Has it been reversed recently? Is it a drop in private returns rather
than social returns (Hall 1993)7 By the way, a change in g is not the same as a

! See Heady and Dillon (1961), Berndt (1991) Chp. 4, Griliches and Mairesse (1995), and
Griliches (1996) for historical surveys of some of these topics.

?  Additional surveys can be found in Huffman and Evenson (1993) Chp. 7, Mairesse and
Sassenou (1991). Mairesse and Mohnen ( 1995). Nadiri (1993}, Alston and Pardey (1996)
Chp. 6, and Hall (1996).
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change in the net rate of return to R&D: »= r%-& . where 8 is depreciation rate of
such capital. The rate of return to R&D may decline if K grows faster than Q
and/or & rises, without this implying necessarily a change in Y.

There are three more bits of unfinished business in the “results” area:

a. Often the productivity growth equation is estimated with the R&D inten-
sity rather than the growth in R&D capital as the relevant variable. Sometimes
this version gives “better” results. An argument can be made for it (Griliches
and Lichtenberg, 1984), but I have not seen a convincing reconciliation of the
results of these two versions of the same model. An “encompassing” test is in
order here.

b. There is a parallel literature on estimating the “valuation™ of R&D capi-
tal (or investment) in the framework of “market value” equations (Griliches
1981, Pakes 1985, Hall and Hall 1993). It should be connected to the produc-
tion function estimation literature.

c. Work has been done both at the firm and industry levels. One might
expect higher estimates of the rate of return to R&D (p) at the industry level
due to the internalization of spillover effects, but the bulk of the results does not
go in this direction and no convincing exploration of the aggregation problem
has been done yet, as far as I know, in this context. One possibility is a higher &
at the individual firm (private) level because of obsolescence and the “creative
destruction” of rents as against a larger component of more slowly depreciating
social returns at the more aggregate levels.

3. THE ‘““CENTRAL’’ MODEL AND ITS DISCONTENTS

The “central” model treats R&D as another investment stream, parallel to
physical investment, and constructs an analogous “knowledge” capital stock
using the perpetual inventory method and an assumed (fixed) depreciation rate
5. But knowledge is not like refrigerators, and each of the steps in the construc-
tion of such a “capital” concept is problematic.

The list of problems is long:

The standard approach aggregates R into a K concept linearly, ignoring the
possibility that knowledge production depends nonlinearly not only on current
R&D efforts but also on previously accumulated results. Moreover, R as a pro-
ducer of additions to K may be subject to short-run decreasing returns to the
intensity of search and to longer-run diminishing returns due to the fishing-out
of technological opportunities, unless they are recharged by science or other
sources of new discoveries. This is not a new concern. Itis alludedtoin Griliches
(1979), it was raised in a number of papers by Evenson (e.g., 1984), and has
been revived in a number of recent papers.

Formal properties of models where K, _=f (R, K) have been considered by
Bachrach (1990), Hall and Hayashi (1989), Lach (1994), Jones (1995) and Klette
(1994), among others. A reasonable version of such a model is:

K, ,=RKK,"

where the ¢ parameter associated with the own stock of knowledge reflects the
within-firm spillovers and time interdependencies in the research process, while
the h parameter, associated with the aggregate stale of knowledge, reflects both
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positive external spillovers and negative crowding-out effects. Having started
with such a model, there is no clear role left for a separate depreciation effect,
though some of the authors add a linear depreciation component to such mod-
els.

In estimation, such models lead to the “solving-out” of the unobservable K
stock and the estimation of productivity growth as a function of R and lagged
levels of output, TFP, or patent stocks. The current results along these lines are
interesting but not fully convincing, both because of econometric problems as-
sociated with the use of lagged dependent variables, and because of the likely
endogeneity of R, a topic to which I shall come back below.

Other conceptual problems are associated with the whole notion of “depre-
ciation” of knowledge and with the question how “knowledge” should be incor-
porated into the production function. Much of what we think of as depreciation
is not “physical” forgetting but rather the dissipation of rents as the result of
obsolescence. It is a valid private cost component of innovation but not neces-
sarily a social one. Its implications for measurement depend on the state of
price index measurement technology and on the market structure of the rel-
evant industries. In computers, where the incumbents have little market power,
prices and revenues fall, but quantities need not. If correctly “deflated,” there is
little depreciation to knowledge capital in a “true” quality constant production
function. In pharmaceuticals, with incumbents choosing to depreciate their
patent monopolies optimally and the appearance of new substitutes not causing
incumbent prices to decline, “deflated revenues” will fall and we would inter-
pret it as the depreciation of private R&D capital and a decline in productivity
(since the same set of resources are still used in the industry producing essen-
tially the same quantities as before). All that has happened is that the previ-
ously accumulated R&D “capital™ is now available to others in the industry and
hence cannot collect much rent. But it is still contributing to the productivity
(technology) of the industry. From a social perspective the loss of patent pro-
tection does not result in a decline in such a capital but rather a rise in its utili-
zation! The fact that in most cases our micro production functions are closer to
revenue functions than to true quantities makes the second case more prevalent
than the first. But, often the data are a mixture of the two, leading to great
difficulties in the interpretation of the empirical results.

It is obvious that such capital does not depreciate just due to the efflux of
time or mechanical wear and tear. The obsolescence of privately generated
R&D-based knowledge is clearly a function of the activity of others and is
unlikely to occur at a constant rate. A major challenge before us is to model this
process convincingly. A start has been made by Caballero and Jaffe (1993), but
this is yet to be transferred to the work on micro production functions.

The above discussion does not imply that there is no obsolescence in social
knowledge. There has surely been loss in the social value of the knowledge
stocks associated with making carbon copies of documents and shipbuilding
technology, both in the sense that existing stocks are applied to much smaller
industries and hence the implicit social returns, the consumer surpluses attrib-
utable to the original invention of these products, become smaller as demand
falls, and in the sense that they become much harder to retrieve due to the lack
of use, the retirement and death of associated human capital, and just plain
forgetting. Such depreciation need not have the usual declining-balance (geo-
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metric) form, except, possibly in the aggregate, where the population renewal
theorem (Jorgenson 1973) comes into play.

The final set of problems is associated with the nonrivalrous nature of know-
ledge (Arrow 1962, Romer 1990). If K,_is to be measured by the outputs of
the knowledge-producing processes, it becomes an index of the level of pro-
ductivity along the lines of quality-ladders or variety models of Grossman and
Helpman (1991) and not a parallel capital input within the list of standard
inputs. If K, is measured by R&D input rather than output, the question is
still, “Should the resulting production function be interpreted as having con-
stant returns including the R&D input?” The usual solution to this internal
versus external economies of scale question was to treat the own R&D effects
as subject to decreasing returns and include them in the standard list of inputs,
while treating the spillovers from the R&D of others as externalities (see Griliches
1979 and 1991), assuring perfect competition within the relevant sectors. But
the nonrivalrous nature of R&D results makes perfect competition solutions
unlikely, leading to the patent system and other appropriability mechanisms
and a divergence between price and marginal costs of production. The recent
revival in monopolistic competition theory and its application in this context
make it clear that knowledge-producing firms will have nonnegligible markups
whose magnitude will depend on the conditions of competition in their indus-
tries and the strengths of their appropriability positions. What we have then in
our data are revenue functions with nonzero markups and downward sloping
demand functions “solving’’ the increasing returns “problem™ (it is only a prob-
lem for our models, not necessarily for the real world). In particular, as I will
show below, if one assumes that R&D affects only demand, one would interpret
estimates of g as a measure of -¢/n, where ¢ is the demand elasticity with re-
spect to R&D and 1 is the price elasticity of demand. This is equivalent to the
Dorfman and Steiner (1954) result for advertising. Even if only partially true
this has serious implications for estimation, which is my next topic.

4. ECONOMETRIC ISSUES

There are a number of sources of misspecification which afflict the “stan-
dard” production function estimates of the elasticity of output with respect to
R&D capital (g).

The major ones are:

a. the simultaneity of the R&D decision,

b. heterogeneity and endogeneity of individual product prices,

c. heterogeneity of the underlying production functions,

d. the role of spillovers.

The more general topic of the simultaneity of input decisions was discussed
recently in the Griliches and Mairesse (1995) paper. If R&D is chosen on the
basis of economic incentives, it is unlikely to be fully independent of the shocks
and errors which affect the production relations we are trying to estimate. This
is the simultaneity problem. If all firms face the same production function and
the same factor prices, it is not clear why different firms would choose different
R&D levels. If they all do the same thing, we may not be able to estimate
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anything. If they do not, then we need to understand why not. That is the
“identification” problem.

The simultaneity problem refers to the possible confusion in causality: fu-
ture output and its profitability depend on past R&D, while R&D, in turn, de-
pends on both past output and the expectation about its future. With long time
series and detailed lag assumptions one might be able to analyze a recursive
equations system with current output depending on past R&D, and past R&D
depending on past rather than current output. In cross-sectional data with only
a few observations per firm, it is much harder to make such distinctions, par-
ticularly since current expectations about the future are based on current and
past data.

There are several “solutions” to the simultaneity problem. First, if one has
good series on the real factor costs of the various inputs, one could use them as
instrumental variables for the estimation of the production function. Unfortu-
nately, in the R&D context one is unlikely to have good factor price series.?
Even if one had the prices, they are likely to be highly collinear over time.

There is one possible exception to this pessimistic view. With good data
one could construct different “tax prices” of R&D facing different firms, which
would provide us with some relevant cross-sectional variation. But, to my knowl-
edge, that has not been implemented yet in this context.

Also, the implicit assumption of certainty about the future underlying such
static models makes little sense in the R&D context. What is maximized here is
the present value of all future profits, and the relevant output price concept is an
expected one and not the current one, especially if current output (and demand)
is subject to special and transitory circumstances.

Second, if both time series and cross sectional data are available and one is
willing to assume a simple permanent-transitory model: u = o + e, where o is
the permanent component which affects input demand choice while e, the
transitory component, does not, then consistent parameter estimates can be had
from the within-firm covariances. This is equivalent to allowing a separate
constant term (dummy variable) for each firm, which would absorb the offend-
ing term in it. Unfortunately, such data sets are rare. Moreover, the covariance
approach may exacerbate other problems, such as errors in the variables, which
also afflict these kinds of data.

Third, one may be able to find other “indicator” variables of interest and
they may help to solve the identification problem in such models. I shall dis-
cuss one such approach below.

The question whether the R&D stock measure is “contaminated” by simul-
taneity depends upon what all is in the production function disturbance and to
what extent it is anticipated by the decision makers. The usual construction of
Kt=2(1-5)’R.‘_,_j. with j going from zero to infinity, puts only lagged values of
Ré&D into the equation. But to the extent that there are more or less permanent

}  First, there are no published R&D deflators at the detailed industry level; second, if they
were available, they would still be very highly correlated with the cost of labor and cost
of capital indices, which are likely to be major ingredients of such indices. What we will
not have are changes in “real” R&D costs, in the productivity of such expenditures, in a
field or industry, caused by various technological and scientific breakthroughs.
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firm effects, reflecting market positions, differences in quality of the labor force,
and other misspecifications, they would be correlated also with past R&D deci-
sions. Going “within” or using growth rates eliminates such fixed effects but
may still leave other specification errors, such as changing utilization rates and
demand conditions. These may still influence current R&D decisions.

An example of current approaches to such problems can be seen in Table 1,
which is adapted from Griliches and Mairesse (1995). The first part, columns 1
and 2, presents “standard” OLS production function estimates for a heavily
selected panel of 214 R&D firms in U.S. manufacturing. As usual, the capital
coefficient declines as one moves to “within-firm” data, but the estimated R&D
coefficient actually increases. Table 1B, which is new, applies the more general
Chamberlain (1984) P-matrix approach to the estimation of such a model and
asks the question whether the R&D coefficients have declined over time. As
can be seen from comparing the estimated ¥'s in columns 3 and 5 or 4 and 6,
they did not. The allowance for correlated effects hits the physical capital coef-
ficient primarily and the allowance for individual firm heteroskedasticity intro-
duces an additional puzzling instability in the estimated coefficients (compare
the estimates in the SUR versus MD columns) but leaves the R&D coefficients
largely unchanged. Neither of these estimates does take care, however, of the
simultaneity of the employment decision, if the latter is affected by current
shocks in production or correlated with unmeasured changes in capacity utili-
zation.

An interesting new approach to the simultaneity problem is presented by
Olley and Pakes (1996) in their paper on “Dynamics of Productivity in the
Telecommunication Equipment Industry.” This paper deals with two topics,
selectivity and simultaneity, in an intertwined fashion. The sample selectivity
problem may be quite serious for panel data. If observations (and data) are not
missing at random, estimates that are based on “clean” and “balanced”
subsamples could be badly biased. For example, a bad draw of # may force a
firm or plant to exit from the industry. Such a negative correlation between
estimated productivity shocks and future probabilities of exit was observed by
Griliches and Regev (1995) in their analysis of Israeli industrial firms. They
called it “the shadow of death.” If the impact of negative «’s on exit is stronger
for smaller firms (the larger ones having more resources to survive them), then
this will induce a negative correlation between u« and the stock of capital among
the surviving firms and bias the estimated capital coefficient downward in such
samples. I will emphasize, however, their suggested solution to the simultane-
ity problem in this paper. (See Griliches and Mairesse 1995 for a more detailed
exposition.)

The major innovation of Olley and Pakes is to bring in a new equation, the
investment equation, as a proxy for a, the unobserved transmitted component
of u.* Trying to proxy for the unobserved a (if it can be done right) has several
advantages over the usual within estimators: it does not assume that a reduces
to a “fixed” (over time) firm effect; it leaves more identifying variance in the
“independent”™ variables and is therefore a less costly solution to the omitted

4 In their notation a is w and they refer to it simply as “productivity.”
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TABLE 1
ALTERNATIVE ESTIMATES OF PRODUCTION FUNCTION PARAMETERS:
U.S. R&D-PERFORMING FIRMS, 1973, 1978, 1983, 1988
(Standard errors in parentheses)

Balanced Panel Full Sample
Variables
(1) (2) (3) (4) (3) (6)
Total Within Total OLS Nonparametric F
Labor 496 685 578 551 591
(.022) (.030) (.013) (.013) (.013)
Physical Capital 460 180 372 298 321 320
(.014) (.027) (.009) (.012) (.016) (.017)
R&D Capital 034 099 038 027 081 077
(.015) (.027) (.007) (.007) (.016) (.019)
Investment - - - 10 -
(.011)
Other Variables - - ~ - Powersof | Polynomial
h in P and h
# Observations 856 2971 1571

(1) The dependent variable in columns 1 to 4 is the log of sales, while in column 5 and 6, the
dependent variable is the log(value added) - b_*log(labor).

(2) Consult Griliches and Mairesse (1995) for details of the estimation algorithm leading up
to columns 5 and 6.

(3) The other variables in the equations are: Year, and Year x Industry 357 (i.e. computers)
dummy variables.

(4) The number of observations in the balanced panel for regressions in columns 1 and 2 are
the observations for those firms that have continuous data over the period. Similarly, the
2971 observations in columns 3 and 4 are all the observations in the full sample. (Only
six observations had to be discarded because of zero investment.) The number of obser-
vations in the last two columns decreases to 1571 because lagged values of some of the
independent variables are nceded in the estimation.

variable and/or simultaneity problem; and it should also be substantively more
informative.

Their argument goes roughly as follows: the investment demand of the firm
at time 7 can be written as a function of the predetermined capital stock vari-
ables and that part of the shock in the production function u, the a, which is
transmitted to both the employment and the investment decision. Inverting this
relationship and solving for a as a function of investment and capital stock, one
can approximate it now semi-parametrically and estimate the production func-
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TABLE 1B
ALTERNATIVE ESTIMATES OF
PRODUCTION FUNCTION PARAMETERS:
U.S. R&D-PERFORMING FIRMS, 1973, 1978, 1983, 1988

Variables Uncorrelated Random Correlated Effects
Effects
SUR MD SUR MD SUR MD
(1) (2) (3 4) (5) (6)
Labor 594 686 664 B0s 671 .BIB
(.037) (.020) (020} (.029) (.044) {.030)
Physical 334 260 163 062 164 062
Capital (.031) (.014) (.03%) (.022) (.033) (.022)
R&D Capital 067 065 092 080
Combined (.022) (.015) {.035) {.022)
1973 DBG 065
(.036) (.024)
1978 087 072
(.035) (.023)
1983 073 059
{.036) (.024)
1988 094 076
(.035) {.023)
Chi-sq 366 121 110
(degrees of (45) (33) (30)
freedom)

Number of observations: 214 firms x 4 = 856

SUR Seemingly Unrelated (multivariate) Regression estimates

MD Minimum Distance (individual heteroskedasticity weighted)

Dependent variable: log deflated sales

Other variables in the equation: year dummy variables, computer (357) industry dummy vari-
able, and computer-year interaction variables

tion in two steps (three, if one also deals with selectivity at the same time): First
one gets a consistent estimate of the coefficient of the labor variable, and then,
one retrieves the capital coefficient by using the estimated labor coefficient to
move the endogenous labor variable to the left-hand side of the equation.
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An application of their approach to our data is presented in columns 3 through
6 of Table 1. Because exit is often a success for our R&D firms (being taken
over) rather than a failure, the selection problem is not particularly severe in our
data (compare the results in columns 1 and 3). Once one shifts to the more
complete unbalanced samples, the remaining selectivity (mainly attrition) does
not appear to be too important (compare columns 5 and 6).

As far as the simultaneity problem is concerned, either it is of no great
import in these data or the introduction of investment and the associated Olley
and Pakes procedure does not fully adjust for it. Investment is highly “*signifi-
cant” when added to the production function (see column 4), but at the end of
the procedure (having allowed for selectivity and unbalance), the coefficients
change only little (compare columns 2 and 3 with 6) except that we do get again
a higher R&D coefficient.

The Olley and Pakes solution to the simultaneity problem is a clever way to
exploit the fact that the unobserved “productivity shocks” are transmitted to
more than just one equation and should be estimated within a system of behav-
joral equations. It does rest, however, on two very strong assumptions: 1. that
there is only one single-component unobservable in the system, the o, which
follows a first order Markov process and is fully transmitted to the investment
equation, and 2. that no other variables or errors appear in it. Investment de-
pends, however, also on other individual factors such as interest rate expecta-
tions, tax treatments, and changes in future demand prospects not yet fully cap-
tured in the initial state variables (the capital stocks). In principle, there may be
additional instrumental variables and other indicators of a, such as R&D, which
could help solve the errors in the investment equation problem, except for the
extreme nonlinearities introduced by their semi-parametric approach.?

Other approaches lean more heavily on assumptions about lags in the trans-
mission of the disturbances to the other decision variables and use lagged val-
ues as instrumental variables in estimating such models (see Blundell and Bond,
1995, and Mairesse and Hall, 1996). One can write a simple model of the
production function as

Y= B+ ¥R O+ u,, U =Py, + 6

where small letters represent the logarithms of the variables, x is a composite of
“conventional” inputs including physical capital, k is a measure of the R&D
“stock,” a, is an unobserved permanent firm effect, while u is a randomly
changing “technical” disturbance. The “innovation™ in u, the e, is unpredict-
able, but whether x and k are independent of it depends on the assumed lag
structure of the decisions affecting their evolution. (Of course, u could be mod-
eled as a higher order auto-regression.) In such a world, we could solve out u,
and rewrite the equation as

y = B(x-px_,) + Y(k-pk ) +py_, + e+ (1- P)&y

5 The current state of estimating nonlinear errors-in-variables models is not completely

hopeless, but it is not easy either.
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and use past differences in x, k, and y, which should be independent of the o
and e,, as instruments.®

In Table 2, a larger sample (including also non-R&D firms) is analyzed in
this framework using the GMM approach (see Mairesse and Hall 1996 for a
recent exposition in a similar context).

Columns 1 and 6 present the OLS estimates for levels and first differences
respectively. Column 2 allows for serial correlation and finds it very high (as
could be expected). Columns 3 and 4 repeat these level computations allowing
for the endogeneity of all the input (and lagged output) variables, using past
differences in these variables as instrumental variables. Colums 5 is similar, but
only instruments the labor and lagged output variables treating the two capital
stocks as predetermined.” Columns 7 and 8 present the corresponding esti-
mates of this equation in first differences, instrumented by past levels. The first
differences transformation is optimal if p=1, or if p=0 and the *“not so fixed
effect” is a random walk, i.e., = | + e. Column 7 uses past levels as instru-
ments for all three variables, which is appropriate if there are random measure-
ment errors in them or some remaining contemporaneous simultaneity, while
column 8 only instruments the labor variable.

The preferred specification, column 5, indicates a substantively and statisti-
cally significant R&D coefficient of about .03. It also finds that the individual
firm effects are not entirely “fixed” but include a component which does depre-
ciate, albeit slowly. If one approaches the limit of p=1 (first differences), there
is hardly any identifying variance left in the annual changes in our measures of
physical and R&D capital. Measurement and timing errors now predominate,
while the remaining information content in the instruments is too small to allow
one to extract whatever signal is still left in these variables. In the end, what is
clear is that there seems to be a significant R&D coefficient, but it’s magnitude
is uncertain, varying from about .03 to .08 based on estimates from reasonably
robust specifications (Table 1 col. 6, Table 1b col . 4, and Table 2 col. 6).

The GMM approach uses past values of the inputs and outputs as instru-
ments. What is their identifying content? Inputs today depend on past demand
and supply shocks because, presumably, there are lags in adjustment, and also
erroneous decisions. But without specifying nontrivial real factor demand and
supply equations with measurable exogenous shifters of such functions, we
have no interesting variables which could be used to interpret (identify) their
behavior. There are no measures of shifts in the potential demands for a firm’s
products, or of changes in technological opportunities, market structure, or firm
individual cost of capital. Without such shifters it is hard to tell whether such
lagged values represent an interesting “‘experiment’” which would allow us to
identify something.

Another major specification problem revolves around the unlikely assump-
tion, that all firms within an industry charge the same price. If product prices
are both different and endogenous, then what is estimated is a revenue function,

&  This assumption is right for “stationary™ a’s, where their effect on y is unchanged over

time.
7 Using instruments from r - 3 rather than r - 2 increases the standard errors but has little
effect on the reported results.



156 Estudios de Economfa, Vol. 25 - N°® 2

TABLE 2
ALTERNATIVE ESTIMATES OF PRODUCTION FUNCTION PARAMETERS
U.S. R&D AND NON-R&D MANUFACTURING FIRMS, 1982-87, N=676
(Standard errors in parentheses)

Variable Levels First Differences
OLS Instrumented by differences | Instrumented by  OLS
levels
(1) (2) (3 4y (5) (6)* (7" (8)
Labor 567 616 665 750 652 705 611 613
(.008) (.013) (.048) (.027) (.0d6) (.024) (.0662) (.013)
Capital 402 122 277 289 14 R4 A10 14
(.007) (.012) (.036) (.027) (.031) (.019) (.037) (.012)
R&D stock 016 041 033 025 030 046 059 030
(.004) (.012) (017) (.017) (.010) (.017) (.022) (.013)
Lagged 0 981 0 573 654 I 1 1
output (.004) (.023) | (.031)

Estimates in columns (2). (4), and (5) (equation 11) are constrained to the same r coefficient
in (x-rx_ ) and ry .

Additional variables included in the equations: no-R&D dummy variable, year dummies,
computer industry dummy and interaction with year.

Instrument sets:  For levels: a: all differences as of -2 and earlier, for [, ¢, k, and y .
b: ¢ and k treated as predetermined. Only [ and y
instrumented.

For differences: a: levels of I, ¢, and k as of +-2 and earlier.
b: only [ instrumented.
Source: Griliches (1996).

not a production function, with left-out product prices in the residual. This
problem is considered by Klette and Griliches (1996) who, reinventing an argu-
ment already made by Marschak and Andrews (1944), start with a model of
firms facing symmetric logarithmic market share (demand) functions

Y, -y;=N-p)+e

where y; and y, are respectively the real output of the firm and the industry, p,
is the firm’s own price (or price index), 1 is demand elasticity with respect to
the relative price of its own products, p, is the aggregate industry price index
(relative to the overall economy price level), and e are all other demand shifters
for the products of this industry. If the variable that we observe is not “real”
output y, but deflated revenue (sales)
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r=>W+P)-P
then, the “revenue production” function is

r=PBx+yk+u+(p -ppY

There would be no problem here if the p;’s were random and exogenous. Butif
firms have a modicum of market power, at least in the short run, p, will be set by
them and will be correlated with u, x, and k. Setting price equal to marginal
revenue and solving out for p, , yields the pseudo production function

r=[Bx + Yk + ul/m - (yp/n - em

where the “markup” coefficient m = n/(1 + M) is likely to be larger than one.
Since y, and p, are aggregates, they can be “controlled” for by the introduction
of period dummy variables. Itis clear now that the estimates of o and B will be
biased downward on the order of 1/m, implying diminishing returns to scale in
contexts where there actually may be increasing returns.

This model can be extended by adding also R&D capital to the demand
function, with ¢ as its elasticity.® The coefficient of k in the “deflated” sales
equation is then (T;%] a combination of its effects on both productivity and
demand, attenuated by the price elasticity of demand. This coefficient can also
be rewritten as Y + (Y — ¢) / 1, showing that the pure “productivity” effect of
R&D will be underestimated as long as it is smaller than its “demand” effect
(¢). Klette and Griliches show that if one has a measure of the demand shifter
(they use aggregate industry sales y, for that) one can identify 1 and B, but one
cannot separate ¢ from 7, unless one assumes ¢ = 0. Without actual individual
firm prices, there may be little that we can do here except be more careful in our
interpretation of such results.

All of this discussion has focused on estimating the effects of R&D, but
what makes different firms chose to undertake different amounts of R&D? I
have already noted the lack of good “external” causal variables. To the extent
that differences in R&D reflect “technological opportunities,” they could be
modeled as differences in 7. firms facing (or possessing) different knowledge-
producing technologies (though keeping the conventional input component the
same within an industry). But unless one brings in some substantive variables
which would explain this heterogeneity, such “generality” adds very little con-
tent. (See Mairesse and Griliches 1990 for a parallel discussion of heterogene-
ity in the physical capital elasticity.) The open modeling question is how to use
the observed differences in R&D intensity to infer something interesting about
the underlying sources of the heterogeneity in 7.

In this form, R&D capital is a separable demand shifter, leaving the price elasticity of
demand unaffected. (See Griliches and Mairesse 1984, for an early formulation of this
model.) A more complex model might also include an interaction term, making the price
elasticity itself a function of K.
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The final estimation-specification problem I want to discuss is the estima-
tion of spillover effects. The standard approach (for which I must take some
responsibility, cf. Griliches, 1979), introduces a “distance weighted” measure
of the research efforts of other firms within the same and\or neighboring indus-
tries or technological areas. It is clearly a first step in the right direction, but it
is also subject to a serious identification problem: Does it work because a firm
benefits from the efforts of others or is it just a reflection of “spatially” corre-
lated technological opportunities? It could be a response to common differ-
ences across fishing grounds, or in more technical terms, the individual firm
effects a, may not be independent of each other but be subject to some “local”
clustering, which will be picked up by the spillover measures. This issue is
discussed in a more general context by Manski (1991), under the title of “the
reflection problem.” It would be nice if someone could come up with an ap-
proach that could distinguish between these two interpretations, but that is un-
likely since the basic model is not identified without much more explicit re-
strictions and priors on the possible channels of communication.

I have concentrated today on the “unfinished business.” not to emphasize
the “glass-half-empty” aspect, but rather to indicate the rich research opportu-
nities ahead. “Our song is not finished, it’s only beginning!”
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