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criterion implies that preferences are independent over time.

Following in the tradition of Irwing Fisher, Koopmans presented an alternative for the
casc of discrete time periods; he used an assumption of limited non-complementarity
over time, and showed that there exist welfare functions for which the rate of time
preference is variable. Later he and others showed that the implications are that even
in the simplest situations described by the neoclassical growth model initial conditions
affect the long run optimal path.

Equivalent results for the case of continuous time have been reached by the present
author.

A similar approach by Uzawa reaches different results due to his particular
assumptions; his optimal paths are, in the long run, independent of initial wealth.
Blanchard and Fischer have critizised Uzawa's increasing rate of time preference,
which also is at variance with Irving Fisher's original treatment of the subject.

The particular case in which the resulting welfare function can be explicitly
represented as an intcgral as in Unm'iuuyhubcm:nalymedchwrhurebyﬂm
present author, but is not covered by the other studies which assume that the welfare
functional is quasi-concave. The results for growth theory obtained illustrate the use
of such a welfare function taking into account Fisher's form for the pure rate of time
preference; the qualitative behavior of optimal growth paths is there seen to be similar
to that described previously, including the multiplicity of asymptotic growth paths,
with long run situations depending on the initial endowments. Thus preferences may
lead to a *’poverty trap’’ even in the case of a well behaved neoclassical technology.
Suchmumthmbeducribaduinﬂteﬁﬂnufthhuuy,t!mﬁchbmmingricher

and the poor getting poorer.

The present cssay presents more rigurous arguments and additional examples.
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SINTESIS

El procedimicnto acostumbrado en el campo de la teorfa del crecimiento éptimo
consiste en la maximizacién de una suma de utilidades instanténeas (descontadas o no)
denominada bienestar. Dicho criterio de optimalidad implica que las preferencias son
independientes en el tiempo.

Siguiendo la tradicién de Irwing Fischer, Koopmans ofrecié una alternativa para el
cnmdehsperﬁodmdiummcdcﬁmpu,miﬁnnduunmpumdcm-
complementariedad limitada en el tiempo, ¥y mostrando que existen funciones de
bicnestar para las cuales la tasa de preferencia de tiempo es variable. Posteriormente,
él y otros mostraron que las implicancias son que incluso en las situaciones mis
simples descritas por el modelo neoclésico de crecimiento las condiciones iniciales
afectan la senda Sptimo de largo plazo.

El autor obtuvo resultados equivalentes para el caso de tiempo continuo.

Uzawa usando un enfoque similar, licga a resultados diferentes debido a sus supucstos
particularcs; sus sendas Sptimas son, en el largo plazo independientes de la riqueza
inicial. Blanchard y Fischer han criticado Ia tasa de preferencia de tiempo creciente
de Uzawa, que también difiere del tratamiento original que le diera Irwing Fischer al
tema.

En el caso particular en que la funcién de bienestar resultante puede ser representada
explicitamente como una integral, al igual que en el ensayo de Uzawa, ha sido
mlizadﬂmmmtmbqjupurc]nutur,ptmnnastitﬂtndumutmsmudiuu que
suponen que la funcién de bienestar es cuasi céncava. Los resultados obtenidos para
la teoria del crecimiento ilustran el uso de dicha funcién de bienestar tomando en
consideracién la forma de Fischer para la tasa pura de preferencia de tiempo; la
conducta cualitativa de las sendas Sptimas resultan similares (en este trabajo) a lo
previamente descrito, incluyendo la multiplicidad de sendas de crecimiento asintéticas,
con situaciones de largo plazo que dependen de las dotaciones iniciales. Asf entonces,
las prefercncias pueden llevar a una "trampa de pobreza” aiin en el caso de una
tecnologia neoclfsica bien comportada. Dichos casos pueden ser descritos entonces
como en el titulo de cste ensayo, los ricos sc hacen més ricos y los pobres llegan a ser
més pobres.

Este ensayo ofrece argumentos rigurosos y ejemplos adicionales
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WHY THE RICH GET RICHER AND THE POOR GET POORER-*

Rolf R. Mantel

1. INTRODUCTION

The usual procedure in the field of optimal growth theory consists in
maximizing a (discounted or not) sum of instantaneous utilities, called welfare.
Such an optimality criterion implies that preferences are independent over time.

Following in the tradition of Irwing Fisher, Koopmans (1960) presented an
alternative for the case of discrete time periods; he used an assumption of limited
non-complementarity over time, and showed that there exist welfare functions for
which the rate of time preference is variable. In a later study with Beals (Beals
and Koopmans, 1969; see also Iwai, 1972) he showed that the implications are
that even in the simplest situations described by the neoclassical growth model
initial conditions affect the long run optimal path.

Equivalent results for the case of continuous time have been reached by the
present author (Mantel, 1966, 1967a, 1967b, 1993).

A similar approach by Uzawa (1968) reaches different results due to his
particular assumptions; his optimal paths are, in the long run, independent of
initial wealth. Blanchard and Fischer (1989), referring to Uzawa’s increasing rate
of time preference, state that this "is not particularly attractive as a description of
preferences and is not recommended for general use”. Irving Fisher, the father
of the creature, explains in his Theory of Interest (1930), pg. 247 that "near the
minimum of subsistence ... to give up one iota of this year’s income in exchange
for any amount promised for next year would mean too great a privation in the
present. ...his rate of time preference will gradually decrease ... that is, the larger
the income, other things remaining the same, the smaller the degree of
impatience. "

The particular case in which the resulting welfare function can be expl icitly
represented as an integral as in Uzawa’s essay has been analyzed elsewhere

° Estudios de Economia, publicacién del Departamento de Economia de la Facultad de Ciencias Econémicas
¥ Administrativas de la Universidad de Chile, vol. 22, N"2, diciembre de 1995.
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(Mantel, 1967¢c), but is not covered by the other studies which assume that the
welfare functional is quasi-concave. The results for growth theory obtained
illustrate the use of such a welfare function taking into account Fisher’s form for
the pure rate of time preference; the qualitative behavior of optimal growth paths
is there seen to be similar to that described previously, including the multiplicity
of asymptotic growth paths, with long run situations depending on the initial
endowments. Thus preferences may lead to a *’poverty trap’’ even in the case of
a well behaved neoclassical technology. In such cases the rich desire to become
richer, whereas the poor prefer getting poorer; under high levels of initial capital
stock society may wish to save and accumulate more, while the same preferences
may lead to dissaving if initial wealth is below some critical level.

The present essay presents more rigorous arguments and additional
examples.

In the main text only the results will be given, with some indication as to
their proofs. Detailed proofs are left for the Appendix.

2. PREFERENCE OVER TIME

The present section presents briefly some of the results needed in the sequel.
A more thorough analysis has been carried out previously (Mantel 1966, 1967a,
1970, 1993), where the gap between the two approaches —continuous vs. discrete
time— has been bridged, by showing that a suitable limiting process allows one
to define a utility function for continuous time with a variable rate of time
preference. The main result is that the assumptions of stationarity and limited
non-complementarity over time imply that the prospective utility of a consumption
program extending from the present to the unl imited future, can be evaluated as
the initial value of the solution of a differential equation, relating the marginal
increase in prospective utility due to the advancing of the program, to the level
of that utility and to the instantaneous utility of the commodity bundle thereby
discarded. Nevertheless some of the proofs are not appropriate for the present
case, since here the welfare functional may not be quasi-concave,

A time-path or program is a real-valued function z(f), where the
non-negative real argument ¢ represents time. The present moment ist =0, and
the planning horizon of the family or society extends to the infinite future.
Admissible functions are bounded and piece-wise continuous. The set of all
admissible paths will be called Z.

A consumption path x () € Z is an instance of an admissible path. The set
of admissible consumption programs X consists of those admissible paths for
which the consumption rate is never negative, so that x (¢) = 0 for all ¢£. A
welfare function —prospective utility in Koopmans’ terminology-- is a real valued
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function W defined on the set X of consumption programs. The immediate or
instantaneous utility of a consumption rate x is the value of the real valued
function & (x). It should be noted that this definition is at variance with
Koopmans® concept adhered to in Mantel ( 1993). In the present essay, the relation
between these two concepts is given by the integral

W [px] = L- ¢ 22 u[x(s), ds,

where the real-valued function p (x) is the (psychological) rate of time
preference, and ,x stands for the program initiating at the present time 0,

The welfare function satisfies the following postulates, originally stated by
Koopmans for discrete time. For the continuous time case, see the author’s
essays already cited. Here only verbal statements will be provided.

P1. (Sensitivity). There exist two admissible programs which agree with
each other from some time on with different welfare levels.

This postulate serves the purpose of excluding the uninteresting case in
which all consumption programs are equivalent to each other, which then trivially
would all be optimal.

P2. (Limited non-complementarity over time). The ordering of two
initially constant programs with the same tail —i.e. which coincide after a certain
moment— is not affected if their common tail is replaced by another one, as long
as after the replacement both programs still have equal ending sections.

The limited non-complementarity postulate is the central assumption which
allows writing the welfare function in terms of a differential equation.

The condition that the comparison be limited to programs which are initially
constant is essential; without it, the present and the next postulates would imply
that the utility function can be taken to be additive, expressed as an integral of
instantaneous utilities, discounted at a constant rate. This assertion has been
proved before; the proof will not be repeated.

P3. (Stationarity). The ordering of two programs which coincide initially
for some time is the same one obtains by discarding the common initial period
and advancing these programs for a time duration equal to that period —the
ordering of the tails—.

181



The purpose of this postulate is not its realism; one might argue that future
generations have different tastes, so that the evaluation of a program from their
perspective is not equal to the present generation’s evaluation of the same
program from today’s perspective if it were to start today. The reason for
requiring this postulate to be satisfied is to isolate the pure time preference effect
from changes in tastes, in the belief that given sufficient freedom in the choice of
preferences any development path may be justified. This would then provide no
proof that development paths behave differently in the long run solely on the
grounds of different initial endowments in response to a variable rate of time
preference.

P4. (Extreme programs). There exist a best and a worst program, with
finite welfare levels.

Thus the welfare of an admissible consumption program is bounded.

It has been shown (Mantel 1967a, 1970) that under suitable continuity
assumptions these postulates imply the existence of an aggregator function whose
arguments are the rate of consumption x and the welfare level W which is strictly
decreasing in its first argument, and —if the representation of preferences is
chosen appropriately— is strictly increasing in its second argument.

The aggregator function has the property that the welfare of a program can
be evaluated by solving the following differential equation with bounded end
condition for its initial value. The solution is given by a welfare path W(g) such
that W() is the prospective utility one would derive from implementing today the
tail of the program intended to start at time ¢.

In the present case, this means that

wo=wia=[ T upen a

By differentiation it is easily checked that W satisfies the differential
equation

W@®=p @ W® -ulx®] (¢))

The interpretation of differential equation (1) is as follows. The prospective
utility of the consumption program starting at time ¢ is W(¢). The program offers
a consumption rate x(¢) at that time. The aggregator function —the right hand side
of the differential equation— uses this information to indicate that if those two
quantities are known, advancing the program by discarding the consumption of
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the first instants after the current time ¢ achieves an increase in prospective utility
at the rate W (o).

For the purposes of the maximization of welfare to be carried out in the next
section, it will be assumed that the following conditions hold for the instantaneous

utility function #() and the rate of time preference function p ().

PS. (Utility aggregator). The wtility-aggregator functionpfx] W - ufx]
satisfies

1. u(x) and p (x) are continuous and twice continuously differentiable for
x =0,

2. u () is strictly concave, p () is strictly convex,

3. W ®>0p'(x)<0,forallx >0, and u (0) = +o, u (0) = O,

4. p (x) € > 0 for some constant € for all x.

It is easily verified that such an aggregator function produces a welfare
function which satisfies the postulates. The level curves of a function satisfying
Postulate P5 are shown in Figure la, derived from the utility function shown in
Figure 1b and the rate of time preference function in Figure Ic.

FIGURE 1la
AGGREGATOR FUNCTION F(x, W)

— F=5—+F=2-o Fas0) -5 F=2 -« F=4

183



FIGURE 1b
INSTANTANEOUS UTILITY FUNCTION wu(x)
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FIGURE 1c
RATE OF TIME PREFERENCE FUNCTION rho(x)
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For uniformly bounded admissible consumption programs ,x one has

F-=

where W (¢ T, W (T)) is a solution of the differential equation (1.1) with any
end condition satisfying

W@IT, WD =W(@D
with
0<W < W(T)sﬁ’

We shall give p (.) the name of instantaneous rate of time preference. As
will be seen it acts as a discount rate. Note that it is independent of the
representation of preferences only for constant programs; in the general case its
value depends on the (welfare) utility scale. In the present situation, it coincides
with the concept of a pure rate of time preference used elsewhere; in more
general situations the two concepts are equal only in the case of stationary
programs (see Mantel 1993).

3. THE TECHNOLOGY AND FEASIBILITY

The technology ~here we draw heavily on previous work, since there is no
innovation offered— will be described by a simple neoclassical aggregate
production function with the following properties.

P6. (Technology). The real-valued production function f (%) —where the
non-negative real number k denotes capital per capita— is

1. continuous, twice continuously differentiable for k > 0,

2. FO =0 ®>0"®<0
3. There exists a k,, > 0 such that f (k) = 0.

Here it is assumed that there exists only one good, used both for
consumption and for accumulation. The symbol k stands for the capiral-labor
ratio, f (.) for the output-labor ratio —the latter net of maintenance and other
costs, including the investment necessary for keeping the capital-labor ratio
constant—. The second assumption is standard, and states that capital is an
indispensable input and that output per capita is an initially increasing and
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concave function of capital per capita. The last line can be justified in an
economy with a growing labor force, where it is conceivable that as labor
becomes scarce it will be impossible to produce enough to sustain the
capital-labor ratio. In the sequel no reference will be made to the rate of growth
of labor, which will be assumed to be constant. All relevant variables will be
expressed in per capita terms.

Figure 2 shows the graph of a function satisfying Postulate P6 on the
production function.

FIGURE 2
PRODUCTION FUNCTION f(k)

ﬂk}- ==

Denote the highest sustainable —"’golden rule’’— consumption rate by X, the
corresponding level of capital by k, so that both quantities are positive and
f&=0x=f®.

A capital path is an admissible path J; it is feasible for an initial capital
stock kifk (0) = kand 0 < s < ¢ implies

k@ e k@ kW + [ fEO dv,
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where @ < 8 < oo represents the rate of capital deterioration —depreciation plus
the growth rate of labor—, the highest rate at which capital can be used up. Thus
a feasible capital path is differentiable almost everywhere in the sense of
Lebesgue and satisfies the corresponding differential inequalities

-8k@®) < k@® < f (k(®).

The associated consumption path ,x satisfies

X0 =f&®) kO )
sothat 0 < x (©) < f (k(®)) + 8k(@).

To simplify the exposition, the analysis will be restricted to those situations
in which the initial capital stock is productive, i.e. 0 < k (0) < k.. In that case
feasibility implies 0 < k (® < k,_, for all . Consequently the capital path is
uniformly bounded, and so is the consumption path, with
O<x(@® <x"=f(k") + 8k* = max {f (k) + 8Kk|0 < k < k_}. The problem
to be solved now consists in determining the optimal feasible capital, consumption
and welfare programs.

The analysis will be simplified by decomposing the maximization process
into several elementary steps. With any feasible program one associates certain
tentative implicit prices for the consumption good and the use of the same as
capital good; these prices can then be used to compare different programs. In the
end, for the optimal program, they turn out to equal the dual or co-state variables
of the maximization problem.

Define the (psychological) discount factor}, A, and the prices}, p, q,
associated with a feasible path (,W, ,x, J&) as follows. The discount factor is

-f ptxte))a

A@®) = e 3)

and satisfies the inequalities

e PO 2 L) < e PF Ve < |
for all ¢, due to PS.
This expression uses the instantaneous rate of time preference p as a discount

rate to evaluate the relative merit of events at time 7 as seen from the present time
0.
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For the price of the consumption good at time ¢, take the discounted increase
in welfare due to a marginal increase in consumption, l.e.

PO =20 @ x®]1 - WO ¢ OD. @

Thus p () < A(?) u' x@®) < g x@) < v’ (@) if a < x@).

For the rental price of the use of capital take the value of its marginal
product at consumption prices,

g® =p ®f &®) )

These definitions allow the following results to be obtained.

Proposition 1. If (W, ,x, &) and (W, £, ,k) are feasible, then, if
E@ = x(@ - (),

W@ -WDs[TpOE (:)dnﬂ[;—g-: - I]p(aw)a

This proposition —a result similar, though weaker, to Koopmans® (1965)
proposition (F) for a constant rate of time preference— states that the difference
between the welfare levels or prospective utilities of two consumption paths —the
left hand side of the inequality— does not exceed the present or discounted value
of the difference of the two consumption streams —the right hand side— by much,
where these two infinite consumption programs are evaluated at the discounted
prices of the consumption good associated with the second path. The second
integral in this expression is of negligible importance in program changes of short
duration, and can be neglected if one seeks necessary conditions. A rigurous
proof is in the appendix.

The next proposition compares the consumption programs with the

corresponding capital programs.

Proposition 2. If (W, o, &) and (W, ,£, o.%) are feasible with the same
initial capital, then

[fpoco-2@as [T (ﬁ(ﬂ +p (ﬂ] (k@ - £ @) & + lim p @ &O
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This proposition —comparable to Koopmans® (1965) proposition (G) for a
constant rate of time preference— states that, evaluated at the implicit prices of the
second path, the present (discounted) value of the difference of the two
consumption paths —the left hand side of the inequality— does not exceed the
difference in the present value of the two capital services (evaluated at the price
for the use of capital services §) plus capital gains (due to changes in the price
of the assets p) —these two concepts are represented by the terms under the
integral sign on the right hand side~, plus the scrap value of the final capital
stock of the second path —the last term, the limit of the value of the capital stock
as time tends to infinity—.

4. OPTIMALITY

This section follows as far as possible and almost verbatim the
corresponding section in Mantel (1993) so that the two cases can be easily
compared. The main difference resides in the almost imperceptible omission of
the word "’sufficient’” from proposition 3, which of course is crucial as always
when not all convexity requirements are met.’

The two propositions of the previous section lead immediatel y to the
conditions that must be satisfied by optimal programs. Linking the two
inequalities in propositions 1 and 2 together —the right hand side of the first is as
close to the left hand side of the second for sufficiently short time durations— the

necessity of the condition in the next proposition follows from the maximum
principle of optimal control theory. A more intuitive argument is given below.

Proposition 3. If the rate of capital deterioration & is sufficiently large,

necessary for the optimality of the given path (W, ,%, ,£) is that its implicit
prices satisfy

4O +P®O=0  forzz0 ©)
and that the transversality condition

lm p@Ek@ =0

§ =e=

hold.

" The other major difference is that p{ ) now replaces both Fy( ) and ().
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Equation (6) can be rephrased as saying that the discounted price of the
consumption good should fall at a rate equal to the rental price of the capital
services it provides. Note that this result is in line with the necessity of
Koopmans’ (1965) proposition (H) for a constant rate of time preference.

A heuristic argument, similar to the Keynes-Ramsey-Koopmans argument
—first presented by Ramsey (1928), who attributes it to Keynes for the case of a
zero rate of time preference, and later by Koopmans (1965) for a constant rate of
time preference— is as follows. At any time #, increasing consumption by a

fraction e of the investment rate,k, during a short time interval § means an
increase in consumption of Ax = ek. This produces a gain in welfare equal to

AW = A (W(px) - W(,%)
=-nAW-=-nAlpW - 4]
= -n [p'W - 6] Ax = ne [u’' - p'W]

and a loss —due to postponement of capital accumulation by a fraction e of the
time period n— equal to enW. The net gain is therefore

- ([p'W - w1k + W) ne

and should not be positive if the capital path is to be optimal. Since e can have
any sign, it follows that

W+ [p'W-ulk=0 )

The foregoing argument can be shortened considerably, and perhaps made
more intuitive, if one chooses the time unit to correspond to a very short interval,
say a second or a fraction thereof. One can then increase the consumption rate
during the second beginning at time ¢ by cutting investment to zero, thereby

earning a welfare benefit of - [p’W - u/]k. The new capital stock will now be
reached a second later, so that the consumption program will have to be

postponed by a second at a welfare cost given by W. At an optimum the net
benefit is zero, so that equation (7) is again satisfied.

Multiplying this equation by the discount factor A and using the definition
(4) of the price p one the obtains, - AW+ pi = 0 or replacing the
time-derivatives from equations (1)and (2), - A (pW - w) + p f& -x)=0.

Computing the derivative with respect to time ¢ of this identity and reordering the
terms gives
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~APW-sl+pr-QAp+ W+ @+pPEk=0
The first two terms drop out because of the definitions of pin(4) and A in
(3). Thus if the investment rate is not zero, the equality (6) follows.

Note that the zero net welfare benefit condition can be written as

pﬂ.-u"-p'W-FWf-%

which shows that the undiscounted price of the consumption good measures the
welfare effect of a marginal addition to the capital stock.

Proposition 4. For any initial capital stock 0 < k (0) <k, there exists an
optimal path.

The purpose of this result is to confirm that one is not making statements
about non-existing items.

Proposition 5. The welfare levels of optimal programs are an increasing
function of the initial capital k.

That is to say that W (,x) increases with k (@) . This confirms the intuition
that more resources are better.

Define a capital path to be strictly monotone if it is constant or either always
strictly increasing or else always strictly decreasing. Then one has

Proposition 6. Optimal capital paths are strictly monotone.

In other words, under the present assumptions, optimality excludes bulges
or cycles in capital programs. In this the present analysis does not differ
qualitatively from the standard result obtained with a constant rate of time
preference.

Proposition 7. Optimal capital paths are strictly increasing (decreasing,
constant) if the marginal product of the initial capital stock exceeds (is less than,

equals) the pure rate of time preference corresponding to a constant capital path
equal to that initial capital stock, that is, if

' ® > =)p [f ®) )
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This result is also true if the rate of time preference is constant. The
difference resides in that if the pure rate of time preference is constant then there
is only one capital-labor ratio with a marginal product equal to it, whereas if it
is decreasing there may be several solutions to the equality in relations (8). This
central result of the present investigation is summarized in the next proposition.

Figure 3 graphs the marginal product of capital and the pure rate of time
preference corresponding to stationary programs. As drawn they cross at two
points giving rise to two stationary solutions, not counting the origin. One
situation is stable, the other two (one of them the origin) are unstable.

FIGURE 3
MPK and RTP

— (k) —— rff(k)]

Propeosition 8. If the initial capital stock is very large, the optimal path will
be strictly decreasing. If p (0) < f/(0) and the initial capital stock is very low the
path will be strictly increasing, else it will decrease toward zero. For intermediate
initial capital stocks, there may be several intervals for which the path rises or for

which it falls, separated by constant paths along which the pure rate of time
preference equals the marginal product of capital.
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Figure 4 shows the capital paths corresponding to the marginal product of
capital and the rate of time preference schedules of Figure 3. The monotonicity
property of Proposition 6 is illustrated, and it can be seen how the constant
equilibrium paths separate those that are always increasing or always decreasing.

FIGURE 4
CAPITAL PROGRAMS k(t)

k@) —>

—= k(0)=c = k(0)=b < k(0)=a —— k*=B -—— k*=A

5. AN EXAMPLE

In the present section an explicit example will be provided. The solutions
have been computed, in order to show that the foregoing results are indeed
consistent.

Let

px) = € + B

@ +y.x +8.x2

ﬂk-c.k+b.log(l+l:-]—(%].d.k3
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Then the following values for the parameters produce Figure 5,

(z, B, ¥, & € M) = (2.5, .3, 5, 10, .04, .3)
(a b, c, d = (.25, .03, .08, .0001)

if the time unit is taken to be equal to 5, providing the system of differential
equations to be satisfied by an optimal path,

S -x
[ﬁ] = ("l xLIP® - e - ' (FR) - x)l]

FIGURE §
PHASE PLANE PLOT
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The figure shows the phase plane for the two variables x and k.
The isoclines are the dotted lines. It should be noted that the curve E=0
coincides with the production function; the other lines correspond to £ = 0 —one

component is the closed curve near the origin, the other the nearly vertical curve
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cutting the picture in half. There are three intersections —as compared to the two
intersections shown in the previous sections— plus the origin which locate the
stationary solutions.

Several trajectories have been drawn, for different pairs of initial conditions,

k(3 () (&) ()
) (o (G G () ()
GHEHEHE

All correspond to the same time duration. It is clear that only a few are near
the optimal solutions —not drawn— converging to the two stable points.

6. CONCLUSION

The present investigation started with setting out a welfare function for a
family or a social planner wishing to design an optimal growth program in a
neoclassical setting. *>The proof of the cake is in the eating’’, which in the case
of an economist in the position to advise the planner means that it is desirable to
try out several criteria for optimal growth so as to ascertain the effects these have
on the shape of the resulting optimal programs. It is difficult to ask the planners
for their preferences, so it will be simpler to deduce them from their choice
among optimal paths obtained from different optimality criteria.

A welfare function has been presented which is not so simple as to reduce
to one with a constant pure rate of time preference, but still simple enough to be
amenable to analysis, using the large body of results pertaining to optimal control
theory.

The results that have been obtained show that on the one hand there are
similarities with the case of a constant rate of time preference, in that the capital
paths are one of three types,

1. constant for all time, in case that initially the pure rate of time
preference coincides with the marginal productivity of capital;

2. strictly increasing, accumulating capital by consuming less than is
produced, approaching a long run capital-labor ratio asymptotically in
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case the pure rate of time preference falls initially short of the marginal
productivity of capital;

3. strictly decreasing, decumulating capital by consuming more than is
produced, again approaching a long run capital-labor ratio
asymptotically, in case the pure rate of time preference exceeds initially
the marginal productivity of capital.

On the other hand there are important differences.

1. In the case of a constant —or increasing, as proposed by Uzawa— rate
of time preference there exists a unique capital-labor ratio to which all
capital programs tend in the long run independently of the initial
endowment of the economy. In other words, poor societies will restrict
their consumption to accumulate capital until the long run capital- labor
ratio is reached, whereas rich societies will eat up their capital until that
same long run capital-labor ratio is attained.

2. 1In the case of a variable rate of time preference —if it is falling as
proposed by Irving Fisher—, on the other hand, there may exist a
multiplicity of long run relative endowments. This means that the
development path of an economy depends on its initial endowments;
society is not willing to disregard its past.

It seems quite reasonable to expect to find situations in which there are at
least two different capital-labor ratios at which the pure rate of time preference
equals the marginal product of capital. In such a case, a very poor society may
decide that the effort to accumulate capital is too high, that the benefits will take
too long to be reaped, and thus embark in a high consumption program leading
to a low —perhaps zero— long run capital-labor ratio. On the other hand, a
somewhat richer society with an initial capital endowment exceeding some critical
amount, may have sufficient incentives to decide to undertake the effort, to
tighten their belts by consuming less, to accumulate and reach a long run
capital-labor ratio that is higher than the present one.

More than two coincidences between the pure rate of time preference and
the marginal product of capital are possible —as shown by the example— but do
not seem to be plausible.

When the rate of time preference is allowed to vary, a country may decide
not to undertake the effort of economic development when its initial capital
endowment is below some critical level, whereas if it were above that level it
would be willing to sacrifice its present generation for the well-being of the future
ones. It is impossible to obtain such a result with a constant or increasing rate of
time preference in the case of a simple neoclassical technology.
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APPENDIX

1. THE PROBLEM

mj:':-"; Fm‘u(.t) dt

st Kk = &) - x; k@) = k,
x20k+3 =20

where
u' 20; u” <0; u©) =0

p/<0;p">0;p2€>0
fO = 0; F©0) > 0;):'11; Gk>0 1% =0
-

k> 0

2. EXISTENCE (PROOF OF PROPOSITION 4)

Equivalent problem is

mxj:lut;x)c#
stk=f® -x k@) =k >0

A=-p@a;20 =1
x20;k+8k20

Our assumptions guarantee that Theorem 4, pg. 259, in Lee and Markus
(1967) on the existence of optimal controls with magnitude constraints, is
applicable.

To see this, consider the auxiliary problem in which the differential equation

for A is relaxed to the differential inequality 4 < - p(x) A. This problem has
a convex, compact velocity set

V(J.,k)-{(2]={_;(i?’:;‘]|usxsf{k) + 8k;z > 0},
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hence there exists an optimal control for this auxiliary problem. But in the
optimum the differential inequality becomes an equation since

i = - pp; B(0) = 1 implies that for all ¢
In(A) < - [ pdt=1n@

Because of the assumption #(.) = 0, one can substitute u for A.D

Define

; g :
W) J‘-_(‘) ’ A(s) u(x (s)) ds

Since x (.) is bounded, u (.) is continuous, and A(s) < A(?) when s > ¢, this
definition implies that W (.) is bounded. Consequently, since A-0Qast ~ o
one has lim,__ AW =0

Differentiating the definition of W () gives the differential equation

W--%-W%-Wp-u;lhnl{t}ﬁ'(ﬂ-ﬂ.
] = =

3. NECESSARY CONDITIONS FOR AN OPTIMUM (PROOF OF
PROPOSITION 3)

Write the problem as follows in order to applay Pontryagin’s Maximum
Principle in the case of a compact, constant control set U,

maxf: A u(yh (k) dt
stk =f0 - vh(®; k) =k >0
A=-p (h®) ;40 =1
yeU = [0, 1],
where h(k) = f(k) + 8k. The Hamiltonian is
H = Au (Yhk) - WAp(Yh(®) + p If(®) - vh(B)],

where W, p are the costate variables. Thus the following necessary conditions can
be derived.
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Y € arg max__,, {H; H =0
H, = -W
H, = -p

together with the transversality conditions

lim WA = lim pk = O,

== =
since the enpoints are free.

The first condition gives the further necessary conditions

< =0
[A@' - Wp) -p11=¢0ify{€)O, I(
2 = 1

whereas the other two provide the differential equations

W = p W-u
=-pfifvy <1

p=-{[Au'-Waip' -p)yh'+ {
{[A u ' - Pl Y pf'}s_ g

Furthermore, H = 0 implies

AW = pk
for all ¢.

Now consider the case y = 0. Then A (u’ (0) - Wp’ (0)) = p, which is
impossible since u’(0) = + oo. On the other hand, v = I means k =-3k <0,

hence W = pW - u < Oand W < u [h(K)]/p [h(K)], situation which eventually
must stop. In other words, if 8 is suffieciently large as compared to k, it will not
arise. Consequently set x(#) = y(f) & [k(?)] and consider the equality due to
0<y®<1,

u' - Wp' = p/A = Wik = (Wp - w/(f(k) - x),

so that one finally obtains the relation
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@) - W) + @'(x) - Wp' () (fk) -x) = 0

*)
Now consider the product A W. Since AW -~ =,

AW = - AW = f“‘ [PAW - A (pW) - W) dt = f"‘ Au dt,
which coincides with our previous definition of W. In particular, since A =1,

W, = f: Au dt

provides the optimal value of the objective function.O

4. PROOF OF PROPOSITION 1

As in the previous demonstration, using the definitions,

W, - Wo=-21W-Wi
=[TIpA W -W) - AW - u - pW + D) &
=[TAm-Wo-@- WD)l
-.r.f:.s.(a’-“’#)(.:-x)&
= (2P -
fo i & =5

5. PROOF OF PROPOSITION 2

[Pa-nad- fﬁ[/f aet ‘)]
s[C@f + +PH k- B -lim _pGk-h
[f@+p &-Rde+tim _pk
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6. WELFARE LEVELS INCREASE WITH INITIAL CAPITAL STOCK (PROOF
OF PROPOSITION 5)

Let O<k<ky<kef'RUhTR). Let k@) = k e~ for
t€[0, T), where T = sup {2]|k* (s) > k(s) for s € [0, 7]} —notethatT = + e
is not excluded— and k°* () =k (¢ - T) forz > T.

Then since on [ 0, T]

O <hk@®] <h[k°®] =x° @
and

AQ = ;-*me* e-j;p::'m:m - A0

and

O<su@x@®) <u@E"®)

one has

WO -W*©@ = [ [A® sG®) - 2* O uc*@)] d
<0

with equality only if x* () = x (f) for all ¢ which is impossible since
h (k) < h (k).

7. OPTIMAL CAPITAL PATHS ARE STRICTLY MONOTONE (PROOF OF
FROPOSITION 6)

From what has been shown above, £ = 0 is possible for an optimal path
only if it is stationary.

8. PROOF OF PROPOSITION 7

To obtain a differential equation for x Differentiate the identity

@ -Wpl) + @ @ -Wp®) F® -x) =0
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This gives
@" -Wp" F-0)i+(-p-p' F-D) W+ -WpHf k=0 0F

- GV o o o) e kD AED

w” - Wp"h
where
& - @ p’)
¥ &k )= - o >0
o (k x) =¥ @) +u' @) & - x)

p@+p @ FE -2

The paths for x, k can the be obained from the system

=9 -p-9o(f-%)
k= =%

with a stationary solution at any root of g(k) = f/(®) - p[f(®)] = 0. At such
a point, locally the linear approximation

ax\ (of" -p'f (ax]
ok -1 ) \ok
has a stable saddle path only if the determinant of the system,

'® -’ U1 ® =8 ®,

is negative. Thus if the stationary capital is approached from below, k < k* and
increases, = g (X)) > g (k%) = 0. Thus f'(}) > p [f(R)] O
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9. PROOF OF PROPOSITION 8
This follows from the fact that optimal paths exist, and have to arrive at

some stable saddlepath. Under the assumptions in the text, the function g () must
have, at least generically, one root at which it slopes downward.
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