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The reproductive system is extremely susceptible to insults
from exposure to exogenous steroids during development. Ex-
cess prenatal testosterone exposure programs neuroendo-
crine, ovarian, and metabolic deficits in the female, features
seen in women with polycystic ovary disease. The objective of
this study was to determine whether prenatal testosterone
excess also disrupts the male reproductive system, using
sheep as a model system. The extent of reproductive disrup-
tion was tested by assessing sperm quantity and quality as
well as Leydig cell responsiveness to human chorionic gonad-
otropin. Males born to mothers treated with 30 mg testoster-
one propionate twice weekly from d 30 to 90 and with 40 mg

DEVELOPING FETUS is vulnerable to environmental
insults. When an insult occurs at a gestational age
critical for target organ differentiation, it leads to alterations
in developmental trajectory of the organ, culminating in dis-
ruptions in adult phenotype, thus providing a basis for adult
onset of diseases (1-6). Evidence exists to suggest that such
insults may originate from changes in maternal environment
due to restriction of the energy supply, tobacco smoking,
alcohol consumption, stress, or exposure to environmental
toxicants that act as steroid mimics (1-11). For example,
nutritional insults have been shown to program hyperten-
sion, insulin resistance, type 2 diabetes, and obesity in adult-
hood (5, 6, 12).

The developing reproductive system is also extremely sus-
ceptible to insult by exogenous agents. Sex steroids and ste-
roid mimics can cause irreversible effects on the fetus, some
of which are not manifest until sexual maturity (4, 10, 11,
13-18). The effect of inappropriate steroid signaling using
native steroids as model systems have been capitalized on
extensively for understanding fetal origin of female infertil-
ity (13-16). For instance, exposure to excess testosterone (T)
during fetal life has been shown to program reproductive
neuroendocrine, ovarian, and metabolic deficits, features

Abbreviations: CASA, Computer-assisted sperm analysis; hCG, hu-
man chorionic gonadotropin; PCOS, polycystic ovarian syndrome; T,
testosterone; TP, T propionate; VSL, straight line velocity.

testosterone propionate from d 90 to 120 of pregnancy (T-
males) showed a significant reduction (P < 0.05) in body
weight, scrotal circumference, and sperm count compared
with control males. Mean straight line velocity of sperms was
also lower in T-males (P < 0.05). Circulating testosterone lev-
els in response to the human chorionic gonadotropin did not
differ between groups. These findings demonstrate that ex-
posure to excess testosterone during fetal development has a
negative impact on reproductive health of the male offspring,
raising concerns relative to unintended human exposure to
steroidal mimics in the environment.

seen in women with polycystic ovarian syndrome (PCOS)
(13-16). The impact of prenatal T excess on male reproduc-
tive development has not been so well studied. This is an
important line of research to pursue, especially because both
male and female fetuses of women with PCOS are getting
exposed to elevated levels of androstenedione, T, and de-
hydroepiandrosterone sulfate (19). Furthermore, humans are
exposed to several industrial pollutants that act as agonist or
antagonist of native steroids (see review 20).

The objective of this study was to test the hypothesis that
prenatal T excess disrupts reproductive function in the male,
using sheep as a model system. Impact on reproductive
function was tested by assessing sperm quantity and quality
as well as T production after a human chorionic gonadotro-
pin (hCG) challenge.

Materials and Methods
Breeding, prenatal T treatment, and animal maintenance

The study was undertaken in early March, during the natural breed-
ing season at the Chillan Campus of the University of Concepcion, Chile
(36° 36" south latitude, 71° 30" west longitude, 144 m above sea level).
A group of adult Suffolk females was mated after synchronization of
cycles with intravaginal progestogen pessaries for 7 d (Eazy Breed;
Pharmacia and Upjohn, Auckland, New Zealand) followed by admin-
istration of prostaglandin F,, (Genestren; Drug Pharma, Santiago,
Chile). Once pregnancy was confirmed, pregnant sheep were allocated
randomly to one of two treatments. One group of 20 pregnant sheep
received twice-weekly im injections of 30 mg of T propionate (TP; Sigma,
St. Louis, MO) in cottonseed oil, between 30 and 90 d of pregnancy and
40 mg T propionate from d 90 to 120 of pregnancy. Twenty other
pregnant sheep served as controls and received vehicle twice weekly
from d 30 to 120 of gestation. This regimen of TP administration was
chosen to reflect the higher levels of T seen in women with PCOS during
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their pregnancy (19). Twelve prenatal T-treated and 10 control male
offspring were born from this breeding.

Pregnant sheep were maintained under regular husbandry protocols
at the sheep facility of the Faculty of Veterinary Sciences, University of
Concepcion, Chillan, Chile. Lambs were born at the end of September,
were left undisturbed with their mothers for 4 h after birth, and then
weighed. Both groups of offspring were weaned at 8 wk of age. After
weaning, male lambs were kept in a separate barn under natural pho-
toperiod and given free access to water and pasture and supplemented
twice a day with hay and commercial pelleted food for ruminants.
Pelleted food made of oat, corn, wheat, gluten feed, gluten meal, soybean
meal, fish meal, sunflower meal, and mineral salts contained (based on
dry matter) 18% protein, 11% crude fiber, 2% fat, and 2450 kcal/kg
(Glovigor; Compaiia Molinera El Globo, Santiago, Chile). Body weight
and blood samples were obtained at birth and continued at weekly
intervals until 40 wk of age. All procedures were approved by the Ethical
Committee in Animal Research of the Faculty of Veterinary Sciences of
the University of Concepcion.

Scrotal measures and semen collection

Six control and six prenatal T-treated offspring were chosen for use
in this study. Only singleton or one randomly chosen offspring of a given
twin pair were used to ensure mother is the experimental unit. Other
males were used in other metabolic studies or for tissue harvest. Scrotal
circumference was measured at weekly intervals using a flexible tape
beginning at 26 wk of age and continuing until 40 wk of age. Semen was
collected on a weekly basis beginning at 26 wk of age using an elec-
troejaculation procedure. All semen collection procedures began at
0800 h local time. A Bailey ejaculator (Nasco, Fort Atkinson, WI) de-
signed for small ruminants was used. This has a rectal transducer 17.5
cm long and 2 cm diameter that delivers a fixed voltage of 6 V. Each male
was stimulated with four cycles of 4 sec with a rest interval of 4 sec
between each cycle. The ejaculate was received in a sterile graduated
tube. From the ejaculate, the following parameters were determined: 1)
ejaculate volume, 2) sperm count, and 3) motility characteristics. To
facilitate these measures, the ejaculate was suspended in sperm analysis
medium (21) in a 1:1 ratio. The composition of this medium was 2.65 mm
calcium chloride, 0.49 mM magnesium chloride, 2.00 mM potassium
chloride, 5.0 mM sodium bicarbonate, 0.28 mm sodium phosphate, 19.97
mmM HEPES, 26.0 mm dl-lactic acid (60%) sodium salt, 5.55 glucose, 8.75
mM sucrose, 1.0 mg/ml polyvinyl alcohol, 1.0 mg/ml BSA, 75 ug/ml
kanamycin, and miliQ water [290 mOsm/kg (pH 7.3)]. Sperm counts
were determined in a 10-ul aliquot using a hemocytometer. A computer-
assisted sperm analysis (CASA; HTM-IVOS version 12; Hamilton-
Thorne, Beverly, MA) was carried out to compare the motility of sper-
matozoa from prenatal T-treated males with that of control males. In
brief, semen samples (5.5 ul, ~10-20 X 10° spermatozoa/ml) were
placed on slides (Conception Technologies, San Diego, CA) prewarmed
to 37 C and covered with a 22 X 22-mm coverslip before immediate
transfer to the CASA. Motility characteristics were determined by as-
sessment of at least three randomly selected microscopic fields (>300
spermatozoa/sample) using factory CASA settings at an image sam-
pling frequency of 60 Hz. Average path velocity (micrometer per seg-
ment); straight line velocity (VSL; micrometer per segment), curvilinear
velocity (micrometer per segment), and linearity (percent) were esti-
mated using procedures described previously (21).

hCGQG stimulation test

Alterations in adult reproductive function could be the result of
endocrine disruptions programed developmentally and may involve a
reduction in T production. To determine the gonadal T production, at
40 wk of age, after the last weekly semen collection, an hCG test was
performed on all males. The hCG test (22) consisted of iv administration
of 500 IU hCG dissolved in 2 ml saline. A jugular catheter was inserted
under sterile conditions. Blood samples were collected (time 0), hCG was
administered, and additional blood samples collected at 0.5-h intervals
for the first 3 h of the test to determine acute response of T to hCG
stimulus and then at 3- to 6-h intervals until 72 h to assess chronic effects.
Plasma concentrations of T were measured by double-antibody RIA
using a commercial kit (Diagnostic Systems Laboratories, Webster TX)

(23). Minimal detectable limit of the T assay was 5 pg/ml. Intra- and
interassay coefficient of variations were 4 and 8%, respectively.

Statistical analysis

Body weight, scrotal circumference, volume of ejaculate, sperm con-
centrations, and plasma concentrations of T were analyzed by ANOVA
for repeated measures with treatment as the main factor and age as the
repeated factor, except for plasma T concentrations in which sampling
time was the repeated factor using the GB-Stat (Dynamic Mycrosystems
Inc., Silver Spring, MD 20904) version 6.5 statistical program. For all
analyses except sperm parameter, in which one T-male had no sperm in the
gjaculate, there are six control (C-males) and six males born to mothers
treated with 30 mg TP (T-males). Pairwise post hoc comparisons were made
by the Newman-Keul’s test. Because there were no within-group differ-
ences across time points studied, mean ratio of scrotal circumference to
body weight and mean sperm motility were averaged across ages and
compared using Student’s ¢ test. Results are shown as mean = sgm.

Results
Body weight

Body weight from birth to 40 wk of age of C-males and
T-males is presented in Fig. 1. Body weight increased from
5.3 += 0.1 and 4.7 * 0.4 kg at birth to 58.2 = 1.1 and 50.3 *
2.9 kg at 40 wk of age in C-males and T-males, respectively.
Beginning at 8 wk of age, body weight of T-males was sig-
nificantly less than C-males (P < 0.05). This difference per-
sisted until 40 wk of age.

Scrotal circumference

Statistical analysis showed a high interaction between age
and treatment in the scrotal circumference (Fig. 2A). Scrotal
circumference of C-males was 32.0 = 1.0 cm at 26 wk of age.
Repeated-measures analyses found scrotal circumference in-
creased significantly to 33.4 = 0.9 cm at 28 wk (P < 0.05) and
then continuing to increase progressively until 40 wk of age.
Scrotal circumference of T-males at 26 wk of age was lower
than the C-males (28.4 = 2.5 cm; P < 0.05). Scrotal circum-
ference of T-males was also lower than C-males at 40 wk of
age (P < 0.05). The ratio of scrotal circumference to body
weight did not differ statistically between treatment groups
(control: 0.70 = 0.06; T-male: 0.74 = 0.07; P = 0.56).

Ejaculate volume

ANOVA showed a significant interaction between age and
treatment (P < 0.03) in the ejaculate volume in each group
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Fic. 1. Weekly body weight gain (mean * SEM) in C-males (O, n = 6)
and T-males (@, n = 6). T-males were treated twice weekly from d 30
to 90 of gestation with 30 mg and from d 90 to 120 of gestation with
40 mg TP. Arrow indicates the time point from which significant
differences in body weight were evident between groups.
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Fia. 2. Testicular and spermatic parameters (mean *= SEM) in C-
males (O, n = 6) and T-males (®, n = 6). A, Scrotal circumference. B,
Ejaculate volume. C, Sperm count. One T-male did not show sperms
in the ejaculate and was omitted from the statistical analysis of the
sperm count. T-males were treated twice weekly from d 30 to 90 of
gestation with 30 mg and from d 90 to 120 of gestation with 40 mg TP.

(Fig. 2B). Ejaculate volume was 540 = 71.6 pl in C-males and
510 = 110 ul in T-males at 26 wk of age. Highest volume of
ejaculate (876 = 139 ul) was obtained at 38 wk of age in
C-males and at 30 wk of age in T-males (888 * 154 ul),
plateauing thereafter.

Sperm concentration

A significant age (P < 0.001), treatment (P < 0.01), and
age X treatment interaction (P < 0.0003) was evident with
sperm concentrations. Sperm concentration was lower in
T-males than C-males at every age studied (Fig. 2C). One
T-male did not show cells in any of the weekly ejaculate and
was excluded from the statistical analysis of sperm param-
eters resulting in an n of six controls and five T-males for
these measures. Mean sperm concentration in T-males (195 *
69.2 million) were significantly lower (P < 0.05) at 26 wk
compared with C-males (462.5 = 133.4 P < 0.05). Sperm
concentrations increased from 26 to 29 wk of age in C-males
and plateaued thereafter. At 40 wk of age, sperm concentra-
tions averaged 859.2 = 171.7 million in C-males. In contrast,
sperm concentrations remained low throughout the study pe-

TABLE 1. Mean * SEM of 14 weekly sperm motility parameters
from control male sheep (n = 6) and T-males (n = 5) obtained by

CASA

Parameter C-males T-males
Average path velocity (um/segment) 115 £ 2 118 £ 7
Straight line velocity (um/segment) 103.6 = 2 89.5 £ 6.9
Curvilinear velocity (um/segment) 170 = 3 168.3 = 11
Linearity (%) 519 =2 53 +1.8

T-males were prenatally treated from d 30 to 90 of pregnancy with
30 mg and from d 90 to 120 of pregnancy with 40 mg TP twice weekly.
@ P < 0.05 vs. control males.

riod in T-males, averaging 160.4 + 67.0 million/ml at 40 wk of
age (P < 0.01), an 80% reduction from that of the C-males.

Sperm motility

The intrasubject variability of VSL over time ranged between
7 and 10% in C-males and 9 and 13% in T-males. There were
no differences in VSL across time points within each
group. Mean VSL of T-males averaged across time points
was lower (P < 0.05) in T-males (89.5 = 6.9 um/segment)
compared with C-males (103.6 = 2.0). There were no differences
in other three parameters of sperm motility studied (Table 1).

T response to hCG challenge

Basal T concentrations at time 0 were similar in C-males
and T-males (Fig. 3). After administration of hCG, plasma T
concentrations increased in parallel in both groups, reaching
a maximum at 2-2.5 h after the hCG challenge. Circulating
T concentrations decreased 6 h after hCG in both groups.
Thereafter T concentrations again began to increase. At 72 h,
plasma T concentrations were higher than seen before the hCG
challenge (P < 0.01). There were no differences in T concen-
trations at any time point between C-males and T-males.

Discussion

Our findings provide unequivocal evidence that inappro-
priate exposure to excess steroids during critical stages of
development, in addition to having detrimental effects on the
female offspring (13, 14, 16), negatively impacts the repro-
ductive development of the male offspring. The negative
impact of exposure to excess T from d 30 to 120 of pregnancy

Testosterone (ng/mL)

0 3 6 9 12 15 18
Hours post hCG

Fic. 3. Plasma T concentrations (mean * SEM) in response to 500 IU
hCG in control (O, n = 6) and T-males (@, n = 6). Time 0 depicts time
of hCG injection. Blood samples were taken every 0.5 h for the first
3 h, then every 3 h, and finally every 6 h. T-males were treated twice
weekly from d 30 to 90 of gestation with 30 mg and from d 90 to 120
of gestation with 40 mg TP.
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was manifested as reduced scrotal circumference and re-
duced sperm count and motility.

Considering that androgens play a role not only in genital
tract differentiation, phenotypic virilization, and mainte-
nance of secondary male characteristics but also in initiation
and maintenance of spermatogenesis (24), the reduced sperm
count seen in T-males is likely the result of increased an-
drogen signaling during development. Whereas we did not
determine the amount of T reaching the male fetus, earlier
studies found that injection of 100 mg T to pregnant ewes at
30 d gestation doubled circulating T levels from 0.3 to 0.6
ng/ml (25). Therefore, the male fetuses in this study are
estimated to have been exposed to about 0.4 ng/ml T.

The underlying mechanisms mediating disrupted sper-
matogenesis are unclear. Because regulation of cellular
growth is essential for maintenance of spermatogenesis in the
adult sheep, the reduced testicular size is consistent with
growth reduction and consequent detriment to spermato-
genesis. A possibility to consider is that the reduced testic-
ular growth of prenatal T-treated male offspring is secondary
to the overall reduction in growth rate of these animals.
Consistent with this premise, we found no statistically sig-
nificant differences in the ratio of scrotal circumference to
body weight between C- and T-males. Earlier studies in cattle
and sheep found a positive correlation between testis size
and active spermatogenesis (26-28). It remains to be inves-
tigated which of the several endocrine and paracrine factors
that are involved in maintenance and control of testis cell
function and differentiation are involved in programming of
reduced spermatogenesis. Brooks et al. (29) found blockade
of the LH secretion with a GnRH agonist, which reduces
circulating T, resulted in a reduction in testis mass and num-
ber of Sertoli cells at birth. Similarly, male infant monkeys
born to mothers treated with a GnRH analog also had re-
duced testicular weight (30).

Our finding of lack of difference in Leydig cell response of
C-males and T-males to hCG, in the face of reduced sperm
count in the T-males, suggests that the critical period for
Leydig cell insult may differ from that of germ cells. Because
responsiveness to hCG was tested only at 40 wk of age, there
is also the possibility that the effects of prenatal T treatment
on T release may have been manifested at an earlier time
point. Our recent studies in males treated prenatally with 60
mg TP twice weekly from d 30 to 90 of fetal life found that
pituitary LH released in response to a pharmacologic GnRH
agonist challenge was reduced at 20 and 30 wk of age (23) and
that this was reflected not as a reduced but rather an in-
creased T response at 20 wk of age. If the same holds true for
the T-males used in this study, which received a lower dose
of T for a longer period during their fetal life, remains to be
determined. This, however, appears unlikely because basal
T levels (before hCG challenge) were similar in C- and T-
males. Interestingly, circulating T levels in prenatal T-treated
male rhesus monkeys determined at about 11 yr of age were
also similar to that of controls (31). In contrast, in females,
prenatal T treatment reduces sensitivity to estradiol-negative
feedback, culminating in increased LH release (32) and con-
sequent ovarian disruption (33-35).

It is unclear how much of the effects of prenatal T on
spermatogenesis was due to its androgenic effect as opposed

to effects via aromatization to estrogen. Whereas mRNA
encoding aromatase have not been detected at any stage of
testis development by Quirke et al. (36), aromatization is
possible via placental aromatase activity. During normal de-
velopment, the source of T is the fetal Leydig cells, which
stimulates Sertoli cells and peritubular cells to provide a
supporting environment for sperm cell differentiation. In
general, sperm cell count is positively correlated to Sertoli
cell counts (37). Whether the reduced sperm count of T-males
is a reflection of reduced Sertoli cell count remains to be
ascertained. Alternatively, decreased concentration of sperm
in the ejaculate may be the result of occlusion of seminiferous
tubule lumen and consequent block of sperm transport.

The findings from this study are likely to be of clinical
relevance. Because testicular cancer incidence is 20-fold
higher in men with abnormal semen analysis (38) and about
6—8% of adult men have subnormal sperm counts (39, 40), the
detrimental effects of prenatal steroid excess on reduced sperm
count is of concern. It appears that disorders of sperm produc-
tion, for the most part, originate during fetal life (41, 42). In this
regard, it is of interest that men with congenital adrenal hy-
perplasia, who are exposed to excess adrenal-derived testos-
terone during development, have low sperm counts and re-
duced fertility (43, 44).

It is also of clinical interest to relate findings from this
study to the reproductive phenotype of sons of PCOS
women, who are exposed to higher levels of T during ges-
tation (19). Whereas absence of differences in circulating T
levels between control and T-males evidenced in this study
parallel lack of differences in circulating concentrations of T
that we recently found in sons of control and PCOS women
(45), the reduction in sperm count seen in prenatal T-treated
male sheep (this study) was not evidenced in sons of PCOS
women (45). In addition, the postnatal growth trajectories of
prenatal T-treated sheep differed from that of sons of PCOS
women; sons of women with PCOS had higher body weights
from early infancy onward (46) as opposed to the prenatal
T-treated male sheep that had lower body weights. Similarly,
whereas infants of PCOS mothers showed insulin resistance
from early infancy (46), no differences in insulin sensitivity
was found in prenatal T-treated male sheep (47). Differences
in phenotypes of prenatal T-treated male sheep and sons of
PCOS women, in addition to the obvious species difference,
may originate from changes in level and duration of T ex-
posure during fetal life and/or metabolic status of the
mother or offspring during pre- and postnatal development.

In summary, our results demonstrate that excess T dur-
ing fetal development have detrimental effects on sperm
concentration and motility and brings to the forefront the
threat posed by exposure to excess steroids, native or
environmental, on reproductive health of the male off-
spring (10, 11, 48, 49).
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